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Abstract

Background: Recent studies have placed gene expression in the context of distribution profiles
including housekeeping, graded, and bimodal (switch-like). Single-gene studies have shown bimodal
expression results from healthy cell signaling and complex diseases such as cancer, however
developing a comprehensive list of human bimodal genes has remained a major challenge due to
inherent noise in human microarray data. This study presents a two-component mixture analysis
of mouse gene expression data for genes on the Affymetrix MG-U74Av2 array for the detection
and annotation of switch-like genes. Two-component normal mixtures were fit to the data to
identify bimodal genes and their potential roles in cell signaling and disease progression.

Results: Seventeen percent of the genes on the MG-U74Av2 array (1519 out of 9091) were
identified as bimodal or switch-like. KEGG pathways significantly enriched for bimodal genes
included ECM-receptor interaction, cell communication, and focal adhesion. Similarly, the GO
biological process "cell adhesion" and cellular component "extracellular matrix" were significantly
enriched. Switch-like genes were found to be associated with such diseases as congestive heart
failure, Alzheimer's disease, arteriosclerosis, breast neoplasms, hypertension, myocardial infarction,
obesity, rheumatoid arthritis, and type | and type Il diabetes. In diabetes alone, over two hundred
bimodal genes were in a different mode of expression compared to normal tissue.

Conclusion: This research identified and annotated bimodal or switch-like genes in the mouse
genome using a large collection of microarray data. Genes with bimodal expression were enriched
within the cell membrane and extracellular environment. Hundreds of bimodal genes demonstrated
alternate modes of expression in diabetic muscle, pancreas, liver, heart, and adipose tissue. Bimodal
genes comprise a candidate set of biomarkers for a large number of disease states because their
expressions are tightly regulated at the transcription level.

Background organisms [6]. Initial microarray classification studies
Gene expression microarrays have served as a useful tool  such as those presented in [4,5] were able to characterize
for assaying large-scale similarities and differences among  similarities and differences among samples based on
conditions including tissue types [1], stages of develop-  mRNA expression level for large gene sets. More recent
ment [2,3], and disease states in humans [4,5] and model  studies have made use of biological annotation, such as
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Gene Ontology (GO) or Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways [7] to project changes in indi-
vidual genes onto biological functions [8,9]. Existing bio-
logical annotation is also a useful supplement to machine
learning techniques used for determining regulatory con-
nections [10,11]. These techniques are sensitive to differ-
ential expression as well as small concerted changes in
levels of gene expression, yet they may not adequately
address changes with respect to the global behavior of
gene expression — where transcript levels may either be
tightly regulated within a narrow range, or fluctuate
widely as a function of environmental cues or tissue spe-
cialization.

Efforts to explain biological functions associated with sin-
gle genes or sets of related genes often focus on variations
of gene expression across diverse tissue types. Identifica-
tion of genes as tissue-selective and tissue-specific is useful
for highlighting their biological function, as well as pro-
viding reference/context for disease states. Identification
of tissue-specific and tissue-selective genes is commonly
based on present/absent calls, requiring a global thresh-
old [12-14]. Tissue-specific behavior has also been identi-
fied using statistical tests to compare sample distributions
between tissue types [1,15,16]. Other approaches have
used a numeric value representing the degree of tissue spe-
cificity within one tissue or tissue subset versus all others
[17,18]. These studies are typically performed on a small
number of samples within each tissue type; they neverthe-
less effectively describe genes with large variation between
distinct tissues.

Efforts have been made to place gene expression in con-
text of global behavior using descriptors such as breadth
of gene expression [12] and distributions characteristics
that represent ubiquitous, binary, or graded regulation
[19-23]. Ubiquitously expressed "housekeeping" genes
are defined as those highly expressed with little variation
across conditions, and have been identified in humans
using large-scale microarray studies [1,24]. While breadth
of expression and housekeeping behavior have been
established using genome-scale measurements, present
descriptions of graded and binary genes have typically
been produced using single-gene studies [19,20]. These
studies have demonstrated that changes in gene expres-
sion levels can occur continuously or in a binary switch-
like manner in response to extracellular changes. Binary
modes of gene expression potentially correspond to those
proteins with tight regulation at the transcript level. As
such their identification is useful in the exposition of the
multiple modes of gene expression regulation observed in
eukaryotes.

In this study, we expand on the existing literature on gene
expression profile distributions and determine a compre-
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hensive list of bimodal genes along with their functional
annotation. Our preliminary computations based on
large collection of human microarray data indicated diffi-
culties identifying profiles of bimodal expression due to a
great degree of subject variability and noise. For this rea-
son, the present study focuses on murine microarray data
containing approximately 400 samples, all obtained using
the Affymetrix MG-U74Av2 platform (Table 1) [3,6,25-
39]. This new database allowed us to effectively apply a
two-component mixture model to hundreds of data
points for each gene and identify bimodal profiles. More-
over, bimodal genes with altered modes of expression
were identified in microarray data for type I and type II
diabetes (Table 2) [6,29,40,41]. Results point to impor-
tant roles that bimodal (switch-like) genes play within the
extracellular environment in health and disease. Bimodal
genes, because they are tightly controlled around two dis-
tinct modes at the transcript level, serve as targets in drug
development. Moreover, bimodal genes encoding for
extracellular proteins may serve as biomarkers in targeted
proteomic studies.

