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Abstract
Background: In a recent study it was demonstrated that a largely increased ovulation number is
responsible for high prolificacy in two mouse lines selected for fertility performance. The objective
of the present study was to identify genes that are involved in increasing the ovulation number in
one of these lines, FL1. For differential expression profiling, ovaries of FL1 and of a non-selected
control line, DUKsi, both lines derived from the same genetic pool, were analyzed with microarray
analysis and quantitative polymerase chain reaction (qPCR). Ovaries from 30 animals of each line
were collected at the metestrous stage, combined to 6 pools each, and processed for microarray
analysis.

Results: The actual number of ova shed in FL1 exceeded that of the DUKsi control line more than
twofold (26.6 vs. 12.9). 148 differentially expressed ovarian transcripts could be identified, 74 of
them up- and 74 down-regulated. Of these, 47 significantly mapped to specific Gene Ontology
(GO) terms representing different biological processes as steroid metabolism, folliculogenesis,
immune response, intracellular signal transduction (particularly of the G protein signaling cascade),
regulation of transcription and translation, cell cycle and others. qPCR was used to re-evaluate
selected transcripts and to estimate inter-individual variation of expression levels. These data
significantly correlated with microarray data in 12 out of 15 selected transcripts but revealed partly
large variations of expression levels between individuals.

Conclusion: (1) The abundance of numerous ovarian transcripts was significantly different in FL1
compared to the non-selected control line DUKsi thus suggesting that at least some of the
respective genes and corresponding biological processes are involved in improving reproductive
traits, particularly by increasing the number of ovulation. (2) Selective qPCR re-evaluation largely
confirmed the microarray data and in addition demonstrated that sample pooling can be beneficial
to find out group-specific expression profiles despite of large inter-individual variation. (3) The
present data will substantially help ongoing genetic association studies to identify candidate genes
and causative mutations responsible for increased fertility performance in mice.
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Background
In polytocous species as mouse and pig the number of ova
shed is an important parameter for reproductive perform-
ance. Folliculogenesis, ovulation, and luteinization are
regulated through endocrine and paracrine feedback
mechanisms along the hypothalamo-pituitary-gonadal
axis. Important endocrine factors are the hypothalamic
gonadotropin releasing hormone, follicle stimulating
hormone (FSH) and luteinizing hormone from the pitui-
tary gland, and steroid and peptide hormones generated
within the ovary as estrogen, progesterone, inhibin,
activin, and follistatin. Within the ovary also paracrine,
locally acting hormones and growth factors of the IGF and
TGF-β families play an important role during folliculo-
genesis and ovulation [1]. In time production, storage,
release, but also cease of production and release of these
regulatory factors require a well orchestrated activation
and de-activation of genes that are involved in this regula-
tory network. In general, reproductive traits show a rela-
tively low heritability and are strongly affected by
environmental factors. Nonetheless it could be demon-
strated in pig and mouse that selection on litter size can
effectively improve the reproductive performance and
particularly affects the ovulation number but also other
reproductive traits [2-6]. Because genetic factors are clearly
involved in reproductive performance one must hypothe-
size that the expression levels of many genes that are
involved in the regulatory network of reproduction are
different in animals with different fertility performance.
Therefore differential expression profiling of reproductive
organs, mainly the ovary, is an appropriate approach to
elucidate the genetic and physiological background of
enhanced female reproductive performance. In our recent
study it could be clearly demonstrated that a largely
increased ovulation number is mainly responsible for
high prolificacy in selected high fertility mouse lines [7].
Mining differentially expressed ovarian genes will help to
elucidate the genetic and physiological consequences of
selection for reproductive performance but might also
help to better understand regulatory pathways that are
important for folliculogenesis and successful ovulation.

During the present study a high fertility mouse line, FL1,
which was generated by index trait selection over more
than 130 generations [7] was comparatively analyzed
with the non-selected control line, DUKsi. To screen for
differentially expressed ovarian genes, staged ovaries of
both lines were screened for differentially abundant tran-
scripts. Both lines have been derived from the same
genetic pool. This should minimize the number of genetic
differences that are only due to non-trait related line-spe-
cific differences. The ovarian expression profile of both
lines was analyzed by microarray analysis. To include a
large number of individuals on one hand and to avoid
excessive microarray costs on the other hand, 30 animals

of each line were combined to six pools. Transcript abun-
dance of selected genes were re-evaluated with quantitive
real-time PCR (qPCR) in pooled as well as individual
samples to estimate inter-individual variation.

