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Abstract

Background: Multiple functional genomics data for complex human diseases have been published
and made available by researchers worldwide. The main goal of these studies is the detailed analysis
of a particular aspect of the disease. Complementary, meta-analysis approaches try to extract
supersets of disease genes and interaction networks by integrating and combining these individual
studies using statistical approaches.

Results: Here we report on a meta-analysis approach that integrates data of heterogeneous origin
in the domain of type-2 diabetes mellitus (T2DM). Different data sources such as DNA microarrays
and, complementing, qualitative data covering several human and mouse tissues are integrated and
analyzed with a Bootstrap scoring approach in order to extract disease relevance of the genes. The
purpose of the meta-analysis is two-fold: on the one hand it identifies a group of genes with overall
disease relevance indicating common, tissue-independent processes related to the disease; on the
other hand it identifies genes showing specific alterations with respect to a single study. Using a
random sampling approach we computed a core set of 213 T2DM genes across multiple tissues in
human and mouse, including well-known genes such as Pdk4, Adipoq, Scd, Pik3r!, Socs2 that monitor
important hallmarks of T2DM, for example the strong relationship between obesity and insulin
resistance, as well as a large fraction (128) of yet barely characterized novel candidate genes.
Furthermore, we explored functional information and identified cellular networks associated with
this core set of genes such as pathway information, protein-protein interactions and gene
regulatory networks. Additionally, we set up a web interface in order to allow users to screen
T2DM relevance for any — yet non-associated — gene.

Conclusion: In our paper we have identified a core set of 213 T2DM candidate genes by a meta-
analysis of existing data sources. We have explored the relation of these genes to disease relevant
information and — using enrichment analysis — we have identified biological networks on different
layers of cellular information such as signaling and metabolic pathways, gene regulatory networks
and protein-protein interactions. The web interface is accessible via http:/t2dm-

geneminer.molgen.mpg.de.
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Background

Type-2 diabetes mellitus (T2DM) is a rapidly increasing
disease with more than 170 million afflicted persons
worldwide (constituting more than 90% of all diabetic
patients). T2DM poses a huge burden for the health care
systems and is, thus, subject to intensive biomedical
research. T2DM is a multigenic disease involving a high
number of susceptibility genes and causes alteration of an
entire network of genes. Several environmental and nutri-
tional risk factors have been identified for T2DM the most
relevant being obesity where multiple molecular mecha-
nisms have been proposed to link obesity to insulin resist-
ance and beta cell failure [1]. Increased availability of food
and reduced physical activity as a consequence of modern
lifestyle are the main drivers for an anticipated epidemic
increase in T2DM patients in the next years.

In the pathopysiology of T2DM, impaired insulin sensitiv-
ity and glucose intolerance are early phenomena, leading
to hyperglycemia, hyperlipidemia and, eventually, to a
failure of pancreatic beta cells to produce and secrete a suf-
ficient amount of insulin. However, most genes and their
associated molecular network contributing to the onset
and course of the disease are yet unknown.

Genetic variation in the context of diabetes has already
been extensively studied, leading to numerous candidate
genes. Studies on transgenic and knock-out mice have
been valuable to dissect the regulatory network of genes
implicated in insulin action and body weight control
[2,3], however, monogenic variants contribute only to a
minority of T2DM cases. In contrast, the polygenic nature
of T2DM is now well established and several polygenic
mouse models including NZO, BTBR etc. have been stud-
ied to analyze diabetes susceptibility on a more complex
genetic background [4]. Linkage analyses have shown that
several quantitative trait loci interact with each other and
with the environment to elicit obesity syndromes that are
potentially diabetic. Several recent genome-wide associa-
tion studies have identified novel candidate genes for
T2DM but the effect of these variants on disease suscepti-
bility is generally low, with odds ratios mostly around 1.5
[5-11].

Multiple studies on the transcriptome level have been per-
formed that emphasize the diversity of the disease and the
complex pathophysiological interactions between differ-
ent tissues, including fat, muscle, liver, pancreatic beta
cells and brain [1]. In several human studies, tissue biop-
sies from diabetic and normoglycaemic individuals have
been profiled [12,13]. In mouse studies differences in diet
or mouse strains have been used to identify distinct
expression profiles [14-16]. Complementary ChIP-on-
Chip studies reveal the associated gene regulatory network
of important transcription factors (TFs) active in the rele-
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vant tissues [17,18]. In the context of the onset of diabe-
tes, several studies on the proteomic level have revealed
differential expression of intracellular proteins as well as
of secretory proteins in adipose tissue [19]. Despite the
availability of these large amounts of data, their common
content as well as their specific differences, in particular in
gene sets between human and rodent studies, has not yet
been systematically evaluated.

The goal of this meta-analysis approach is to generate
additional value by combining the above-mentioned
individual studies and by extracting consistent informa-
tion. Several meta-analyses studies have been previously
applied within other disease domains, such as cancer [20]
or Alzheimer [21] using different types of data. With
respect to T2DM some recent approaches have been pub-
lished: In Tiffin et al. several computational prediction
methods have been combined in order to identify a com-
mon set of T2DM genes [22]. The authors assessed the
accordance of the prediction methods resulting in a can-
didate gene list of 99 different genes. For type-1 diabetes
mellitus a web-resource has been set up that tracks the
expression behavior of genes in several tissues [22]. Liu et
al. have applied enrichment analysis to previously defined
gene sets and protein-protein interactions using data from
different species and tissues from the Diabetes Genome
Anatomy Project [23] and identified a subnet of insulin
signaling proteins and nuclear receptors [24]. In contrast
to Rhodes et al., Sun and Liu et al. our approach is not lim-
ited to transcriptome studies [7,24,25]. We have accumu-
lated data from different levels of molecular interaction
such as genetic information using knock-out mice and
single nucleotide polymorphisms (SNPs), gene regulatory
and gene expression information as well as information
on protein signaling and protein interactions. In order to
reduce technical bias of transcriptome measurements we
restricted this data type to experiments that were per-
formed on the Affymetrix GeneChip platform. Similar to
Liu et al., we combined the relevant tissues such as liver,
muscle, adipose tissue and pancreas [24] since T2DM has
physiological consequences in several parts of the body.
Furthermore, a more global view on T2DM has been
achieved by involving mouse as well as human data
because the available mouse models address specific
aspects of the disease and it is unclear, whether these mice
have diabetes for the same reason as humans do.

Using a Bootstrap [26] scoring approach we computed a
core set of 213 genes that show significant disease rele-
vance in the data sets under study. Here, we used the gene
expression profiles along with qualitative data comprising
literature, genetic and proteomic sources. Besides known
genes our approach exhibits a large fraction (128) of yet
barely characterized novel candidate genes. These genes
have been further validated in the functional context of
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networks and exhibit high potential for understanding
pathways and pathway crosstalk associated with T2DM.
By applying gene set enrichment analyses we inferred the
deranged parts of the physiology using gene ontology
terms [27], common pathway resources [28-30] and
information on the associated gene regulatory network
[17,18,31].

The meta-analysis approach is generic and can be used as
a template for studies in other disease domains. It has
been completely implemented in the software platform R
using the BioConductor package collection [32-34]. Our
T2DM-GeneMiner web resource [35] allows the user to
access the information that was gathered and to assess dia-
betic potential for any human or mouse gene of interest.