Results

Identification of bimodal genes in the mouse genome

Our method identified 1519 bimodal genes out of the
9091 unique genes (17%) on the MG-U74Av?2 array (see
Additional file 1). The total number of bimodal genes was
not sensitive to the p-value cutoff for bimodal versus
skewed normal representations of the gene expression dis-
tribution within the ranges considered: the bimodal gene
list increased by only three genes when the p-value was
increased from 0.001 to 0.01. Similarly, gene expression
outliers were not important contributors to the bimodal
gene list. When we deleted the three largest gene expres-
sion values from the gene expression profile of each gene
and ran our procedure for identification of bimodal
genes, the resulting bimodal gene list turned out to be
identical to our standard set of genes minus five genes. See
Additional file 1 for a table that provides a comprehensive
list of bimodal genes for the mouse genome. Columns of
this table are composed of the following entities: Affyme-
trix probe ID, Entrez gene ID, gene symbol, human
orthologs, log likelihood test statistic, estimated p-value,
and maximum overlap A, representing the misclassifica-
tion area between modes. Also listed for each gene in this
table are parameters indicating the standardized distance
between means D, the mixture parameter 7, and the log
RMA gene expression threshold value X separating high
and low expression modes. The information on this table
constitutes a priori data needed to identify the high
expression or low expression modes of each gene in any
given sample. The table can be used to identify altered
modes of expression in disease states provided that these
genes preserve their bimodal expression patterns. The
human orthologs of the bimodal mouse genes are listed
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Table I: Mouse gene expression datasets and tissue types composing our healthy dataset.

Healthy Tissue Type Accession No. Source Reference Samples Total
Adipose GSE480 GEO N/A 4 6
GSE2899 GEO [6] 2
Adrenal GSE1674 GEO [25] 6 6
Brain GSE3327 GEO [26] 87 89
GSE480 GEO N/A 2
Colon GSE2172 GEO [27] 4 5
E-MEXP-402 Array Express N/A |
Epidermal GSEI912 GEO [28] 25 25
Heart GSE77 GEO N/A 30 38
GSE4616 GEO [29] 6
GSE480 GEO N/A 2
Kidney E-MEXP-495 Array Express [30] 3 3
Liver E-MEXP-24| Array Express [31] 6 8
GSE2899 GEO [6] 2
Lung GSE485 GEO N/A 18 26
GSE495 GEO N/A 6
GSE480 GEO N/A 2
Mammary GSE5831 GEO N/A 9 15
E-MEXP-892 Array Express [32] 6
Muscle GSE469 GEO [33] 54 64
GSE1659 GEO [29] 6
GSE2899 GEO [6] 2
GSE480 GEO N/A 2
Ovary GSE1359 GEO [3] 10 10
Pancreas GSE769 GEO [34] 3 5
GSE2899 GEO [6] 2
Peripheral Blood GSE3039 GEO [35] 12 12
Small Intestine GSE765 GEO N/A 3 3
Spleen GSE5306 GEO N/A 12 12
Stomach E-MEXP-402 Array Express N/A | |
Testis GSE926 GEO [36] 22 49
GSE640 GEO [37] 17
GSE1358 GEO [3] 10
Thymus GSE2585 GEO [38] 8 I
GSES85 GEO [39] 3
All Healthy Tissues 388

in this table (Additional file 1) for reference and their
bimodal behavior in humans would have to be verified in
future studies.

Tissue similarity based on common modes of expression
within bimodal genes

Next we considered similarity of the nineteen tissues for
which we had extensive microarray data. As detailed in the
methods section, we based our criteria of tissue similarity

Table 2: Mouse gene expression datasets and tissue types composing our diabetes dataset.

Diabetic Tissue Type Accession No. Source Reference Samples
Adipose (Type Il) GSE2899 GEO [6] 2
Heart (Type ) GSE4616 GEO [29] 6
Liver (Type Il) GSE2899 GEO [6] 2
Muscle (Type I) GSE1659 GEO [29] 6
Muscle (Type ) GSE2899 GEO [6] 2
Pancreas (Type I) GSE1623 GEO [40] 6
Pancreas (Type Il) GSE2899 GEO [6] 2
Peripheral Blood (Type I) GSE1419 GEO [41] 22
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on the lists of tissue-selective bimodal genes in common
within each unique pair of tissues. Figure 1 indicates that
commonality in the set of tissue-selective bimodal genes
is indicative of tissue similarity. The number of tissue-
selective bimodal genes in the "high" mode for each tissue
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type is provided as the bottom number in the diagonal of
Figure 1A, while the top number represents genes that
may be considered tissue-specific; they are expressed in
the "high" mode for that single tissue and the "low" mode
for all others. The remaining matrix elements of Figure 1A