Results
Fertility traits
After 130 generations of selection, fertility performance
was largely and significantly increased in FL1. The mean
number of corpora lutea at the first day of pregnancy was
18.2 ± 6.8 (mean ± std, n = 10) compared to 12.2 ± 5.5 (n
= 10) in the control line (p = 0.0437). The actual number
of ova flushed from the oviducts however was even
higher, 26.6 ± 15.4 in FL1 and 12.9 ± 3.2 in the control (p
= 0.0131), thus exceeding the corresponding number of
CL, particularly in FL1. This suggests that individual folli-
cles can release more than one oocyte [7]. In fact, the exist-
ence of multioocyte follicles has been found in mice [8]
but also in other species as goat [9]. The mean litter size
and litter weight at birth increased during the selection
period to 17.3 ± 7.7 (n = 60) and 27.8 ± 4.6 g, respectively
in FL1 compared to 9.81 ± 2.03 (n = 75) and 15.1 ± 6.2 g
in the control line (p < 0.0001 for litter size and weight).
The body weight of individual newborn pups however
was not significantly reduced in FL1 despite of the
strongly increased number of pups per litter.

Microarray analysis
For differential expression profiling, RNA preparations of
30 animals of each line were combined to 6 sample pools
with 5 individuals per pool. After labeling, the cRNA of
pooled samples was hybridized to MOE 430A microar-
rays, scanned and statistically evaluated. The following
thresholds were used to define differentially expressed
probe sets:

1. Transcript abundance was considered to be different in
FL1 when it was at least 1.5 fold higher or lower compared
to that in DUKsi; -fold change (FC) ≥ 1.5 or ≤ -1.5

2. False Discovery Rate: q -values < 0.01

3. > 60% of the pairwise comparisons (each of the six
microarrays of FL1 was compared with each of the six
microarrays of line DUKsi, n= 36 pairwise comparisons)
should lead to one of both statements: increased or
decreased

All together, 1604 of the probe sets passed the first thresh-
old (FC ≥ 1.5 or ≤ -1.5). 327 of these showed q-values <
0.01. The third threshold finally reduced the number of
differentially expressed probe sets to 191. These repre-
sented only 148 distinct transcripts because some tran-
scripts were represented by more than one probe set on
the MOE 430A microarray. Of the differentially expressed
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transcripts 50% were up- (FC ≥ 1.5) and 50% were down-
regulated (FC ≤ -1.5) in FL1 compared to the control. The
FC values varied between -9.1 to -1.5 and 1.5 to 9. 125
(84%) of the identified transcripts could be assigned to
known genes, but only 47 (32%) of them mapped signif-
icantly (p < 0.05) to 231 distinct GO terms representing
biological processes. For the sake of clarity, related GO
terms were combined to eleven superordinate categories
(Fig. 1). All 148 differentially expressed transcripts, their
respective gene symbols and gene titles, FC values and
respective superordinate categories of biological processes
are listed [see Additional file 1]. Most significantly, genes
mapped to biological processes of the steroid and/or lipid
metabolism. But also other processes as immune
response, regulation of transcription and translation, and
intracellular signal transduction with most genes map-
ping to G-protein related GO terms, were significantly
affected.

Re-evaluation of microarray data with real-time PCR
Selected, differentially expressed transcripts were re-ana-
lyzed with qPCR. Besides re-evaluation of the pooling
approach, transcript concentrations were also determined
in ten individual samples of each line to estimate inter-

individual variation. Altogether, 15 probe sets were
selected for qPCR re-evaluation according to the following
criteria: (1) probe sets should preferably represent tran-
scripts of well defined genes; (2) selected transcripts
should cover a wide range of transcript abundance; (3)
about half of them should be up and half of them down
regulated in FL1; (4) probe sets should map to different
GO terms.

For re-evaluation of the pooling approach, the samples
were freshly assembled to 6 pools of each line, as
described for microarray analysis. The qPCR data showed
a strong and significant (p < 0.05) correlation with micro-
array data in twelve of the fifteen transcripts (Fig. 2). Three
of the transcripts however, Bcl2, Pi4k2b and Rgs5, did not
show any association between microarray and qPCR data.
A comparison of the mean values that were calculated
from all six pools of each line revealed that only eleven of
the fifteen transcripts showed significantly different
expression levels in both lines. Obviously, these differ-
ences between microrray and qPCR analysis were only
found in transcripts with generally low expression levels.
The relative transcript abundance (i.e. the transcript abun-
dance determined in FL1 divided by that found in the con-