Results

We present the identification of the T2DM candidate
genes, the comparison to previously published T2DM
gene lists and results from association and linkage studies
as well as the identification of associated molecular net-
works on different levels.

Annotation, preprocessing and categorization of data

We used Ensembl (version 39) as the annotation reference
database. Homology between human and mouse genes
was derived via BioMart. The total number of genes under
study comprises 15,277 Ensembl mouse genes represent-
ing the union of the homologue genes from all data
sources. An overview about the T2DM specific datasets is
given in Table 1.

Several of the available resources are based on microar-
rays. Each individual microarray study was normalized
using the GC RMA method of the R/BioConductor pack-
age [33,34,36]. Recently, it has been reported that the
remapping of the oligoprobes, as an alternative to the
annotation given by the chip provider, enhances data
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analysis to a significant extent [37]. Using this mapping
we indeed observe differences in annotation resulting
from recent changes in genome annotation. Annotation
comparisons showed improvement of reproducibility and
specificity (data not shown). Re-annotation affects the
main fraction of genes, for example in the remapped
Mouse Genome U74A version 2 platform the top ten
genes of our candidate list are represented by oligoprobe
sets of 8 to 15 probes (11 with annotation of the chip pro-
vider) with an average of 13 probes (Serpinala 11 probes,
Ybx1 8, Pdk4 16, Cstb 14, Adipoq 15, Agt 14, Lgals1 11,
Serpine2 15, Mt2 10, Gpil 16 probes).

Identification of T2DM candidate genes — generality versus
specificity

Numerical scores were computed for all genes in each
individual study, the scores were summarized and the
summarized scores were compared against a random sam-
ple at the 99.9 percentile as described in Materials & Meth-
ods. This procedure determines a cut-off score value of
3.05 and identifies a set of 213 genes with a score exceed-
ing this cut-off.

Randomly, we would expect 15 out of the 15,277 genes to
exceed the threshold. Cutting at the 99 percentile results
in 943 genes (expecting 153 by chance), cutting at the 98,
97, 96 and 95 percentiles would result in 1352, 1587,
1792 and 1972 selected genes (305, 458, 611 and 764
randomly expected genes). Thus, the ratio of detected vs.
expected significant genes increases with percentile of the
random sample from 2.6 to 14.2, indicating a necessary
precondition for the validity of our selection procedure
[see Figure 1 in Additional file 1]. Since we have analyzed
data from multiple tissues in human and mouse, it is
likely that for some cases an individual experiment is
dominating the score, for example, if the gene is active
only in a single tissue. In order to identify those genes we
have computed an entropy-based numerical criterion (see

Table I: Overview on the datasets used for the T2DM meta-analysis approach.

Data set Category Species Tissue Study research question Reference
StumvollGoldstein2005  qualitative ~ human medical review about T2DM [n
DeanMcEntyre2004 qualitative ~ human medical review about selected candidate genes [48]
OMIM qualitative ~ human medical review about T2DM [44]
PubMedGeneRIF qualitative  human/ text mining in the NCBI geneRIF [49]
mouse
KOmice]AX qualitative ~ mouse mouse models with phenotype T2DM [2]
NandiAccili2004 qualitative ~ mouse mouse models with phenotype "Insulin Resistance”"  [3]
ChenHess2005 qualitative  rat fat secretory proteins in adipose tissue [19]
MoothaGroop2003 quantitative human muscle patients with T2DM/impaired glucose tolerance [13]
and controls

GuntonKahn2005 quantitative human pancreas patients with T2DM versus controls [12]
LanAttie2003 quantitative mouse fat/muscle/liver/pancreas diabetic mice versus controls [15]
BiddingerKahn2005 quantitative mouse fat/muscle/liver diabetic mice versus controls [14]
NadlerAttie2000 quantitative mouse fat diabetic mice with different level of hyperglycaemia [16]
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Materials & Methods). Entropy is high if many experi-
ments contribute equally to the overall score, it is low if a
single (or few) experiment accounts for a large fraction of
the score. For example, the gene Serpinalb has the top
score (7.9, rank 1/15,277) in our study. This is due to a
very high fold-change in a single experiment; conse-
quently, entropy is low (1.17, rank 4,590/15,277). In con-
trast, other genes show more consistent alterations across
many different studies, for example Pdk4 (6.7, rank 3/
15,277) indicated by higher entropy (3.0, 167/15,277).
Differential expression of Pdk4, a major regulator of glu-
cose metabolism, has been found in fat, pancreatic islets
and skeletal muscle but not in liver.

The thirty genes with highest scores are listed in Table 2
[The entire candidate list is given in Additional file 2].

Adiponectin (Adipoq) has a score of 6.1 (rank 5/15,277)
and the high entropy indicates a consistent behavior
across data sets. Adipoq is a hormone from adipocytes that
modulates insulin sensitivity and thus regulates glucose

Table 2: Top thirty T2DM candidate genes (out of 213).
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and lipid metabolism and energy homeostasis. Expres-
sion of Adipoq is reduced in obesity, certain genotypes are
associated with increased risk of T2DM in humans [38].
The protein is secreted from fat tissue and has insulin-sen-
sitising and anti-inflammatory properties. Additionally,
we find strong changes in the expression in muscle both
in human and mice. Adipoq is an oxidative regulator. The
systemic oxidative stress causes the metabolism to share
the burden from fat to muscle [39]. Adipoq is also respon-
sible for the crosstalk between the three KEGG pathways
'PPAR signaling', 'Adipocytokine signaling' and 'type II diabe-
tes mellitus'. It has been tested for transcriptional regula-
tion but no binding to the TFs under study could be
detected. A negative regulation has been described for Tnf
that has not been tested in the underlying studies.

Pdk4 phosphorylates and inhibits pyruvate dehydroge-
nase complex thereby contributing to the regulation of
glucose metabolism. Expression of this gene is regulated
by glucocorticoids, retinoic acid and insulin. This is in
accordance with a consistent differential expression in fat,

SourceName mgi_symbol entrezgene refseq_dna HUGO Score Entropy
ENSMUSG00000071178 Serpinala ; Serpinalb 20701 NM_009244 SERPINAI  7.899 1.167
ENSMUSG00000028639  Ybx| 22608 XR_003217 ; XR_003023 ; XR_001819; 7.065 2.484

NM_011732
ENSMUSG00000019577 Pdk4 27273 NM_013743 PDK4 6.668 2.993
ENSMUSG00000005054 Cstb 13014 NM_007793 CSTB 6.11 2.746
ENSMUSG00000022878  Adipoq 11450 NM_009605 ADIPOQ 6.082 3.043
ENSMUSG00000031980 Agt 11606 NM_007428 AGT 5912 2.052
ENSMUSG00000068220 Lgals| 16852 NM_008495 LGALSI 5.895 1.85
ENSMUSG00000026249  Serpine2 20720 NM_009255 SERPINE2  5.894 2.49
ENSMUSG00000031762 Mt2 17750 NM_008630 MTIX 5.67 2.72
ENSMUSG00000036427 Gpil 14751 ; 676974 NM_008155 5.598 1.619
ENSMUSG00000037071  Scd| 20249 NM_009127 SCD 5.553 2.358
ENSMUSG00000025453 Nnt 18115 NM_008710 NNT 5.539 2.307
ENSMUSG00000016194 Hsdl bl 15483 NM_008288 HSDIIBI 5.452 2.489
ENSMUSG00000026628  Atf3 11910 NM_007498 ATF3 5.446 2.676
ENSMUSG00000023087 Ccrn4l 12457 NM_009834 CCRNA4L 5.434 2.333
ENSMUSG00000021190 Lgmn 19141 NM_0I11175 LGMN 5.225 2.588
ENSMUSG00000061780 Cfd 11537 NM_013459 CFD 5.158 2.429
ENSMUSG00000029657 Hspl 10 15505 NM_013559 HSPHI 5.14 2438
ENSMUSG00000025006  Sorbs | 20411 NM_178362 ; NM_001034964 ; SORBSI 5.092 2.639