g

- > El
£ 2§ 22§58 5 8 25 2 8 g § 8 ¢ 5 3 &
_mbl 3 S s o) < = = =] £ £ i) Q. S 5 ) 17 i3] <
adipose| 392| 301 50] 191] 331| 291| 246| 213] 330| 278| 362] 205| 187| 143| 261| 246| 287| 219 173
adrenal| 301| 412 99| 201| 316] 301| 283| 236| 311| 264| 308| 247| 185| 146| 274] 241| 288| 260 171
brain 50 99 ;g_gl 72| 99| 111] 116 64| 104 47 92| 117 40| 104| 101 63 95| 121] 107
colon| 191] 201 72| 31g-l 234| 188] 210 176] 256| 194| 211| 164| 137| 143] 275| 192] 250 170| 184
epidermal| 331] 316 99| 234 50; 321 285| 232| 372|] 292| 382| 252| 204| 159| 298| 255| 345| 266| 222
heart] 291] 301 111] 188| 321 51: 277 212| 315| 245| 403] 217| 186| 130| 258| 217| 285| 226| 160
kidney| 246] 283] 116] 210] 285| 277 403I 229| 302| 238] 272| 230] 200|] 138| 286| 222| 285| 228| 184
liver|] 213| 236 64] 176] 232| 212| 229 292‘ 246| 213| 222| 181 167| 126] 226| 207| 234| 188| 145
lung| 330] 311] 104 256] 372| 315| 302| 246 54; 282| 387| 241| 196| 196| 332| 304| 344| 260| 262
mammary| 278| 264 47| 194] 292| 245| 238| 213| 282 33§I 285] 193] 196] 131| 259| 230| 271| 201| 167
muscle| 362 308 92| 211| 382| 403| 272| 222| 387| 285 SBEI 223| 201| 169] 297| 289| 321| 236] 203
ovary| 205| 247| 117 164] 252| 217| 230] 181] 241] 193] 223 422-I 159] 172| 235| 261| 232 353| 173
pancreas| 187| 185 40| 137] 204| 186| 200| 167| 196] 196] 201| 159 232I 94| 195| 174| 211| 165] 110
peripheral blood| 143| 146] 104] 143] 159] 130] 138] 126] 196] 131] 169] 172 94 33; 177) 207| 150 174| 200
small intestine] 261] 274 101|] 275| 298| 258| 286| 226| 332| 259| 297| 235| 195] 177 433I 277| 316] 231| 227
spleen| 246] 241 63| 192| 255| 217| 222| 207| 304| 230| 289] 261| 174| 207| 277 425I 253| 258] 195
stomach| 287| 288 95| 250| 345| 285| 285| 234| 344| 271| 321 232|] 211| 150| 316] 253 432-I 235| 204
testis] 219] 260] 121| 170] 266| 226] 228] 188| 260| 201| 236| 353] 165| 174] 231] 258| 235 442 181
thymus| 173] 171] 107| 184] 222] 160] 184] 145| 262] 167| 203] 173] 110 200 227| 195| 204] 181 3sg—|
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Tissue selective genes common among nineteen tissue types. A) The diagonal contains a top number corresponding
to tissue-specific switch-like genes expressed in a given tissue and a bottom number identifying the total number of tissue-
selective switch-like genes expressed in that tissue. B) A dendrogram representing tissue similarity based on tissue-selective

expression of bimodal genes.
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are the number of bimodal genes in the "high" mode for
both of the two tissue types designated in the row and col-
umn headings. We performed hierarchical clustering of
the nineteen tissues based on sets of bimodal genes shared
between them, to further demonstrate the role bimodal
genes may play in tissue similarity. The dendrogram in
Figure 1B was computed using hierarchical clustering with
average linkage, using one over the number of bimodal
genes shared between two tissues (from Figure 1A) as the
distance metric. In several examples, tissues with similar
function cluster together, such as stomach and small
intestine, heart and skeletal muscle, thymus and periph-
eral blood, and the reproductive tissues ovary and testis,
while brain clusters distinctly apart from all other tissues.
Other groupings such as adipose, lung, adrenal, and epi-
dermal tissue may occur because of signaling motifs
shared among these tissue types. Our predications of tis-
sue similarity are consistent with previous results that
group human tissues by hierarchical clustering [1,12].

Functional enrichment analysis indicates bimodal genes'
involvement with the extracellular environment
Interaction with the extracellular environment appeared
to be a common theme when we tested our bimodal gene
subsets for enrichment among KEGG pathways and GO
terms. Our findings for enriched KEGG pathways and GO
categories are summarized in Tables 3 and 4, respectively.
The tables include enrichment scores, defined as the ratio
of the observed number of genes over the expected
number of genes from the subset of interest, and p-values
for each entry calculated from a hypergeometric test [42]
for the bimodal gene set against all unique genes on the
MG-U74Av2 array. KEGG pathways that were enriched for
bimodal genes include cell communication, ECM-recep-
tor interaction, focal adhesion - all pathways that mediate
cell communication with the extracellular environment
(Table 3). Figures 2 and 3 identify the placement of bimo-
dal genes (marked as orange) in ECM-receptor interaction
and focal adhesion pathways, respectively. Structural pro-
teins that are bound by integrin receptors — collage, lam-
inin and fibronectin subunits - are largely encoded by
bimodal genes, confirming the fact that the multiple sign-
aling roles of integrins are coupled with the extracellular

http://www.biomedcentral.com/1471-2164/9/3

environment [43]. The focal adhesion pathway shown in
Figure 3 illustrates bimodal genes that mediate cell com-
munication at the interior of the cell including genes that
encode proteins involved in phosphorylation (ERK1/2,
JNK, MEK1, MLCK, PAK, and PDK1). Bimodal genes pop-
ulate GO cellular component categories such as axons,
basal lamina, basement membrane, cytoskeleton and
extracellular matrix, and they are principally involved in
the biological processes for ion transport, synaptic trans-
mission, cytoskeletal organization and cell adhesion
(Table 4). The abundance of genes with bimodal expres-
sion within the cell communication, focal adhesion, and
ECM pathways suggests aspects of these activities are ena-
bled and disabled at the transcript level. Additionally,
KEGG pathways for sugar metabolism are enriched with
bimodal genes, reminiscent of the switch-like regulation
of lactose metabolism in bacteria.