Superordinate categories of biological processes identified by gene ontology (GO) mappingFigure 1
Superordinate categories of biological processes identified by gene ontology (GO) mapping. Differentially 
expressed transcripts mapped to numerous biological processes of the hierarchical GO system. These were combined to the 
shown eleven superordinate categories. The first number in brackets (preceding the slash) represents the number of tran-
scripts, which significantly map to specific biological processes of the hierarchical GO system. The second number (following 
the slash) represents all transcripts mapping to the specified biological process without statistical significance.
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Scatter blots showing the correlation of selected microarray and qPCR data from sample poolsFigure 2
Scatter blots showing the correlation of selected microarray and qPCR data from sample pools. Ordinates indi-
cate arbitrary intensity levels of expression microarray analyses; abscissae indicated transcript abundance as determined by 
qPCR analysis (copies × 105/μg RNA). r, coefficient of correlation; p, p value calculated by the Pearson Product Moment corre-
lation test.
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trol line) varied between FC values of -1.3 to 67 (Fig. 3A).
Generally, these relative expression levels were similar to
those found by microarray analysis. Only in case of Ifi205
the FC value calculated from qPCR data was much higher
than that calculated from microarray data (FC 67 vs. FC 9,
see Fig. 3A). This might be due to the limited dynamic
range of the hybridization technique used for microarray
analysis compared to the range of qPCR, which can exceed
more than 5 orders of magnitude.

qPCR analysis of individual samples showed similar line-
specific differences as the qPCR pooling approach (Fig.
3B). However, line-specific inter-individual variations
were considerably higher than line-specific inter-pool var-
iations. Thus the coefficients of variation of qPCR data
from individual samples were higher throughout all levels
of expression than those from pooled samples (Fig. 4).
This also resulted in partially higher p values (t-tests) and
thus lower levels of significance when comparing mean
values of both lines.

Discussion
During the present study comparative whole genome
expression profiling was used to identify ovarian genes,
whose expression pattern was affected by long term selec-
tion towards increased fertility performance. Mapping of
these genes to the hierarchical GO terms could elucidate
biological processes that might be responsible for the
largely improved fertility performance in FL1. It cannot be
completely excluded however, that some of these line-spe-
cific differences are due to undirected allelic drift as a con-
sequence of genetic separation of both lines over many
generations. In any case, the data from the present expres-
sion profiling approach will also crucially support ongo-
ing association studies to clearly identify candidate genes
and causative polymorphisms, which are actually respon-
sible for the largely improved fertility performance in FL1.

Microarray expression profiling
Numerous of the differentially expressed genes, which
had been identified by microarray expression profiling are
known to be involved in female reproductive processes as

Abundance of ovarian transcripts in FL1 and in the control line DUKsiFigure 3
Abundance of ovarian transcripts in FL1 and in the control line DUKsi. Transcript abundance was determined by 
qPCR from (n = 6) pooled (A) and (n = 10) individual samples (B). Mean abundance and standard deviations are shown. Num-
bers indicate -fold change (FC) values calculated from qPCR data, numbers in brackets those calculated from microarray data 
[see Additional file 1].
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folliculogenesis, ovulation, atresia, luteinization, or luteal
regression and thus might play a role in increasing the
ovulation number. Hereafter, a selection of these genes
will be discussed:

B-cell CLL/lymphoma 2 (Bcl2) and caspase 6 (Casp6), can
be assigned to the process of apoptosis. Members of the
Bcl2 and Casp families are well known to play a funda-
mental role during follicular atresia [10,11], but also
throughout earlier stages of folliculogenesis [12].

Inhibin β-B (Inhbb), which was found down regulated in
FL1 ovaries compared to those of the control, significantly
maps to GO terms related to oocytes and follicle develop-
ment. It is an important negative regulator of FSH release
and thus is essentially involved in the regulation of follic-
ulogensis and estrous cycle [13].

Cyclin D2 (Ccnd2) is known to be essentially involved in
granulosa cell differentiation. The gene is induced by FSH
and regulates cell proliferation in gonads [14]. Conse-
quently, the absence of a functional gene in -/- mutant
females leads to sterility [14]. Down-regulation of Ccnd2
by dihydrotestosterone induces cell cycle arrest in granu-
losa cells [15].

Glutathione peroxidase 3 (Gpx3) and peroxiredoxin 3
(Prdx3) are involved in the antioxidant defense and may

play a role in protecting cells of the cumulus-oocyte com-
plex but also luteal cells from oxidative stress-induced cell
death [16-18].