NM_001034963 ; NM_001034962 ;

NM_009166
ENSMUSG00000029309  Sparcl | 13602 NM_010097 SPARCLI 5.024 2013
ENSMUSG00000024981  Acsl5 433256 NM_027976 ACSL5 4912 2.868
ENSMUSG00000032018  Sc5d 235293 NM_172769 SC5DL 4.879 1.622
ENSMUSG00000035385 Ccl2 20296 NM_011333 4.856 1.764
ENSMUSG00000041417  Pik3rl 18708 NM_001024955 ; NM_011085 PIK3RI 4.852 3.008
ENSMUSG00000026003  Acadl 11363 NM_007381 ACADL 4.839 2911
ENSMUSG00000006818  Sod2 20656 NM_013671 SOD2 4.746 3.127
ENSMUSG00000020027  Socs2 216233 NM_007706 SOCSs2 4.682 2.57
ENSMUSG00000026687  Aldh9al 56752 NM_019993 ALDH9AI  4.666 2.467
ENSMUSG00000020593  Lpinl 14245 NM_172950 ; NM_015763 LPINI 4.639 2.285
ENSMUSG00000027690  Slc2a2 20526 NM_031197 SLC2A2 4617 2.461
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muscle and pancreatic islets resulting in high entropy. On
the other hand, possible regulation of the gene by Hnf4a
and Usf1 is reported in liver.

Hydroxysteroid (11-beta) dehydrogenase 1 (Hsd11bl,
score 5.5, rank 13/15,277) is a critical enzyme for cortisol
metabolism. Hsd11b1 is increased in obese subjects and
transgenic mice over-expressing Hsd11b1 develop visceral
obesity [40]. Inhibition of Hsd11b1 decreases blood glu-
cose in hyperglycaemic mice. Selective antagonists are cur-
rently developed and tested as anti-obesity and anti-
diabetes drugs.

Scdl (5.6, 11/15,277) is the rate-limiting enzyme in
monounsaturated fatty acid synthesis. It has been shown
to exert a critical role in hepatic lipogenesis and lipid oxi-
dation. Scdl knock-out mice are lean due to increased
energy expenditure, show increased insulin sensitivity and
are resistant to diet-induced obesity and liver steatosis.

Nicotinamide nucleotide transhydrogenase (Nnt, 5.5, 12/
15,277) is a mitochondrial enzyme involved in proton
transport into the mitochondrial matrix. Nnt was identi-
fied as a novel candidate gene in a quantitative trait locus
for glucose intolerance [41]. Nnt has been recently shown
to regulate insulin secretion in pancreatic beta cells. Nnt
deficiency results in defective insulin secretion and inap-
propriate glucose homeostasis [42]. It has been proposed
that Nnt detoxifies reactive oxygen species [43] implicat-
ing a possible role of Nnt in regulating ATP production in
mitochondria and function of the ATP sensitive K+ chan-
nel Kir6.2 (Kcnj11) in insulin producing beta cells.

For eighteen genes only limited functional information is
available as a basis for assessing a possible relationship to
T2DM: Ccrndl, Serpinal2, Htatip2, Mest, Pgcp, Tmsb4x,
Angptl4, Mrpl33, Ndfipl, Yipf5, Tmem30a, Asnsdl, Oact5,
Larp5, Thrsp, 1810015C04Rik, 2310003F16Rik, and
2610002J02Rik. High genetic variation is known for Pgcp
in mouse. Serpinal2, a target of Hnf4a, is massively
changed in liver and 1810015C04Rik in pancreatic islets.
Using the entropy criterion we observe medium to high
entropy in these genes, like in Ndfip1 (entropy 2.9), what
points to the fact that high scoring of these genes was not
due to single outlier experiments but that these genes are
truly affected by the disease and, thus, exhibit a high
potential for further functional experiments.

T2DM-GeneMiner web tool

In order to allow users to screen the disease potential of
any given gene of interest we developed T2DM-GeneM-
iner, a web interface summarizing the results of our work
(Figure 1, [35]). The user interface is shown for the well-
known Adipoq and the resulting bar plots for two other
genes, Pdk4 and Cfd, with lower content of available infor-
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mation. The resource is searchable by gene or protein IDs
(for example Ensembl ID or gene symbol). The score dis-
tribution is shown as a bar plot and, where available,
functional information is displayed. The two rightmost
bars show the entropy, indicating uniform or specific
score distribution, and the score. The red line at the score
bar indicates the cut-off.

Overlap to previous predictions of T2DM genes

From fourteen genes in the OMIM description of T2DM
(Diabetes mellitus, noninsulin dependent, #125853,
[44]) five genes have a significant score in our study: Retn,
Gpd2, Vegfa, Irs2 and Tcf2 (see Table 3). Retn represents an
adipocytokine which has been implied to play roles in
obesity, diabetes, and insulin resistance [45,46]. Interest-
ingly, Retn is only deregulated in one of two studies
involving adipose tissue. In contrast, differential expres-
sion for Irs2, Vegfa and Tcf2 was observed in pancreatic
islets whereas Gpd2 did not show tissue-specific expres-
sion. Several previous studies have already published
T2DM candidate lists allowing us to assess common con-
tent. The overlap to the list of the Diabetes Genome Anat-
omy Project [23], being also the source of some of the
transcriptome data sets used for this meta-analysis [12-
14], results in a P-value of 9.9E-03. Using the same
resource, with a less conservative selection of data sets, Liu
et al. identified 82 genes related to insulin signaling with
an overlap of seven genes to our candidate list containing
several strongly connected proteins (see below) [24].
More selective is a review of sequencing candidates lead-
ing to a P-value of 5.28E-13 [47]. In Tiffin et al. 99 candi-
dates were published as partial overlap of several
electronic candidate prediction methods [22]. This results
in a P-value of 1.9E-05 comparing it with our list (Figure
2 shows a Venn diagram of the absolute gene numbers).
In summary, the T2DM candidate gene list includes a
small amount of candidate genes from previous studies
and, further, leads to an additional set of 191 genes not
identified in the other studies. Subtracting those genes for
which we have disease information from the incorporated
reviews our approach identifies 128 novel T2DM candi-
date genes.