Altered modes of bimodal genes in diabetes

We identified bimodal genes that are expressed in an alter-
nate mode within disease states for type I and type II dia-
betes. Comparisons of microarray samples for diabetes
against samples for healthy tissue yielded nearly 200
genes with expression changes from "low" to "high" and
"high" to "low" expression modes in skeletal muscle
(Table 5). Changes were dominated by switching from
"high" to "low" in skeletal muscle in both type I and type
IT diabetes. The bimodal genes with altered states in dia-
betes type I and II are enriched in pathways involved in
communication and natural killer cell mediated cytotox-
icity (Table 6). Additional file 2 provides a list of all bimo-
dal genes with altered modes of expression in diabetes.
The bimodal genes altered in diabetic skeletal muscle are
mapped onto the ECM-receptor interaction and focal
adhesion pathways, shown in Figures 2 and 3, respec-
tively. As shown in these figures, collagen, fibronectin and
tenascin are downregulated in diabetes type I and II tran-
sitioning from "high" to "low" expression whereas colla-
gen receptor CD36 is switched from "low" to "high"
expression in diabetes, perhaps as compensation for lower
expression of extracellular matrix proteins. The list of
bimodal genes association with diabetes may provide
clues as to the changes that occur in gene regulation path-

Table 3: Enriched KEGG pathways for switch-like genes. Enrichment scores are the number of observed genes over the number of
expected genes. P-values were computed using the hypergeometric distribution.

KEGG pathway Genes observed

Genes expected

Ration of enrichment P-values < 0.01

Cell Communication 35
ECM-receptor interaction 26
Focal adhesion 42
Fructose and mannose metabolism 13
Glycolysis/Gluconeogenesis 16
Long-term depression 17
Tight junction 24

14.37 2.44 1.01E-07
10.69 243 4.57E-06
24.23 1.73 1.47E-04
5.68 2.29 2.18E-03
8.19 1.95 4.61E-03
9.36 1.82 8.07E-03
12.87 1.87 1.23E-03
Page 5 of 15

(page number not for citation purposes)



BMC Genomics 2008, 9:3

http://www.biomedcentral.com/1471-2164/9/3

Table 4: Enriched GO terms for switch-like genes. Terms are organized by cellular component (CC), biological process (BP), and
molecular function (MF). Enrichment scores are the number of observed genes over the number of expected genes. P-values were

computed using the hypergeometric distribution.

GO term Genes observed Genes expected Ration of enrichment  P-values < 0.001
C axon 19 7.02 271 | .40E-05
Cc
basal lamina 9 2.67 3.37 3.68E-04
basement membrane 14 5.35 2,62 2.94E-04
collagen 14 5.01 2.79 1.26E-04
cytoskeleton 65 39.27 1.66 1.35E-05
extracellular matrix 7 1.84 3.8l 6.34E-04
extracellular matrix (sensu Metazoa) 63 26.57 2.37 0.00E+00
muscle myosin complex 6 1.17 5.13 1.30E-04
postsynaptic membrane 18 7.85 2.29 3.20E-04
sarcolemma 8 2.17 3.68 3.47E-04
sarcoplasmic reticulum 6 1.34 4.49 4.44E-04
synapse 24 9.52 2.52 5.03E-06
synaptic vesicle 15 6.35 2.36 6.87E-04
synaptosome 12 451 2.66 6.69E-04
troponin complex 6 1.34 4.49 4.44E-04
BP calcium ion transport 19 8.02 237 1.32E-04
cell adhesion 88 50.79 1.73 4.41E-08
cytoskeleton organization and biogenesis 29 14.54 1.99 1.09E-04
ion transport 62 42.11 1.47 7.54E-04
muscle contraction 24 8.86 271 1.03E-06
muscle development 21 9.19 2.29 |.10E-04
regulation of long-term neuronal synaptic plasticity 4 0.67 5.98 7.77E-04
regulation of muscle contraction 14 3.01 4.65 1.97E-08
striated muscle contraction 9 2.51 3.59 1.89E-04
synaptic transmission 32 15.87 2.02 3.87E-05
synaptogenesis 4 0.67 5.98 7.77E-04
M actin binding 41 24.39 1.68 3.61E-04
F
calcium ion binding 113 78.70 1.44 2.03E-05
creatine kinase activity 6 1.00 5.99 2.16E-05
extracellular matrix structural constituent 23 9.69 2.37 2.57E-05
extracellular matrix structural constituent conferring tensile 13 451 2.88 1.48E-04
strength
ion channel activity 44 25.40 1.73 1.05E-04
kainate selective glutamate receptor activity 4 0.67 5.98 7.77E-04
motor activity 30 13.03 2.30 3.33E-06
protein binding 502 443.45 I.13 1.87E-04
structural constituent of cytoskeleton 29 13.70 2.12 3.17E-05
structural constituent of muscle 15 4.0l 3.74 5.99E-07
structural molecule activity 64 37.76 1.69 6.88E-06

ways as a result of the disease. Bimodal genes have also
been implicated in congestive heart failure, Alzheimer's
disease, arteriosclerosis, breast neoplasms, hypertension,
myocardial infarction, obesity, and rheumatoid arthritis.
Future studies are needed for a comprehensive portrayal
of their roles in these various diseases.