Gulonolactone (L-) oxidase (Gulo) has also been found
being expressed in the ovary [19]. It is involved in L-ascor-
bic acid biosynthesis, which can influence ovarian aro-
matase activity [20].

Seven genes were found to map to GO terms related to the
immune system, five of them with significant p-values.
Differential expression of three of them could be con-
firmed with qPCR. Histocompatibility 2 K1 K region (H2-
K1) and histocompatibility 2 Q region locus 7 (H2-Q7)
are involved in the process of antigen presentation. A pos-
sible functional role of these genes for reproductive per-
formance is not clear yet. Interferon activated gene 203
(Ifi203) and interferon activated gene 205 (Ifi205) are tar-
get genes of the JAK/STAT intracellular signaling pathway
that can be activated by the cytokine gamma interferon, a
major player of immune cell signaling. Alternatively, the
JAK/STAT pathway can also be activated by insulin like
growth factor 1 (IGF1) [21]. IGF1 however is an impor-
tant growth factor during folliculogenesis. Therefore the
IGF1 signaling pathway might be affected by selection for
increased fertility. This view is supported by significant
up-regulation of signal transducer and activator of tran-
scription 1 (Stat1) another player of the IGF/JAK/STAT/Ifi

Coefficients of variation of transcript abundance calculated from qPCR dataFigure 4
Coefficients of variation of transcript abundance calculated from qPCR data. Transcript abundance was determined 
in pooled (solid lines) and individual samples (broken lines) from FL1 (squares) and the control line DUKsi (circles). Transcripts 
are ordered from low (left) to high levels (right) of expression. ind, individual samples; pool, pooled samples.
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pathway. As also shown by microarray analysis, but par-
ticularly by qPCR re-evaluation, Ifi205 is dramatically up-
regulated in the high fertility line thus strongly suggesting
a functional role of this gene for fertility performance.

Cadherin 2 (Cdh2), a member of the cadherin family
might play a functional role similar to N-cadherin, which
was found to be expressed in granulosa cells and oocytes
mediating cell to cell contacts [14].

GTP cyclohydrolase 1 (Gch1), guanine nucleotide binding
protein β 1 (Gnb1), guanine nucleotide binding protein β
4 (Gnb4), Guanylate cyclase 1 soluble α 3 (Gucy1a3), Gua-
nylate cyclase 1 soluble β 3 (Gucy1b3), IQ motif contain-
ing GTPase activating protein (Iqgap2), prostaglandin F
receptor (Ptgfr), and regulator of G protein signaling 5
(Rgs5) are involved in the G protein signaling pathways.
This suggests that G protein signaling was actually affected
by selection towards high fertility and might be important
for increased reproductive performance in FL1.

A large group of genes maps to GO processes of the lipid
and particularly steroid metabolism. Steroids are impor-
tant regulators of folliculogenesis and luteal differentia-
tion. Transcript levels of the niemann pick type C2 (Npc2)
gene that is involved in sterol trafficking, and of the
Cyp11a1 gene encoding the cholesterol side-chain cleav-
age enzyme, which catalyzes an initial step of steroid hor-
mone synthesis, were found to be up-regulated in FL1.
Most interestingly, also the expression of an important
transcriptional regulator of steroid biosynthesis, the
nuclear receptor subfamily 5 group A member 2 (Nr5a2)
was found significantly changed in ovaries of FL1. Nr5a2,
also known as liver receptor homologue 1 (Lrh1), shows
high level expression in ovarian cells. It is regulated by
FSH, luteinizing hormone (LH) and prolactin, and is
known to regulate important steroidogenic genes as Star,
Cyp11a1, Cyp17, Hsd3b, or Cyp19 [22-24]. Nr5a2 knock-
out is lethal in homozygotes and leads to reduced female
fertility in heterozygote animals [25], most likely because
of altered luteal function due to reduced progesterone
production. This suggests that steroid hormone produc-
tion was affected by selection towards increased fertility
performance. However, there is no conclusive explanation
for the contradictory observation that expression of Nr5a2
is up-, but that of Cyp11a1 is down-regulated in FL1, in
spite of the fact that Nr5a2 is a positive regulator of ster-
oidogenic genes.