Relation to monogenic mouse models for T2DM

A variety of genetic studies have been performed in the
last decades. At least nineteen genetically engineered
mouse models with T2DM phenotype have been studied
in detail [2,3]. Of those, five genes show a significant score
in our meta-analysis: Slc2a4, Irs2, Ptpnl, Slc2a2 and Irs1.
Consistent with previous reports, the insulin-regulated
glucose transporter GLUT4 (Slc2a4) is down-regulated in
the insulin resistant state in adipose tissue but not in skel-
etal muscle. Likewise, down-regulation of Irs2 and the glu-
cose transporter GLUT2 (Slc2a2) in pancreatic islets
confirms previous reports and reflects deterioration of

Page 5 of 17

(page number not for citation purposes)



BMC Genomics 2008, 9:310

%

& informatlon for Gene with I Adipoq - Mozlla Firefox
Ele It View Mgty Brekmaks Ink e

« v eoa

at []] [
rmation for Gene with ID Adi.. (5

B G r— F.

Max Planck Institute for Molecular Genetics

T2DM-GeneMiner

Search N
ENSMUSGO0000022878 (human_external_id: ADIPOG)
Type 2 Diabetes Mellitus Spec fic Information Raviews:

cene o sty 0

(huren, review)
o PubMedGeeRIF (wuse,

review)

« ChesHess2005 (rat,
signzlling proteins)
o PankhGreop2004 {mouse,
CandidateGenss)
o Elnctiuanalazon

Transzriptional Regulation :

human tnlnhnmlwer)
COdom'oung?0r

10 this experiment n3
binding of the znalyzed
regulators fo this gene.
could be cetected,

T Y T

3

o

R o ot
ol ‘\z‘ »@“ o
Rt ort oty o
@ %
ILJO s

-

'f“a‘ = “"‘Tc o
5 1““ s
s

human (liver) -
Odorvonng2ng

In this e:fenment
Binding of the nalyzed
raw\aturs to this gene
coull e et
paper references

MaothaGrasp 2003 (ruscls, mus:le), Euntondzhn2005 (ancraatic islets), Biddingar:hn2 005 (Fat, livsr, muscls),
HadlerAmEP000 (fat, Lanattis 2003 lat. hver, muscle, islets),

results

Score pUSZ  Ertropy 043 Kank 5/15¢//

Function:

VEGE (mouse) 55 (mouse)

GOL0X05TE3 (A
GOL0X08ET =
GOHOXET73
GO0208633
GOL0242533
G0:0206003 v

galnm033z)
Palmm0432)
Satmm0493)

(A) Adipog

In mouse 6 Single Kuclestide Polymorphism (SNPs) havs been anrotated.
In human 130 Singe Nudeotide Polymorphism (SNPs) have been annotsted.

Figure |

http://www.biomedcentral.com/1471-2164/9/310

(B) Pdk4 [T

5.
4
3
2
1 =

0
26 ‘::‘
.0‘“';5 et

A “M‘,z n“ﬂt
“}(:;ul““b‘-:'x‘-“’“@\

74
61

Screen-shot of the web tool showing results on different genes with different amount of available information:

(A) Adipog, (B) Pdk4 and (C) Cfd.

beta cell function in the course of insulin resistance and
diabetes.

On the other side Slc2a2 is also changed in liver. Ptpn1 is
expressed in all tissues showing only small fold-changes.
Several genes from OMIM or KO-mice do not change at all
on the expression level. This indicates that only the com-
plete loss of the associated protein alters the system

Table 3: Results for T2DM OMIM genes.

whereas the gene's expression is not altered in T2DM. For
KO-mice we also see a strong tendency to genes only
expressed in mice.

Relation to human and rodent association and linkage
studies

Recently, a total of nine candidate genes for T2DM have
been identified and replicated in humans through multi-

SourceName Mgi Stumvoll Dean OMIM  PubMed KO mice Nandi score  entropy significant  rank
symbol Goldstein McEntyre Gene RIF  Jax Accili 2004 gene (out of
2005 2004 15,277)
ENSMUSG00000012705  Retn * * 4.597 2.106 * 31
ENSMUSG00000026827  Gpd2 * 4.452 288 * 39
ENSMUSG00000023951  Vegfa * * 4273 2724 * 52
ENSMUSG00000038894  Irs2 * * * * 3.907 2112 * 82
ENSMUSG00000020679  Tcf2 * * * 3.175 1.605 * 176
ENSMUSG00000041798  Gck * * * * * 3 1.585 234
ENSMUSG00000029644  Ipfl * * * * * 3 1.585 234
ENSMUSG00000029556  Tcfl * * * * 3 1.585 234
ENSMUSG00000040136 ~ Abcc8 * * * * 2.795 1.848 325
ENSMUSG00000034701  Neurod5; * * * 2.393 1.48 608
Neurod|
ENSMUSG00000017950  Hnf4a * * * * 2.36 1.614 642
ENSMUSG00000024985  Tcf712 * * 2.192 1.371 8l
ENSMUSG00000037370  Enppl * * 2.106 1.237 918
ENSMUSG00000027223  Mapk8ip| * | 0 3013
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this study
213

LiuKasif2007
82

DiabetesGenomeCG
9

ParikhGroop2004

TiffinHide2006 18
99

Figure 2

Venn diagram of candidate gene lists. Abbreviations
relate to the following references: TiffinHide2006 [22], Dia-
betesGenomeCG [23], ParikhGroop2004 [47] and
LiuKasif2007 [24]. One gene in TiffinHide2006 has been
neglected for the count since no transcriptional information
was available for that gene. (*) Two genes are counted twice
because the intersection of LiuKasif2007 and our study
shares those genes with ParikhGroop2004.

ple genome-wide association studies of common variants
by using high-density SNP mapping approaches: Cdkal
(score 0),Cdkn2a (score 0)/Cdkn2b (1.925, 1165/15277),
Fto (1.798, 1364/15277), Hhex (1.213, 2456/15277),
Igf2bp2 (0.855, 3555/15277), Kenjl1 (2, 1056/15277),
Pparg (2.528, 500/15277), Slc30a8 (0.076, 8056/15277),
and Tcf712 (2.192,811/15277) [5-11]. Interestingly, none
of these genes shows a high score in our meta-analysis,
although Pparg and Tcf7I2 are significant on the less
restrictive 0.01 level. On the other hand, from the data we
could infer that Fto and Hhex act in pancreatic islets indi-
cated by the T2DM-GeneMiner result for these genes.
Cdkall and Cdkn2a are not expressed in the transcrip-
tional studies. These genes show very low expression lev-
els or might be active in tissues not included in our study.
Since our meta-analysis approach takes into account sev-
eral data sets from DNA microarrays, our candidate genes
have a bias towards transcripts whose expression is
changed in the context of T2DM. Moreover, the gene var-
iants from association studies may not result in altered
gene expression and, for most SNPs found in association
studies, there is a lack of functional information since the
variation mostly occurs in non-coding regions of the
genes. In order to correlate the T2DM genes with genetic
variation we plotted the number of known SNPs for the
genes [see Figure 2 in Additional file 1]. No general ten-
dency to highly variable genes is observable. Two genes of
the candidate list show high variation, Pgcp (9,098 SNPs)
and Sorbsl (4,130). Particularly interesting is Pgcp,
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Figure 3

Pathway crosstalk with respect to the T2DM candi-
date gene set. Pathways were derived from the KEGG
database. Each pathway has been weighted according to the
total disease score reflected by the size of the nodes. Only
pathways with a total score > 20 were selected for display.
The thickness of the edges between the different pathway
nodes reflects the overlap score derived from the sum of the
scores of the overlapping genes. The graph was generated
with the graphviz package [62].

because it has not been related to T2DM before and its
functional role is also undetermined.