Transcription factors and bimodal gene expression

Approximately 15% of transcription factors are bimodal.
Comparison of our bimodal gene list with the transcrip-
tion factor list obtained from the Transfac Professional

Database [44,45] revealed 76 out of a total 525 transcrip-
tion factors on the MG-U74Av2 array as bimodal (see
Additional file 3). In turn, binding sites for these tran-
scription factors have been identified for 91 genes with
Entrez gene IDs, 79 of which were on the MG-U74Av2
array. Only 25 out of these 79 genes were bimodal, indi-
cating that the set of bimodal transcription factors may
not be solely responsible for their regulation. Neverthe-
less, genes that are regulated or co-regulated by bimodal
transcription factors are enriched in some of the same
KEGG pathways as bimodal genes (Table 7), including
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Figure 2

Bimodal genes highlighted in KEGG ECM-receptor interaction diagram. Nodes representing switch-like genes are
colored orange; remaining genes on the MG-U74Av2 array are shown in grey, and white blocks designate genes not on the
array. Genes not in the organism-specific pathway for mouse are crossed out. Genes identified as switching in skeletal muscle
samples with diabetes type | and type Il are labeled with "I' and "Il", respectively, with arrows indicating the direction of change

in the disease state (A is low-to-high; ¥ is high-to-low).

cell communication and ECM-receptor interaction. The
GO categories for the genes co-regulated by switch-like
transcription factors also intersect with GO categories of
switch-like genes that are not transcription factors (Table
8). Additional file 3 shows that genes coding transcription
factors that are involved in development such as the
homeo box genes are switch-like. As the list of known
transcription factors and their binding sites grow in the

near future, more definitive relationships between bimo-
dal genes and transcription factors are likely to emerge.

Discussion

This article presents a comprehensive list of bimodal
genes in the mouse genome. We used an automated statis-
tical algorithm that is similar to the approach used in the
detection of bimodality in blood glucose distribution
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Figure 3

Bimodal genes highlighted in KEGG focal adhesion diagram. Nodes representing switch-like genes are colored
orange; remaining genes on the MG-U74Av2 array are shown in grey, and white blocks designate genes not on the array.
Genes identified as switching in skeletal muscle samples with diabetes type | and type Il are labeled with "I" and "II", respec-
tively, with arrows indicating the direction of change in the disease state (A is low-to-high; ¥ is high-to-low).

[46,47] in order to identify bimodal, switch-like genes in
a large-scale microarray database for murine tissue. Bimo-
dal gene expression is either in a "high" or "low" expres-
sion mode, indicating switch-like regulation at the
transcript level. Our automated analysis revealed over
15% of the genes in the mouse genome as bimodal
(switch-like). These bimodal genes are enriched in cell
communication pathways and are also enriched in such
biological processes as cell adhesion, synaptic transmis-
sion, and ion transport. Moreover, bimodal genes associ-

ate with a large number of disease types including
diabetes type I and II, hypertension, and cancer. Because a
large portion of bimodal gene products are positioned in
the extracellular region, the list we present in this study
provides potential biomarker targets for early detection
and accurate classification of complex diseases.

Although we have paid considerable attention to the sta-
tistics of identifying bimodal genes from the large-scale
microarray data, our list of bimodal genes may change

Table 5: Switch-like genes identified in alternate modes of expression in diabetes. Quantities of bimodal genes that are in alternate
modes between healthy tissue and disease tissue are shown for diabetes type | and Il.

Tissue type: Adipose Heart Liver Muscle Pancreas Peripheral Blood
Type | diabetes "low" to "high" --- 13 --- 37 16 9
"high" to "low" --- 9 --- 130 2 16
Type Il diabetes "low" to "high" 2 - 1 25 16 -
"high" to "low" 3 - 14 142 3 -
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Table 6: Enriched KEGG pathways for switch-like genes identified in alternate modes of expression in diabetes. Enriched KEGG
pathways are shown for bimodal genes that switch states between healthy tissue and type | and Il diabetes (T| and T2, respectively).
Enrichment scores are the number of observed genes over the number of expected genes. P-values were computed using the

hypergeometric distribution.

Tissue KEGG pathway Genes observed  Genes expected  Ration of enrichment P < 0.0l
Heart --- --- - --- ---
Tl Muscle Antigen processing and presentation 9 1.05 8.60 8.11E-07
Cell communication 7 1.58 443 9.89E-04
Cell adhesion molecules (CAMs) 8 1.73 4.63 3.19E-04
ECM-receptor interaction 7 1.18 5.95 1.60E-04
Focal adhesion 9 2.66 3.38 1.38E-03
Leukocyte transendothelial migration 8 1.58 5.06 |.72E-04
Natural killer cell mediated cytotoxicity 6 1.67 3.59 6.47E-03
Type | diabetes mellitus 5 0.77 6.48 9.67E-04
Pancreas Benzoate degradation via hydroxylation | 0.0l 101.01 9.86E-03
Leukocyte transendothelial migration 3 0.17 17.62 6.02E-04
Tight junction 2 0.15 13.12 9.92E-03
Peripheral blood  --- -- --- -—- -
T2 Adipose - - -—-- - ---
Liver PPAR signaling pathway 2 0.15 13.47 9.52E-03
Muscle Antigen processing and presentation 8 1.05 7.64 8.42E-06
Cell communication 6 1.58 3.80 4.92E-03
Cell adhesion molecules (CAMs) 8 1.73 4.63 3.19E-04
ECM-receptor interaction 6 1.18 5.10 1.09E-03
Leukocyte transendothelial migration 8 1.58 5.06 1.72E-04
Natural killer cell mediated cytotoxicity 6 1.67 3.59 6.47E-03
Type | diabetes mellitus 5 0.77 6.48 9.67E-04
Pancreas - --- - ---