It is well known that cAMP responsive element binding
proteins are essentially involved in FSH signaling in ovar-
ian granulosa cells [26]. Expression of the cAMP respon-
sive element binding protein 3 (Creb3) was found largely
up-regulated in ovaries of FL1 thus suggesting, that the
FSH signaling cascade that is essential for follicular

growth and differentiation might be affected, possibly
enhanced, by selection towards increased fertility.
Another interesting transcriptional regulator, which
might influence reproductive performance, is the RAR-
related orphan receptor alpha gene (Rora). Mutations of
this gene result in the "staggered" phenotype in mice,
which is characterized by cerebellar abnormalities. In
addition, "staggered" mothers produce smaller litters and
a reduced number of oocytes thus indicating pleiotropic
effects of Rora on fertility performance [27]. Expression of
the runt related transcription factor 1 (Runx1) in follicular
cells has been well documented. This factor seems to play
an important role in the preovulatory process by regulat-
ing LH induced progesterone production [28]. However,
significantly reduced expression of Runx1 transcripts in
ovaries of FL1 animals could not be unambiguously con-
firmed by qPCR.

A member of the retinol dehydrogenase family, Rdh2, was
identified by microarray analysis in polycystic ovary syn-
drome theca cells [29], where it affects steroid synthesis.
Over expression of Rdh11, that was found four-fold up-
regulated in ovaries of FL1 thus suggests again, that steroid
synthesis has been affected by selection towards improv-
ing fertility performance. Stanniocalcin 1 (Stc1) is known
to be expressed in thecal interstitial cells. This paracrine
hormone binds to receptors that are located in the granu-
losa cell layer, where it may act as a luteinization inhibitor
[30]. Stc1 knockout experiments however revealed, that
this gene is not essential for reproduction and develop-
ment in mice [31], but it may modulate follicular differ-
entiation and may therefore be important for
reproductive performance.

Re-evaluation by qPCR
By qPCR re-evaluation the majority of microarray data
could be confirmed. However in three out of the 15 genes,
qPCR data do not correlate with microarray data. Notice-
ably, two of these genes, Bcl2 and Pi4k2b, showed very low
transcript abundance levels. Probably, these levels may
fall below a technical threshold and therefore do not
allow a reliable transcript quantification particularly by
hybridization based methods as microarray analysis. Thus
expression data at these particularly low levels should be
interpreted with care. Microarray and qPCR data of other
transcripts however showed significant correlations, par-
ticularly those with intermediate and high expression lev-
els. Therefore this re-evaluation indicated that the
microarray based differential expression profiling basi-
cally yielded reliable data.

In addition to re-evaluation, qPCR was also used to esti-
mate inter-individual variability of transcript abundance.
The pooling approach applied for qPCR was identical to
that for microarray analysis. The line-specific mean tran-
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script levels were similar in both experimental
approaches. However, the inter-individual variability was
much larger than the variability between different sample
pools of the same line. Particularly Cyp11a1, Ptgfr, and
Inhbb, but also Nr5a2 and Ccnd2 showed very large inter-
individual variability. Remarkably, this inter-individual
variability was especially distinct in the control line. Thus
far however, we have no well-founded explanation for
this observation. As a consequence of this very large inter-
individual variability, the significance of comparative sta-
tistics (t-test) was considerably lower (e.g. Stat1, Inhbb,
Nr5a2, Ccnd2, Casp6, Cyp11a1). In case of the prostaglan-
din F receptor (Ptgfr), despite of very different mean
expression levels between both lines, this difference was
only significant when sample pools instead of individual
samples were compared. This suggests that large inter-
individual variation of expression levels can obscure
group-specific differences. This is in line with an earlier
observation [32] stating that pooling is beneficial when
many subjects, i.e. more than 2 to 3, are pooled.

Conclusion
(1) The ovarian expression levels of numerous genes,
which are involved in steroid/lipid metabolism, immune
response, G-protein signaling and other biological proc-
esses were significantly different in the selected high fertil-
ity mouse line FL1 compared to a non-selected control
line. This suggests that at least some of these genes and the
corresponding biological processes play a functional role
in improving reproductive traits, particularly by increas-
ing the number of ovulation.

(2) Selective qPCR re-evaluation largely confirmed the
microarray data and in addition demonstrated that sam-
ple pooling allows the inclusion of more individuals into
expression profiling analysis with simultaneous reduction
of costs and can be beneficial to find out group-specific
expression profiles despite of large inter-individual varia-
tion.

(3) Combined with ongoing association studies in a FL1/
DUKsi crossbreeding family the present data will substan-
tially help to identify candidate genes and causative muta-
tions that are eventually responsible for increased fertility
performance in mice.