A further issue of our study was the chromosomal locali-
zation of the T2DM genes. The marker genes are scattered
over the entire mouse genome [see Figure 3 in Additional
file 1]. Using the hypergeometric distribution on local
sliding windows across the chromosome we could iden-
tify significantly enriched chromosomal regions. How-
ever, none of these regions convinced since they are
sparsely occupied. For example on chromosome 2 with
2,249 genes and 15 T2DM candidates, a window of 20
genes containing two T2DM candidates leads to a P-value
of 0.007. None of the windows of 20 genes contained
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Table 4: Overview about the network level, e.g. gene set, resources used in the meta-analysis approach.

Resource Species Resource content Version No. gene sets Reference
KEGG mouse pathway 09.01.2007 182 [29]
Reactome human pathway 19 691 [28]

BioCyc human pathway 9.1 169 [30]
OdomYoung2004 human study of selected TF in liver and pancreas publication 6 [18]
OdomYoung2006 human study of selected TF in liver publication 6 [17]
TransFac mouse sequence motifs for TF 10.2 187 [31]

GO molecular function mouse ontology Ensembl 41 987 [56,57]

GO cellular component mouse ontology Ensembl 41 350 [56,57]

GO biological process mouse ontology Ensembl 41 1977 [56,57]

more than three candidates. Rather conversely, we observe
that T2DM affects a wide range of physiological phenom-
ena spanning loci in the entire genome.

Assessing functional annotation with enrichment analyses
Enrichment analyses based on the hypergeometric distri-
bution were carried out in order to assess whether our
T2DM candidate list is over-represented with respect to a
certain functional category (Table 4). Categories on the
physiological level comprise three major pathway
resources (KEGG, Reactome, BioCyc) [28-30] and the GO
tree [27]. Altogether, we have analyzed 4,555 gene sets,
whereof 314 (6.9%) are significant with a P-value below
0.05 [see Additional file 3].

As greater parts of the metabolism are affected by T2DM,
multiple pathways have a significant enrichment P-value.
For example, in KEGG 45 out of 182 pathways have a P-
value lower than 0.05. Table 5 shows the results of path-
ways with a P-value lower than 1.0E-04. Results for differ-
ent pathways are not independent. For example, the 136
genes annotated with 'Insulin signaling pathway' and the 46
genes annotated with 'type I diabetes mellitus' share 32
genes. The first four pathways help to validate our signifi-
cant gene set. 'PPAR signaling', 'Adipocytokine signaling' and
'Insulin signaling pathway' are well related to T2DM.

Since we used several pathway resources in parallel, we
can compare the findings for consistency, assuming the
resources are independent. For example, we found enrich-
ment of the KEGG pathway 'Fatty acid metabolism' what is
complemented by the BioCyc pathways 'fatty acid elonga-
tion — saturated', 'fatty acid elongation — unsaturated' and by
the GO categories 'positive regulation of fatty acid biosynthe-
sis', 'positive regulation of fatty acid metabolism', 'fatty acid
binding' and 'fatty acid oxidation'. The KEGG pathway 'Com-
plement and coagulation cascades' is complemented by the
Reactome pathways 'Initial triggering of complement', 'Com-
plement cascade' and the GO categories 'defense response'
and 'complement activation, alternative pathway'.

For 116 T2DM gene candidates there is information on
the associated biochemical pathways according to the
KEGG database. Whereas most genes (106) are associated
with a single or a few (up to five) pathways, some genes
exhibit a higher interconnection such as Mapk1 (22 path-
ways), Pik3r1 (19), Aldh9al (15), Mapk9 (11), Sh3glb1
(9), Pla2qi2a (9), Pkm2, Nfkbia, Dhrs7, Actb (all 6). The
importance of Mapk1, Pik3r1, Rasal and Socs2 is also sup-
ported by Liu et al. as members of an insulin signaling
subnet derived from protein-protein-interactions [24].

In order to identify crosstalk between pathways we scored
the pathways according to their counts and their overlap

Table 5: Gene set enrichment of the most significant KEGG pathways.

Pathway ID SigSet Set Sig All P-value Q-value Pathway description
path:mmu03320 13 69 213 15274 1.02E-11 1.37E-09 PPAR signaling pathway
path:mmu04920 12 73 213 15274 3.46E-10 1.66E-08 Adipocytokine signaling pathway
path:mmu04930 10 44 213 15274 3.69E-10 1.66E-08 Type Il diabetes mellitus
path:mmu04910 13 128 213 15274 2.70E-08 9.09E-07 Insulin signaling pathway
path:mmu04612 6 38 213 15274 1.30E-05 0.000351  Antigen processing and presentation
path:mmu00280 6 44 213 15274 3.11E-05 0.000697 Valine, leucine and isoleucine deg.
path:mmu04610 7 67 213 15274 3.98E-05 0.000764 Complement and coagulation casc.

All are the genes under consideration, Sig the number of candidate genes, Set is the number of genes in the pathway under study and SigSet the
overlap of genes in the pathway and the candidate genes. P-values were computed with the upper tail of the hypergeometric distribution indicating
the probability of observing this overlap by chance. Q-values are the multiple testing corrected P-values [60,61].
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Figure 4

Scatterplot of the number of mouse protein interac-
tions in IntAct and the T2DM gene score. The vertical
red line indicates the significance cut-off value of the score.
Mapk | and Pik3r| are highlighted as genes with more than 30
interactions.

in the T2DM candidate list (Figure 3). An important mod-
ule with a large number of genes represented in the T2DM
list and a high overlap is visible with the pathways "Insulin
signaling", "Type Il diabetes mellitus", "PPAR signaling",
"Adipocytokine signaling", and "Fatty acid metabolism"
pointing to the interplay between obesity and insulin
resistance. Another path of signaling action is activation
of the RAS/RAF/MEK MAPK cascade resulting in cell
growth and gene expression alterations expressed by the
crosstalk between "Type II diabetes mellitus" and "MAPK
signaling" pathways.

T2DM-related protein-protein interactions

Protein-protein interactions have been taken from the
IntAct database denoting the number of interactions and
interactors registered for the T2DM candidate genes. The
ratio of interactors to interactions indicates whether the
protein participates in big complexes or binds with single
proteins. Figure 4 shows the number of interactions and
the score for the genes under study. There is no trend for
preferential selection of highly interacting genes in our
T2DM candidate list. The high-scored genes comprehend
a few genes with many interactions like Mapk1, Pik3r1 and
Rela in mouse with more than 15 interactions. The large
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number of interactions of Mapk1 and Pik3r1 is consistent
with their participation in many of the signaling pathways
(Figure 3). Actb, Cltb, Hspa5 and Grn have more than 600
interactors, indicating big polymers. In human Tsc22d1,
Tnfrsf1b, Ndrq1 and Nmel have most interactions. Lmna is
the only gene with more than 300 interactors.

