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Abstract

Background: T-cell activation is an essential step of the immune response and relies on the tightly
controlled orchestration of hundreds of genes/proteins, yet the cellular and molecular events underlying
this complex process are not fully understood, especially at the genome-scale. Significantly, a comparative
genome-scale transcriptional analysis of two T-cell subsets (CD4+ and CD8+) against each other and
against the naturally mixed population (CD3+ cells) remains unexplored.

Results: Comparison of the microarray-based gene expression patterns between CD3+ T cells, and the
CD4+ and CD8+ subsets revealed largely conserved, but not identical, transcriptional patterns. We
employed a Gene-Ontology-driven transcriptional analysis coupled with protein abundance assays in order
to identify novel T-cell activation genes and cell-type-specific genes associated with the immune response.
We identified potential genes involved in the communication between the two subsets (including IL23A,
NR4A?2, CD83, PSMB2, -8, MIF, IFI16, TNFAIPI, POU2AFI, and OTUBI) and would-be effector-function-
specific genes (XCL2, SLAMF7, TNFSF4, -5, -9, CSF3, CD48 and CD244). Chemokines induced during T-
cell activation, but not previously identified in T cells, include CCL20, CXCL9, -10, -1 (in all three
populations), and XCL2 (preferentially in CD8+ T cells). Increased expression of other unexpected
cytokines (GPI, OSM and MIF) suggests their involvement in T-cell activation with their functions yet to
be examined. Differential expression of many receptors, not previously reported in the context of T-cell
activation, including CCR5, CCR7, ILIR2, ILIRAP, IL6R, TNFRSF25 and TNFRSFIA, suggests their role in
this immune process. Several receptors involved in TCR activation (CD3D, CD3G, TRATI, ITGAL,
ITGBI, ITGB2, CD8A and B (CD8+ T-cell specific) along with LCK, ZAP70 and TYROBP were
synchronously downregulated. Members of cell-surface receptors (HLA-Ds and KLRs), none previously
identified in the context of T-cell activation, were also downregulated.

Conclusion: This comparative genome-scale, transcriptional analysis of T-cell activation in the CD4+ and
CD8+ subsets and the mixed CD3+ populations made possible the identification of many immune-
response genes not previously identified in the context of T-cell activation. Significantly, it made possible
to identify the temporal patterns of many previously known T-cell activation genes, and also identify genes
implicated in effector functions of and communication between CD4+ and CD8+ T cells.
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Background

T cells are among the most versatile cells in the body and
play a central role in adaptive immunity. T-cell matura-
tion in thymus is a stepwise process, undergoing positive
and negative selection to produce CD4+ and CD8+ T cells
[1]. When mature, T lymphocytes leave the thymus and
are considered naive cells until they encounter activating
signals in peripheral lymphoid organs, thus become acti-
vated, start to proliferate, differentiate into effector cells
(helper and cytotoxic) and gain the ability to enter inflam-
mations sites [2]. Activation of the naive T cells in the
peripheral immune system is the first step of the adaptive
immune response.

Successful T-cell activation requires two major stimulatory
signals to produce an effective immune response. First,
the T-cell receptor complex (TCR) recognizes the cognate
ligands presented by the major histocompatibility com-
plex (MHC) on antigen-presenting cells (APCs) [3]. Sec-
ond, a co-stimulation signal is presented to T cells through
the engagement of a co-receptor such as CD28 [4]. In the
absence of CD28 co-stimulation, TCR signalling alone
results in anergy. T-cell activation, which begins with TCR
activation with CD28 co-stimulation, triggers multiple
signalling pathways and cellular events. Signalling down-
stream of TCR engagement has been widely studied [5-7].
Key events include activation of protein kinases such as
LCK and ZAP70, intracellular Ca2+ regulation, activation
of MAP-kinase cascades, and activation and nuclear local-
ization of crucial transcription factors including AP-1,
NFAT, and NF-xkB. However, our understanding of the
activation process including subsequent proliferation and
differentiation events is far from complete. A temporal
genome-scale transcription profiling of T-cell activation
process would provide a comprehensive understanding
and insights into the molecular mechanisms underlying
the process.