with time as microarray data obtained with the same
Affymetrix system expands to include tissue types not con-
sidered in this study. Nevertheless, the list that we present
in this article is stable under deletion of gene expression
outliers from the data. Although, as discussed in the Back-
ground section, a number of genes from various species
have been identified in the literature as bimodal or
switch-like previously, to our knowledge, the list that we
present (1519 genes) is yet the most comprehensive and
contains important information on gene regulation in

health and disease at the transcript level. Although the list
annotates bimodal genes for the murine genome, their
orthologs presented for the human genome provide a core
candidate list for the bimodal genes in the human
genome. Our automated method for annotating bimodal
genes will yield a comprehensive list for the human
genome with the availability of a comprehensive set of
standardized microarray data for large numbers of well
controlled tissue samples.

Table 7: Enriched KEGG pathways for genes regulated by switch-like transcription factors. Enrichment scores are the number of
observed genes over the number of expected genes. P-values were computed using the hypergeometric distribution.

KEGG pathway Genes observed

Genes expected Ration of enrichment P-values < 0.01

Antigen processing and presentation 6 0.64 9.40 3.07E-05
Cell adhesion molecules (CAMs) 5 0.97 5.17 2.54E-03
Cell Communication 5 1.01 4.96 3.05E-03
Circadian rhythm 3 0.19 16.19 6.45E-04
ECM-receptor interaction 4 0.74 5.40 5.94E-03
Maturity onset diabetes of the young 3 0.43 6.94 8.55E-03
PPAR signaling pathway 5 0.82 6.07 1.22E-03
Type | diabetes mellitus 7 0.56 12.60 7.63E-07
Type Il diabetes mellitus 4 0.66 6.07 3.86E-03
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Table 8: Enriched GO terms for genes regulated by switch-like transcription factors. Terms are organized by cellular component (CC),
biological process (BP), and molecular function (MF). Enrichment scores are the number of observed genes over the number of
expected genes. P-values were computed using the hypergeometric distribution.

GO term Genes observed Genes expected Ration of enrichment P-values < 0.001
CC collagen type | 2 0.04 48.58 4.18E-04
external side of plasma membrane 6 0.93 6.48 2.70E-04
extracellular matrix (sensu Metazoa) 8 1.63 4.92 1.80E-04
extracellular region 14 4.43 3.16 9.44E-05
extracellular space 30 13.44 2.23 5.68E-06
MHC class | protein complex 3 0.14 20.82 2.77E-04
BP antigen processing and presentation of endogenous peptide 2 0.04 48.58 4.18E-04
antigen via MHC class |
antigen processing and presentation of peptide antigen via 3 0.14 20.82 2.77E-04
MHC class |
defense response 6 1.01 5.95 4.34E-04
glucose transport 4 0.23 17.67 4.92E-05
immune response I 3.23 3.40 3.07E-04
rhythmic process 3 0.19 16.19 6.45E-04
MF  extracellular matrix structural constituent 5 0.56 9.00 1.84E-04
structural constituent of bone 2 0.04 48.58 4.18E-04

Recent literature points to examples of bimodal genes
involved in feedback and feedforward motifs in gene reg-
ulation networks [48-50]. Bimodal gene expression asso-
ciated with switch-like regulation was shown to be a direct
consequence of DNA methylation at cis-regulatory
sequences at least in the case of E-coli metabolic gene cir-
cuitry [51]. This observation is consistent with our finding
that only a small number of transcription factors are
bimodal and those transcription factors in turn only regu-
late a small portion of the remaining bimodal genes.

Our study indicates that in a number of complex diseases
such as diabetes type I and II, the stable inheritance of the
normal mode of expression in bimodal genes is compro-
mised. For example, bimodal genes coding for collagen
subunits are "low" rather than "high" in skeletal muscle
for diabetes type I and II relative to healthy samples. In
addition, type II diabetes has the fibronectin subunit gene
"low" rather than "high" in the same tissue. Perhaps, in
compensation, collagen receptor CD36 becomes highly
expressed in both diabetes types. Our comprehensive list
of bimodal genes in the mouse will be useful in identify-
ing disease-phenotypic alterations in gene regulation in
diseases such as cancer, hypertension and diabetes.

For the interest of assessing the diagnostic potential of
switch-like genes as biomarkers, we compared our switch-
like gene list with previously published lists of serum pro-
teins and disease genes. Mouse orthologs were obtained
for serum proteins identified in the HuPO PPP, including
the 3020 two-plus peptide list and 889 high-confidence
lists [52,53]. We found that nearly a quarter of the high-
confidence plasma proteins were bimodal. Although

these results may change as more accurate proteomic
measurements are available, it indicates the potential of
switch-like genes as biomarkers for the classification of
disease subtypes.

We compared our list of bimodal genes with disease gene
sets for mouse obtained from the RGD Disease Portal
[54]. On the average, we identified that bimodal genes
account for 15% of the genes within disease gene lists for
congestive heart failure, Alzheimer's disease, arteriosclero-
sis, breast neoplasms, cerebrovascular accident, hyperten-
sion, myocardial infarction, obesity, rheumatoid arthritis,
and diabetes mellitus types I and II. Among these bimodal
genes, 30% were serum protein encoding genes, suggest-
ing their potential to serve as biomarkers.