Mapping the interactions on Ensembl genes and coerce
the human net and mouse net we derive a graph with
5,179 nodes and 216,446 edges (data not shown). If we
consider the edges between significant genes and their
non-significant nearest neighbors we still have 1,471
nodes and 11,378 edges. This shows that the disease genes
strongly interact with main physiological triggers and
deregulate essential parts of the metabolic network.
Reducing the interactions on the 213 T2DM genes we end
up with 45 nodes and 167 edges [see Figure 4 in Addi-
tional file 1].

T2DM-related gene regulatory network

In order to study the information content of the set of
selected disease genes on gene regulation, we have ana-
lyzed a) the TFs present in our significant set and b)
known target sets of TFs for enrichment. Analysis is often
hampered because TFs are known to be expressed at a very
low level and fold changes are commonly low. Moreover,
many TFs are regulated by phosphorylation (e.g. Foxa's)
and/or ligand binding (e.g. Ppar's). As a result, important
core regulators including Onecutl (score 1.2, rank 2461/
15,277), Hnf4a (2.36, 642/15,277), Tcf1 (3, 243/15,277),
and Foxa2 (1.4, 2055/15,277) are not in our candidate
list.

Collecting TFs from Odom et al. [17,18], TransFac [31]
and the GO category GO:0003700 in mouse and human
with evidence codes IC, IMP, TAS or IDA we identify 490
TFs. Thereof 12 TFs received a high score in our T2DM set:
Srebf1, Tcf2, Rela, Ybx1, Cebpb, Nr1d2, KIf10, Nfil3, Ccrn4l,
Atf3, Nmel and Drap1. Srebf1 and Ybx1 are expressed only
in mouse but in every tissue. Cebp's and Srebp's are impor-
tant regulators of lipid metabolism and adipogenesis and
were found differentially expressed in the course of insu-
lin resistance and T2DM. Consistent changes could be
identified in the tissues under study (fat: all but Nfil3;
liver: Srebfl, Ccrn4l, Ybx1, Bhlhb2, Kif10, Nmel; muscle:
Atf3, KIf10, Nmel, Nfil3; pancreatic islets: Ccrn4l, Atf3,
Ybx1, Bhihb2, KIf10, Nmel, Nfil3). Pparg is expressed solely
in fat where its expression is altered. In total, target sets of
187 TFs have been investigated as gene sets for enrich-
ment analysis. Table 6 shows the TFs from Odom et al.
[17] with significant P-value. For example, Cebpa is highly
significant. It is expressed in adipose tissue and modulates
the expression of leptin. Cebpa shows some correlation
with the level of hyperglycemia in [16]. Alteration is also
observable in liver.
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Table 6: Gene set enrichment of significant TF target sets from Odom et al. [17].

Transcription factor SigSet Set Sig All P-value Q-value
ENSMUSG00000037025:FOXA2 33 738 213 15274 2.76E-09 0.0410
ENSMUSG000000 1 7950:HNF4A 92 3812 213 15274 3.81E-09 0.0410
ENSMUSG00000029556:TCF1 29 846 213 15274 6.66E-06 0.0410
ENSMUSG00000043013:ONECUT I 30 1096 213 15274 0.000291 0.0410
ENSMUSG0000002664 | :USF | 25 1290 213 15274 0.0581 0.0410
ENSMUSG00000025958:CREB | 27 1794 213 15274 0.366 0.0694

The target sets with a P-value below 0.05 are displayed as an extract [see Additional file 3]. Column identifiers as in Table 4.

A gene regulatory network comprising the regulatory
interactions of the significant genes and the significant
and enriched TFs is shown in Figure 5. Obvious are the
five hubs, the core regulatory circuit derived from [17].
Well-regulated candidates can be identified like Acly and
Fabp4. Target and regulator at the same time is Ipf1.

Discussion

The first part of our study was devoted to the identifica-
tion of genes related to T2DM using different heterogene-
ous data sources in different organisms. Genes have been
scored in each individual study according to their disease
relevance and an overall score across the different studies
has been computed that reflects their total disease rele-
vance. By this approach we were able to identify 213 genes
that have a general disease relevance showing high scores
in many different studies as well as genes that have a spe-
cific disease relevance expressing high scores in only a few
studies.

In the second part of this work the computed T2DM gene
set has been used to identify biological networks on differ-
ent layers of cellular information such as signaling and
metabolic pathways, a comprehensive gene regulatory
network and protein-protein interactions.

Biological validity of the T2DM candidate set is assessed
with a comparison to existing studies and disease gene
repositories such as OMIM and genome wide association
studies (GWA). The union of the medical reviews [1,48],
genetic sources [2,3,44] and the PubMed hits [49] con-
tains 481 genes with an overlap of 64 genes (30%) to our
candidate genes. However, at present only a few genes
have been identified through GWA in humans [5-11].
Since the contribution of most of the known risk alleles to
the development of type 2 diabetes is rather small, one
might conclude that many additional genetic factors are
still unknown. Therefore, and since there is no unambig-
uous set of candidates that defines truly positive disease
genes in a polygenic context, our analysis may provide
guidance for future systematic investigation of candidate
genes and further validation studies. Nevertheless, vari-
ants of Pparg and Tcf712 have been consistently found in

recent GWA for T2DM and appear to be moderately signif-
icant in our meta-analysis as well.

It should furthermore be noted that GWA studies them-
selves show only little overlap. Two recently published
meta-analysis studies on GWA [50,51] have an overlap of
a single gene, PPARG, which is significant at the 0.01 level
in our study.

Our scoring approach is very general. It combines
genome-wide transcriptional studies from the Affymetrix
GeneChip platform for obesity-induced T2DM, selective
previous knowledge as well as gene lists derived from the
biomedical literature.

In the study at hand each resource has the same weight in
the computation of the score. The entire method, how-
ever, could be tuned towards a certain focus by introduc-
ing weights and computing weighted scores with
weighted random background distributions, for example,
if one is particularly interested in a certain tissue or in a
certain cellular level of information (transcriptome, gene
regulation, proteome). In order to weight the fold changes
derived from transcriptome data we have used the infor-
mation on the reproducibility of the signals (coefficient of
variation from replicate experiments) and the informa-
tion whether the gene is expressed in the study samples or
not. We have found that this weighting procedure
improves results in comparison to simple fold changes
because, for example, genes that are not expressed in the
study samples might also show high - but senseless - fold
changes adding additional noise to the procedure. Alter-
native weights could be introduced by taking into account
the genetic variation as number of SNPs, or the degree in
the protein-protein interaction network to separate major
players from redundant genes following the hypothesis,
that key factors have to be well-connected.

In our approach we include both, genes with low but con-
sistent expression changes across the different studies as
well as strongly differentially expressed genes with respect
to a single study. We used entropy as an indicator for
measuring generality and specificity of a candidate gene
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Figure 5
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Gene regulatory network composed of the significant genes. Significant TFs and TFs with enriched target sets with
respect to the T2DM candidate gene list. Thick ends of the arrows point to TFs, thin ends point to target genes.

with respect to the different studies. The correlation
between the score and the entropy is 0.80 [a plot of the
entropy versus the score is given in Figure 5 in Additional
file 1]. However, most of our T2DM genes have high
entropy and, thus, contribute to expression changes in
many of the experiments.