Methods
Selection Procedure
Animal experiments were approved by the respective eth-
ical authorities from the Land Mecklenburg-Vorpom-
mern, Germany, in compliance with the European
legislation on the care and use of laboratory animals.

All mouse lines were originally derived from the same
genetic pool by systematic crossbreeding of 4 inbred and

4 outbred lines [33,34]. From this outbred population the
high fertility line FL1 was generated during a long term
selection experiment [35]. The line was selected for an
index trait, combining litter size (LS0) and litter weight
(LW0) at birth in primiparous females (Index (I) = 1.6 ×
LS0 + LW0)) to generation 130. The line was maintained
with 60 to 100 mating pairs per generation. Line DUKsi is
an inbred line that was not selected for any specific trait
but originated from the same genetic pool as FL1. DUKsi
was inbred by full-sib mating for about 36 generations.
Females were mated at an age of 63 days with a mating
ratio of 1:1. The mice were kept in Makrolon-cages (Ehret,
Emmendingen, Germany) of 30 × 12.5 × 12.5 cm and had
free access to pellet concentrate and water. The light
regime was LD 12:12, the room temperature was stand-
ardized to 22.5°C.

Determination fertility traits
To determine component fertility traits, the number of
corpora lutea and of ova shed was analyzed in 10 animals
of each line at the first day of pregnancy. Nine week old
virgin females of each line were mated to males of the
same line. Upon detection of a vaginal plug females were
removed from mating cages. The day of plug detection
was assigned as the first day of pregnancy. Animals were
killed by decapitation and uteri with ovaries were
removed from both sides. Ova, which frequently are still
surrounded by cumulus cells, were harvested from the
upper part of the oviduct, the ampulla, and incubated in
3% hyaluronidase in M2 medium (Sigma-Aldrich,
Taufkirchen, Germany) for 3 to 5 minutes at room tem-
perature, in order to release all ova from surrounding
cumulus cells. Additional ova, separate to those in the
cumulus-oocyte-complex, were flushed from the oviduct
with M2 medium. The number of CL was counted under
a microscope after dissection of both ovaries from every
animal.

Microarray expression profiling
For microarray expression profiling, ovarian RNA samples
from 30 virgin females (six to nine weeks old) of each line
were combined to six pools with five individuals per pool.
Animals were selected from 25 and 26 different litters of
FL1 and of the control, respectively, in order to reduce
individual maternal effects. Samples from individuals
were combined to pools by considering the respective size
of litters where the animals descended from in order to
generate pools from animals with a similar mean parental
fertility performance (Tab. 1). One-way analysis of vari-
ance (ANOVA) revealed no significant differences of
means between pools from the same line. In FL1, the size
of litters ranged from 10 to 21 and in the control from 6
to 12.
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Ovaries were collected from females at the metestrous
stage. Stages of the estrous cycle were determined between
seven thirty and eight a.m. from serial vaginal smears with
microscopic evaluation. Animals were killed two to three
hours later, ovaries were dissected and freed from attached
tissues, and preserved in RNAlater® (Qiagen, Hilden, Ger-
many). Right and left side ovaries were processed together
for total RNA preparation using the RNeasey Mini Kit with
simultaneous removal of genomic DNA with RNAse free
DNAse (both from Qiagen). RNA was quantified in a
GeneQuant II photometer (Pharmacia Biotech, Freiburg,
Germany). Two μg RNA from each sample were then com-
bined to pools with five samples and 10 μg RNA per pool.

First-strand synthesis was carried out by a T7-(dT)24
primer and SuperScript II Reverse Transcriptase (Gibco
BRL Life Technologies) using ten μg pooled total RNA.
Second-strand synthesis was done according to the Super-
Script Choice System (Invitrogen) by E. coli DNA-
Polymerase I, E. coli Ligase and RNaseH. Fragment end-
polishing was performed using T4-Polymerase. An in vitro
transcription reaction was used to incorporate Biotin-11-
CTP and Biotin-16-UTP into the cRNA probe (BioArray
HighYield RNA Transcript Labeling Kit, Enzo). The frag-
mented cRNA was hybridized overnight (45°C) to the
Affymetrix MOE 430A mouse expression arrays (~20,000
probe sets = mouse gene specificities). Each sample pool
was hybridized to two arrays to average technical varia-
tion. Arrays were then washed using the GeneChip Fluid-
ics Station (Affymetrix) according to the manufacturer's
protocol and stained by R-Phycoerythrin Streptavidin
(Molecular Probes). This was followed by an antibody
amplification procedure using a biotinylated anti-strepta-
vidin antibody (Vector laboratories) and goat IgG
(Sigma). The scanning was carried out with 3 μm resolu-
tion, 488 nm excitation and 570 nm emission wave-
lengths employing the GeneArray Scanner 2500 (Hewlett
Packard). For calculation of signal intensity of each gene
we used the Affymetrix Microarray Suite 5.0 Software
(MAS5). All arrays were normalized by scaling to reach a
common target intensity. Mean intensities of all probe

sets were calculated from both technical replicates. Micro-
array data have been submitted to the Gene Expression
Omnibus Database (GEO Series record: GSE11113).