Conclusion

This research identified a large set of mouse genes as
switch-like by assembling and analyzing a large collection
of microarray data encompassing diverse tissue types.
Genes with bimodal, switch-like control were shown to be
enriched within the cell communication pathways and
the extracellular environment. The modes of expression
for a large majority of such genes were tissue-selective.
Moreover, a significant number of these switch-like genes
switched between modes of expression in diabetic com-
pared to healthy samples in a number of tissue types.
These findings comprise an important first step in identi-
fying altered states of gene switches in complex diseases
such as hypertension, obesity and cancer.

Bimodal expression implicates strong regulation at the

transcript level. Switch-like regulation can influence pro-
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tein activity in cases where protein abundance parallels
transcript level, as is observed with proteins such as
cytokines [55,56]. Bimodal gene expression provides a
means for the cell to enable and disable pathway func-
tions at the transcript level. Genes with bimodal, switch-
like control are involved in communication pathways that
play crucial roles in determining cell phenotype through
interaction with the extracellular environment in health
and disease. Because their expression is tightly regulated at
the transcription level, they comprise a candidate set of
biomarkers for a large number of disease states.

Methods

Data selection

Murine gene expression datasets (Table 1) were obtained
from both the Gene Expression Omnibus (GEO,) [57-59]
and ArrayExpress [60,61] and limited to those providing
Aftymetrix GeneChip MG-U74Av2 data in CEL file for-
mat, because datasets are both current and abundant for
this platform. The resulting dataset contains samples from
nineteen generalized tissue types. While only one sample
was obtained for stomach tissue, this does not seem to
impact the detection of switch-like or tissue-selective
genes identified within this tissue. Moreover, stomach tis-
sue clusters with other digestive tissues based on the inter-
section of tissue-selective gene sets, as presented in the
results section.

Microarray normalization and annotation

Robust Multichip Average (RMA) [62,63] expression val-
ues were computed from these CEL files, using RMAEx-
press software version 0.5 Release [64] with default
settings, to produce a data table with genes as rows and
samples as columns. All CEL files from datasets listed in
Table 1 were used for normalization, but the data was lim-
ited to healthy subjects, excluding knockout and disease
phenotypes, for subsequent steps in the analysis. Annota-
tion for Entrez Gene ID, gene symbol, and KEGG pathway
was retrieved March 15th, 2007 using Webgestalt (web-
based gene set analysis toolkit) [42]. GO annotation, as
well as missing values for Entrez Gene ID and gene sym-
bol, was supplemented from the MG-U74Av2 annotation
dated 3/8/2007, obtained directly from the Affymetrix
website [65] on March 15th, 2007. The data was then
imported to Matlab R2006b (The Mathworks Inc., Natick,
MA, USA), where all subsequent procedures were imple-
mented.

Disease markers, serum proteins, and transcription factor
annotation

Disease gene sets for mouse were obtained from the Rat
Genome Database (RGD) Disease Portal [54]. Mouse
orthologs were obtained for serum protein lists available
from the Human Proteome Organization (HuPO) Plasma
Proteome Project (PPP) [52,53]. Entries in the PPP list

http://www.biomedcentral.com/1471-2164/9/3

were converted from International Protein Index (IPI) to
human Entrez Gene ID using the IPI database for
HUMAN, version 3.28, released 20 Apr 2007 [66,67].
Mouse orthologs were obtained from this list using Web-
gestalt. The Transfac Professional Database version 11.1
[44,45] was used to identify genes as either transcription
factor coding genes or transcription factor targets. Gene
entries, including those encoding for transcription factors,
were obtained from Transfac Gene and limited to those
with Entrez Gene IDs represented on the MG-U74Av2
array.

Identification of bimodal genes from estimated
parameters for two-component mixtures

Bimodal genes in the murine microarray data (Table 1)
were identified using a statistical method applied to
bimodality in glucose distribution [46,47]. Briefly, we
tested the hypothesis H, that gene expression distribution
follows a two-component (bimodal) mixture against the
hypothesis H, of a single normal distribution, adjusted for
skewness. For this purpose, we used the box-cox transfor-
mation implemented in Matlab to eliminate skewness in
RMA-adjusted gene expression histograms for each gene
in the microarray database [68]. Then we used the expec-
tation maximization (EM) algorithm [69] implemented
in Matlab to determine the parameters for the best-fit two-
component normal mixture for each gene in the database.
The two-component normal mixture is used to represent
a bimodal distribution, where the parameters p; and p,
are the component means, ¢, and o, are the component
standard deviations and =n; and 7, represent the propor-
tion of data within each component (note thatn, =1 - ;).
The corresponding parameters for single normal distribu-
tion were calculated from the sample mean and standard
deviation for each gene. The log likelihood ratio test sta-
tistic -2logh was computed for the two-component mix-
ture hypothesis H; versus the null hypothesis H, of a
single component as described in [46,47]. We estimated
the p-values for two-component mixtures by evaluating
the chi-square distribution with six degrees of freedom
(DF) at the values of -2logh. The asymptotic null distribu-
tion for the -2logh statistic is typically represented by a
chi-square distribution with DF equal to the difference in
the number of parameters between the null and alterna-
tive hypotheses. However, regularity conditions for -2logh
do not hold in the case of mixture models, and simulation
has shown that six DF is a more accurate representation
for the asymptotic null distribution when testing the alter-
native hypothesis of two components with unequal vari-
ance [70]. The choice of six degrees of freedom for testing
two components versus a single normal provides conserv-
ative p-values and was previously used in identifying
bimodality in blood glucose levels among population
subsets [47].
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Candidates for bimodal "switch-like" genes were selected
as those with p-values no more than 0.001, which pro-
duced a subset of 2166 out of 9091 unique genes on the
MG-U74Av2 array. The table in Additional file 1 lists
those candidate genes with p < 0.01 in order to identify
additional genes that might also be considered bimodal
with additional biological context, though only genes
with p < 0.001 were included in our analysis to keep the
false discovery rate low for the 9091 genes under consid-
eration. In order to investigate the effect of outliers on the
prediction of bimodality from gene expression data, we
ran the EM procedure again within the set of bimodal can-
didate genes leaving out the three highest expression val-
ues for each gene. Five genes came out of the candidate list
and are highlighted with an asterisk (*) in Additional file
1 though they were not excluded from our final list.