Figure 2 reflects a limited overlap of the T2DM genes pre-
dicted by this study with those predicted by other bioin-
formatics methods. This difference can be explained by
the differences in the data domain used for the predic-

tions (for example, sequence data, gene expression data,
PPIs) and differences in the methods themselves. The lack
of overlap is not unique to this study and seems to be a
common problem with any two prediction studies. In par-
ticular, one study - Tiffin et al. - compared seven different
analysis methods and found that there was no gene com-
mon to all studies [22]. However, it should be noted that
using the same data sets different bioinformatics methods
are able two find consistent overlap (five and six out of
seven studies) as was shown in Tiffin et al. [22]. We
explored the pairwise overlap of different T2DM candi-
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date approaches (including our study) [see Additional file
4]. The comparison exhibits two characteristics. Firstly, a
common lack of commonality is observable resulting in
the different data used and methods applied in the
approaches. Secondly, our meta-analysis has a compara-
ble performance with respect to biologically validated
gene sets (highlighted rows: GWA and OMIM T2DM
genes).

Despite these major sources of variation, there are further
differences in analyzing microarray data with respect to
chip platform and probe annotation. We have used the
remapped probe annotation as provided by the R/Biocon-
ductor software [37] which results in different sizes of the
probe sets so that results can be different when using the
annotation of the chip provider.

To assess the reliability of using mouse and human gene
expression data we have compared the datasets from the
two species separately. This analysis has to be stratified for
the tissues under study. For human the data sets include
skeletal muscle and pancreas. If we reduce mouse data to
the same two tissues and perform the score evaluation on
the two species separately we end up with 6,173 genes in
total in the intersection and a correlation of 0.64 between
the two score vectors. The human meta-analysis generates
91 significant genes and the mouse meta-analysis 31
genes. The overlap has 15 genes: Abcc8, Adipoq, Gek, Irs1,
Irs2, Irs4, Ptpnl, Slc2a2, Lpl, Pik3r1, Tcfl, Retn, Serpinel,
Rbp4, B2m.

A common approach in meta-analyses is to apply the
same statistical test to congeneric studies and combine the
resulting P-values by the Fisher method or Z-Score. We
found this not practicable in our case, since the experi-
mental sources are too heterogeneous. An extension to the
web tool may open the way to introduce weights, chosen
by the user.

To contrast the different data sources a correlation heat-
map is provided [see Figure 6 in Additional file 1]. In
order to measure the dependency of the scoring method
on published data - particularly review papers - we com-
puted the correlation of the scores derived from the qual-
itative and quantitative data. The correlation is 0.07
indicating that the transcriptome data is rather independ-
ent of the published review knowledge. In the 'qualitative'
category of our study, comprising reviews/ OMIM, knock-
out models and PubMedGeneRIF [1-3,19,44,47-49], we
find 481 genes to be related with the disease. Only a small
proportion (64 corresponding to 30%) of those genes
were also found in our T2DM candidate list, so that the
computed scores do not replicate literature knowledge to
a dominating extent. This does not mean that our results
lead to completely different results. Using a leave-one-out
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Histogram of gene scores (black line) and back-
ground distribution of scores derived from
Bootstrap26[26]sampling (blue line). The vertical red
line marks the cut-off for the T2DM candidate gene list.

cross-validation with these studies we measured the sig-
nificance of the overlap of each of these studies with our
candidate list. This overlap can be quantified with the P-
value derived from the upper tail of the hypergeometric
distribution [52]. For all of the 'qualitative' reference sets
we computed highly significant P-values (for example
StumvollGoldstein2005: 7.09E-21, DeanMcEntyre2004:
5.28E-19, OMIM: 6.9E-15, PubMedGeneRIF: 6.73E-16).

Many existing T2DM data sets have not been incorporated
in this study. For example, all transcriptome studies that
were conducted on other microarray platforms than
Affymetrix have been discarded because of compatibility
issues. With the recent progress in merging gene expres-
sion data this limitation is soon questionable. Further-
more the selected data sets have a certain bias towards
obesity-induced T2DM what is somewhat justified since
obesity is a major risk factor. However, our study can be
easily extended with additional sources of T2DM-relevant
information. On the genetic level the results of QTL stud-
ies or, in human, association studies would upgrade the
genetic component of the meta-analysis. Likewise to the
OMIM source a sequence change does not necessarily lead
to detection by expression change or a different criteria
used in the study. E.g. a misfolded protein is not identifi-
able in this approach.
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Furthermore, valuable information would be results from
proteomic or metabolomic studies, but unfortunately
data is still very sparse. Although the meta-analysis
approach detects disease and candidate genes, it fails for
some very specific well-known candidates. If a gene is
only active at a medium level in only one tissue it will
hardly be in our list. For example, Pparg (score 2.53, rank
500/15,277) is mainly expressed in fat tissue. Our general
approach with a restrictive cut-off favors genes with either
a consistent or a very strong alteration. However, with a
less restrictive cut-off at the 0.01-quantil of the score we
retrieve most of the known genes, but would increase the
number of false positives to a high extent.

A simple enrichment analysis based on the hypergeomet-
ric distribution has been applied in order to characterize
the T2DM set on the network level including pathways,
regulatory networks and protein-protein interactions. In
general, we find a high consistency of the results of the
enrichment analysis when screening different databases.
For enrichment we used a hypergeometric test and multi-
ple testing corrections based on Q-values to keep the
results comparable between the different databases. Alter-
native approaches might be useful if focusing on specific
annotation. Particularly, for the GO database this
approach does not take into account the specific graph
structure. Furthermore, there is no unique structure avail-
able in the pathway databases. Here, for example up- or
downregulation of the involved genes and control of the
fluxes are important features and could be used to stratify
the enrichment.

Protein-protein interactions are still very sparse or derived
from high-throughput experiments with low overlap and
low reproducibility so that results have to be carefully
cross-checked. For example, we find a protein complex
arising from one experiment of Collins et al. [53] with
vague relationship to T2DM in the network of the candi-
date genes.

The gene regulatory network associated with the T2DM
candidate set is generic in the sense that all interactions
are displayed regardless whether the genes are expressed
in a specific tissue or not. This network can be tuned
towards tissue specificity by taking into account tissue-
specific gene expression and other characteristics. Using
tissue expression data sets [54] we can assess the represen-
tation of the different tissues in our T2DM candidate list.
A total of 197 genes from the list are included in the tissue
expression panel [41], where 140 (71%) are expressed in
fat, 96 (49%) in muscle and 90 (46%) in liver. An inter-
section of 31% is expressed in all three tissues (data not
shown).
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There are further limitations in analyzing gene regulatory
networks. Information of TF binding sites — besides com-
putationally predicted sites - is sparse and the knowledge
on target sets of TFs is limited. In Table 6 the P-values for
six target sets of regulators are listed that have been
derived from ChIP on Chip data. The Chip on Chip data
might also help characterizing the 128 unknown T2DM
genes as being potential TF targets. The overlap between
this uncharacterized subset and the TF target sets are:
Hnf4a 50 genes, Foxa2 13 genes, Usfl 19 genes, Tcf1 11
genes, Crebl 19 genes and Onecut]l 11 genes. However,
this technique is still error-prone and generates a lot of
false positive targets due to the different steps in the exper-
iment. Commonly, we end up with large targets sets con-
taining thousands of genes [17,18]. Here, new methods of
computational analysis that combine ChIP on Chip-pre-
dicted targets with sequence analysis of their promoter
regions have to be developed.