As an initial statistical analysis a 'Comparison expression
analysis' of MAS5 was done for all possible pairwise com-
parisons (n = 36) between six pool arrays of the DuKsi
control line as baseline and 6 pool arrays of FL1 as exper-
imental line. For each of the ~20,000 probe sets this
resulted in one of the following statements: increased,
decreased, not changed, or not detected. Additionally, the
common t-test (MAS5) for each gene was performed to get
a list of corresponding p-values of significance. Because of
the high number of tested null hypotheses (22690) the
number of false positive results was limited by using the
concept of the false discovery rate (FDR). The FDR was cal-
culated by means of the Q-value approach [36,37]. We
used the software 'Q-value' written by Dabney/Storey –
starting with the sorted list of p-values of the correspond-
ing t-tests to get a list of estimated q-values. Distinct
thresholds of Q-values, pairwise comparisons, and rela-
tive differences of mean expression levels between both
lines (fold change, FC) were combined to define differen-
tially expressed probe sets, respectively transcripts (see
Results).

To map differentially expressed transcripts to specific bio-
logical processes of the hierarchical vocabularies of the
Gene Ontology (GO) system, the GO Browser of the
NETAFFX mining tool (Affymetrix) was used. Because
some transcripts are represented by more than one probe
set on the MOE 430A mouse expression arrays, redundant
probe sets had to be removed from the list of differentially
expressed probe sets before GO browsing. If the p-value
that was calculated by the Chi square test for each GO
term was below 0.05, GO mapping of the respective tran-
script was considered significant.

qPCR
The abundance of selected transcripts, which had been
previously identified by microarray expression profiling,
was re-evaluated by qPCR in sample pools, and in addi-
tion, in ten individual samples of each line in order to esti-
mate inter-individual variation of transcript levels. Pools
for qPCR analysis were freshly prepared, however with the
same samples and the same amount of RNA as described
for microarray analysis. Primers used for reverse transcrip-
tion and qPCR are shown in Tab. 2. Primers were designed
to bind within or close to the target sequence of the corre-
sponding microarray probe sets and if possible, were
derived from different exons to avoid amplification of
residual genomic DNA. For cDNA synthesis 0.1 μg total
RNA were reversely transcribed in a 25 μl reaction volume
using M-MLV reverse transcriptase, RNase H Minus, Point
Mutant (Promega, Mannheim, Germany). The freshly

Table 1: Mean size and standard deviation (std) of litters, from 
which animals have been selected for pooling.

control FL1
mean std mean std

pool 1 9.8 3.5 16.0 5.5
pool 2 9.8 0.8 15.2 3.3
pool 3 10.0 1.6 16.8 1.9
pool 4 10.0 1.6 16.8 1.9
pool 5 10.4 1.1 16.8 1.6
pool 6 10.4 0.5 17.8 1.6
all 10.1 1.7 16.6 2.8
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synthesized cDNA samples were cleaned with the High
Pure PCR Product Purification Kit (Roche, Mannheim,
Germany) and eluted in 50 μl elution buffer. The identity
of selected products generated with different primer pairs
was controlled by sequencing.

For qPCR, 0.5 and 0.25 μl of each purified cDNA sample
were amplified with the LightCycler-FastStart DNA Mas-
terPLUS SYBR Green I Kit (Roche, Mannheim, Germany) in
10 μl total reaction volume. Values from both reactions

were averaged. Amplification and quantification of PCR
products was performed in a LightCycler® instrument
(Roche) under the following cycling conditions: Pre-incu-
bation at 95°C for 10 min, followed by 45 cycles denatur-
ation at 95°C for 15 sec, annealing at 60°C for 10 sec,
extension at 72°C for 10 sec and single point fluorescence
acquisition at 83°C for 6 sec.