This subset of genes was further reduced by the imposing
the requirement that the standardized area of intersection
A (indicating type I and type II error for the estimated
bimodal distribution divided by the total area) was less
than 0.10. This is clarified in Figure 4A, where the dark
grey region under the normal curves represents type I error
and the solid black region under the normal curves repre-
sents type II error. The rationale for this step is that in
order for switching to play a functional role within the
cell, there must be minimal overlap between the two mix-
ture components. This criterion reduced the number of
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candidate switch-like genes from 2166 to 1458. In the
resulting gene list, the standardized distance between
components, D = (y, - u;)/min(oy, 0,), was at least 2.5 for
this remaining subset of switch-like gene candidates, con-
firming the statistical power of our analysis [71]. Figure 4B
illustrates the reduction in switch-like gene candidates
based on several cutoff values for the type I and II error
rate.

Assigning expression values to high/low modes for switch-
like genes

The switching threshold for each gene was defined at the
intersection of the density curves for the two components
of the mixture. This switching threshold is mapped back
onto the log RMA expression axis (labeled as X in Figure
4A) with a reverse box-cox transformation. A gene expres-
sion sample greater than X, for that gene was classified as
having high expression, while a sample less than X was
classified has having low expression. Standardized area of
intersection A was restricted to less than 0.1 in order to
keep classification error to a minimum in the assignment
of "high" and "low" states to switch-like genes.

Developing a dendrogram for tissue similarity using the
concept of tissue selectivity

Nineteen tissue types for which we have extensive gene
expression profiling have been clustered in dendrogram
using a coexpression matrix. Elements of the coexpression
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Identification of switch-like genes with bimodal gene expression. A) The histogram and normal mixture probability
density function (pdf) for a bimodal candidate gene. B) Bar graph representing gene set sizes during switch-like gene candidate

selection process.

Page 12 of 15

(page number not for citation purposes)



BMC Genomics 2008, 9:3

matrix were selected from the larger gene set with the
restriction that a gene in the subset must be expressed in
the high mode for the majority of the samples in at least
one tissue. For this purpose, the gene expression values for
switch-like genes were converted to binary values corre-
sponding to the high and low modes of two-component
distribution. Gene expression within a single tissue type
was modeled as a Bernoulli process (binomial distribu-
tion) with equal probabilities of high and low. Based on
this model, a gene that is not selectively expressed within
a given tissue type should be evenly distributed between
the high and low modes. A gene that is selectively
expressed within a given tissue type would show a signifi-
cant bias for the high mode and low corresponding p-
value. We established p-values for a gene to be selectively
expressed within each tissue type from the binomial dis-
tribution, where the number of trials equals the number
of samples for that tissue type and the number of suc-
cesses equals the number of samples with values in the
high expression component. Conversely, p-values for a
gene to be selectively repressed within each tissue type
were established based on the number of samples with
values in the low expression component. Tissue-selective
genes were selected as those with p < 0.01 for at least one
of the nineteen general tissue types.

Functional enrichment analysis

KEGG pathway and GO annotations were used to com-
pute functional enrichment scores for all switch-like
genes. Functional enrichment analysis was performed in
Matlab by calculating the ratio of genes belonging to a
functional category within a gene set of interest against the
total number of genes belonging to that functional cate-
gory within the set of genes on the MG-U74Av2 array.
Enrichment p-values were computed from a hypergeo-
metric distribution. The p-value cutoffs were selected at
0.01 for KEGG pathways and 0.001 for GO terms, to
reduce the false discovery rate. The set of candidate bimo-
dal genes contained 153 unique KEGG pathways and 321
unique GO cellular component terms, for which an
expected 1.5 and 0.3 of the terms may appear significant
by chance at these p-value cutoffs, respectively.

Comparisons of health and disease states

Additional MG-U74Av2 samples were used to identify
alternate switching modes of switch-like genes in diabetes
type I and II. These samples are listed in Table 2 and rep-
resent adipose, heart, liver, skeletal muscle, pancreas, and
peripheral blood. Bimodal genes were identified as
altered in disease for a single tissue by again modeling the
samples as a binomial distribution. Genes were identified
as switching in the disease state when healthy samples
have a significant p-value (less that 0.01) in one mode
while disease samples have a significant p-value (less than
0.01) for the opposite mode.

http://www.biomedcentral.com/1471-2164/9/3
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