Conclusion

We have identified a core set of 213 T2DM candidate
genes by a meta-analysis of existing data sources. We have
explored the relation of these genes to disease relevant
information and - using enrichment analysis — we have
identified biological networks on different layers of cellu-
lar information such as signaling and metabolic path-
ways, gene regulatory networks and protein-protein
interactions.

Methods

Selection and integration of T2DM resources

Data sets were selected from heterogeneous sources that
target different levels of cellular information. For each
gene and each source we computed a numerical value that
expresses its likelihood for being T2DM relevant. Data cat-
egories are either binary or quantitative.

Binary data was introduced by incorporating medical
reviews, phenotype information (for example from
knock-out genes), results from proteome analysis [1-
3,19,44,48,49] as well as published candidate gene lists
from previous studies or models [22,23,47,55]. Binary
information was assigned according to the fact whether
the gene had been identified in the study or not.

Quantitative data was incorporated by evaluating data
from differential gene expression and time series microar-
ray studies [12-16]. In order to extract comparable infor-
mation across the different studies we used data from the
same technological platform (Affymetrix GeneChip stud-
ies). Furthermore, in order to conduct standardized data
normalization (see below) only studies were taken into
account that published and provided the raw data (CEL
file level) [see Additional file 5].
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Genes do not act as individual units, they collaborate in
overlapping pathways, the deregulation of which is a hall-
mark for the disease under study. In order to integrate
pathway information and to derive cellular network infor-
mation on the selected genes, we added functional anno-
tation from pathway databases such as KEGG, Reactome,
BioCyc [28-30], GO [27], protein-protein interaction
databases such as IntAct [56] and databases on transcrip-
tion factors (TFs) such as TRANSFAC [31].

Genetic variation of a gene was described with the
number of associated SNPs. The number of SNPs in the
coding and surrounding region of the gene is noted for
mouse and human [57]. A particular biomedical interest
is on genes that can be used for drug development. This
characteristic has been previously assigned to the gene's
ability to provide binding sites for biochemical well-char-
acterized (i.e. druggable) compounds [58,59]. The
selected candidates were evaluated with respect to this
information. All collected information on the identified
213 T2DM candidate genes and further description of the
data sets is given [see Additional file 2].

Mapping of gene IDs

A central pre-requisite of any meta-analysis approach is
the consolidation of the different ID types, for example
coming from different organisms and from different ver-
sions of chips. We have used the Ensembl database [57] as
the backbone annotation for all studies. IDs are mapped
on their mouse Ensembl gene ID (version 41). Mapping
and merging of the information has been done within R
and the BioConductor package collection [33,34]. To ease
the access for researchers we have added the more inform-
ative MGI marker symbols and HUGO ID's together with
ENTREZ gene numbers and RefSeq IDs. In total, informa-
tion on 15,277 Ensembl annotated genes has been
mapped.

Transcriptome data pre-processing and normalization
Affymetrix gene chip annotations were adapted from lat-
est genome annotations [37] in version 8. Affymetrix data
has been normalized with GC RMA using the R/BioCon-
ductor software platform [36]. For transcriptome studies
that are targeting differential expression three bits of infor-
mation are stored - the fold-change indicating the altera-
tion of the gene when comparing the diabetic state with
the normal state, the standard error of the fold-change
computed from the replicated experiments in that study
and the expression P-value (presence-call) that indicates
whether or not the gene is expressed in the target samples
under study. In time series studies we store the correlation
between phenotypic characteristics, for example blood
glucose, and the gene expression levels with the coeffi-
cient of variation and the expression P-value.

http://www.biomedcentral.com/1471-2164/9/310

Scoring T2DM relevance of genes across studies

In order to score the different categories of information,
i.e. binary counts and quantitative gene expression values,
for each category we summarized the scores of the individ-
ual experiments. For binary information the counts were
grouped in sub-categories, for example knock-out mice
described in two reviews only get a single count.

For quantitative information, the score of the ith gene in

the jth study, s;;, was computed as follows:

o |log2(rl-j)|{ —?J(l—pﬁ), pj<0.lande;/r;<1
ij ij .

0, else

Here, 7; is the fold change, p; is the average detection P-
value and e;; is the standard error of the ratio derived from
the experimental replicates of the study. Thus, the fold
change is weighted with its reproducibility across the
experimental replicates and with the likelihood of the
gene being expressed in the study's target samples. A sim-

ilar formula applies for correlation studies:

Sij={|cij|(l_

Here, ¢;; is the correlation to a certain phenotypic parame-
ter, v;; the coefficient of variation of the gene's signal across
experimental replicas. The formula is applied on the data
of Nadler et al. [16]. Mice from three different strains (B6,
BTBR and F2 intercrosses) are separated in five classes
with increasing hyperglycemia. The Kendall rank correla-
tion between the classes and the gene expression was cal-
culated.

vij)(l—pij), pij <0.1and vy Sl.

0, else

The total score of the gene was computed as the sum
across all individual study scores.

Sampling for significance

In order to assess the significance of the overall gene
scores we generated random gene scores. For this boot-
strap [26] we draw a random score from each study. The
sum of the drawn study scores determines the score for a
virtual gene. The distributions of the original scores (black
line) and the random scores (blue line) are shown in Fig-
ure 6. Using the random distribution as background sam-
ple we assigned those genes as "significant" that are above
the 99.9 percentile of the background distribution.

Accounting for experimental study bias

For each gene, entropy of the score distribution was com-
puted in order to quantify the relative influence of a cer-
tain study (for example a particular tissue) on the overall
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score. Let s;; be the score of the ith gene in the jth study,
then E; is a measure for the uniformity of the score distri-
bution over the individual experiments:

Sl] Sl]

E, =- lo

: ZZSik 821 5 sit
Tk k

Entropy is low if a single study has a major contribution
on the overall score. On the other hand, entropy is high if
most of the studies account equally for the score. A plot of
the entropy versus the score is given in Figure 5 in Addi-
tional file 1.

Identification of disease related networks using
enrichment analyses

Disease related networks were investigated with four dif-
ferent types of network information - biological pathways
[28-30], protein-protein interaction networks [56], gene
regulatory networks [17,18,31] and functional annota-
tion using GO annotations [27] (see Table 4). These net-
works define - by annotation - groups of associated
genes. The hypergeometric distribution compares the
overlap between our superset and the gene group to the
overlap of a random selection of two gene sets with the
same size [52]. Thus we were able to assign each annota-
tion item (pathway, GO term etc.) a P-value that reflects
enriched occurrence of candidate genes. In case of GO
terms we include only genes with evidence codes IC, IMP,
TAS or IDA to rely on the same confidence level as in the
above mentioned resources. We correct P-values for mul-
tiple testing using Q-values following Storey for the con-
trol of the false discovery rate [60,61].

The same method we use in the leave-one-out cross-vali-
dation. Our qualitative studies are the benchmark for our
scoring approach. The scoring, including a notional can-
didate set, is calculated without the respective qualitative
study. The hypergeometric distribution of the qualitative
study gene set and the notional candidate set assigns a P-
value. This P-value reflects the success of the score to iden-
tify the genes from the qualitative study.
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