The melting peaks of all samples were routinely deter-
mined by melting curve analysis in order to ascertain that

Table 2: Primers used for cDNA synthesis and qPCR

Gene Sequenz Accession nos. bp

Bcl2 rt GGTCTGCACCTTTAATCCTAGTAC BC027249 328
rev ACATACAGAGGCCTTGTCTCAGAC
for GGAATGACATGTTGCTCACATTTAC

Casp6 rt TAGCCCTTCCACCACGTCCAAC NM009811 231
rev GCGCTGAGAGACCTTTCTGTTC
for ACAGACAAGCTGGACAACGTGAC

Ccnd2 rt CAGGCTTTGAGACAATCCACATC NM009829 248
rev AATGAAGTCGTGAGGGGTGACTG
for CTCTGGCCATGAATTACCTGGAC

Cdh2 rt CCCACCGCTACTGGAGGAGTTG NM007664 204
rev GCCTCTCGTCTAGCCGTCTGA
for GGATGAAACGGCGGGATAAAGAG

Cyp11a1 rt ATACAGAGATACCACCCTCAAATG NM019779 252
rev TCACGGAGATTTTGAACTTCAAT
for GATTCCAGCCAAGACTTTGGTAC

H2-Q7 rt CAATCAACCCTCAGCTCAAGATG XM622842 293
rev TAGGCTCACAGGGAACATGAGAC
for CTGAGCCTCTCACCCTGAGATG

Ifi205 rt GGTGACATTTCTATTTTGGCATCTC NM172648 188
rev CCTTACAGTTGATGTTGTGCCATTG
for CAGAAATGCAAATGCCAGTCCTAAG

Inhbb rt ACCAGTGACCTGTCAGTTGTTG XM148966 272
rev TGAGTCGCTCCTGGGCTACTTG
for GCACTCTGAATTGCGCCTTCTGA

Nr5a2 rt CTTGGAGCAGTTCAGAGTATTGTG NM030676 217
rev GTCTTCTGCCTGCTTGCTGATTG
for CGATCAGCGGGAGTTTGTATGTC

Pi4k2b rt CTGCACTCCACGATCACACATG NM028744 203
rev AGCAGCTCTGTCAAATCCTTTGTC
for GGCTAGCATTTCCCTTTAAGCATC

Ptgfr rt AGTCCAGCTTCACTCGATGCTTG NM008966 204
rev ACAGGTTCCTAAGGACAGCCTTC
for TCATTCAGCTCCTGGCCATAATGT

Raet1a rt AAATGTATTAGAGGAGGGAGATAAG NM009016 218
rev CTCCAGTTCCACAGGATCCGATG
for GGAAAAGCCAAGATCAACCTCAAG

Rgs5 rt ATGCAGCCCTTAGACTGCAGAAG NM009063 242
rev GAGGCATCTGAGTGAGTGTGTAAC
for GCTTCTAAACAGGATTCATTTCAATC

Runx1 rt TCGGAGATGGACGGCAGAGTAG NM009821 246
rev GACAGAGGAAGAGGTGATGGATC
for ATGAAGAACCAGGTAGCGAGATTC

Stat1 rt ATGTCGCCAGAGAGAAATTCGTG NM009283 176
rev GGTGGACTTCAGACACAGAAATC
for TGCCGAGAACATACCAGAGAATC

bp, lengths of amplicons in base pairs; for, forward primer; rev, reverse primer; rt, primer used for cDNA synthesis
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only the expected products had been generated. Addition-
ally, the length of all PCR products was monitored by aga-
rose gel electrophoresis analysis (3% agarose, ethidium
bromide stained). Cloned PCR products of each of the
respective transcripts were used to generate external stand-
ard curves. Routinely, dilutions of standards covering five
orders of magnitude (5 × 10-16 to 5 × 10-12 g DNA/reac-
tion) were freshly diluted from stocks of 10 ng DNA/μl
and co-amplified during each run. Copy numbers were
calculated relative to the amount of total RNA previously
subjected to cDNA synthesis. To normalize for variations
between individual LightCycler runs one or two arbitrarily
selected samples were co-amplified as calibrators.

Statistical analysis
Line-specific means of component fertility traits and of
transcript abundance levels were compared with t-testing.
When p < 0.05, differences between lines were considered
significant. Correlation analysis comparing microarray
and qPCR data was performed with the Pearson Product
Moment correlation test. Relationships between pairs of
variables were considered significant when p < 0.05. All
tests were calculated with the SigmaStat software (Jandel
Scientific, San Rafael, CA, USA)
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