Gene expression analysis of T-cell activation at a single
timepoint has been reported [8,9], and using a single
donor sample, the gene expression patterns of T-cell acti-
vation with or without co-stimulation by anti-CD28 anti-
body were compared [10,11]. However, to the best of our
knowledge, the genome-scale donor-independent tempo-
ral gene expression analysis of primary, human T-cell acti-
vation has not been reported, and this is the goal of this
study. Significantly, a comparative analysis of the pro-
grams of two T-cell subsets (CD4+ and CD8+) against
each other and against the natural CD3+ population
remains unexplored, and would likely yield significant
new information. Comparison of the transcriptional pat-
terns among the three populations should lead to the
identification of the common transcriptional events
shared by CD4+ and CD8+ T cells, and of subset-specific
genes and genes potentially involved in the communica-
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tion between CD4+ and CD8+ T cells. Among the differ-
entially expressed genes, we focused on 'immune
response’ genes based on Gene Ontology (GO) classifica-
tion in order to provide new insights into the expression
of chemokines and cytokines, the orchestrated regulation
of receptors, the interactions between the two subsets, and
the homeostasis of resting T cells. Such understanding
would be helpful for enhancing, re-directing or modifying
the activities of T cells under physiological and patho-
physiological circumstances.

Results

Primary human T-cell activation is donor independent
We aimed to capture important, donor-independent tran-
scriptional events of T-cell activation. Three biological
experiments, E1-E3, using CD3+ T cells, which contain
both the CD4+ and CD8+ subsets, from three different
healthy donors demonstrated similar phenotypic charac-
teristics. T-cell proliferation, as measured by cell expan-
sion, started at 48 hours after stimulation, and cell
numbers doubled by 96 hours (Figure 1A). Cell viability
remained around 80% throughout the 96 hours (Figure
1B). Surface expression of the early T-cell activation
marker CD69 was rapidly upregulated within 10 hours,
and then downregulated after 48 hours (Figure 1C).
Expression of the other important surface marker CD25
(IL2RA) rapidly increased within 24 hours and stayed
high (above 80%) from 24 hours to 96 hours (Figure 1D).
We also examined the CD4+/CD8+ subset ratio but we
found no significant changes during the 96 hours of the
experiments (data not shown). CD4+ cells were ca. 60%,
and CD8+ cells ca. 40% of the total T-cell population.

A separate set of experiments, E7-E9, was carried out
using separately CD4+ and CD8+ T cells isolated from
another three healthy donors. The time course analysis of
this set of experiments was setup somewhat differently
than in the CD3+ T-cell study (0, 6, 12, 24, 48 and 72
hours in the CD4+ and CD8+ subsets compared to 0, 4,
10, 48, and 96 hours in CD3+ T cells) in order to cover
earlier timepoints. As we demonstrate below, the different
time points in the two sets of experiments do not affect
our ability to compare the data from the two studies, and
in fact enhance and broaden the validity of the conclu-
sions. Within each population, T cells exhibited overall
similar phenotypic characteristics (Figure 1). T-cell prolif-
eration as assessed by cell numbers did not start until 48
hours. Expansion reached about 1.2 fold in CD4+ T cells
and about 0.8 fold in CD8+ T cells by 72 hours. Cell via-
bility remained around 75% in CD4+ T cells vs. around
60% in CD8+ T cells; the lower viability of CD8+ T cells
was likely caused by the absence of help from CD4+ T
cells. Expression of the T-cell activation surface markers
CD25 and CD69 in the two subsets was similar to that of
CD3+ T cells.
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Phenotypic analysis of T-cell ex vivo activation upon anti-CD3/anti-CD28 stimulation of three populations.
Three independent biological experiments were carried out for each population. CD3+, CD4+ and CD8+ T cells were nega-
tively selected from PBMCs of healthy donors and activated with anti-CD3/anti-CD28 antibodies. (A) T-cell expansion as
assessed by cell numbers; (B) The percentage of the viable T cells as determined by flow cytometry; (C) The percentage of the
viable cells expressing CD69; (D) The percentage of the viable cells expressing CD25. Data from 6 independent experiments
(CD3+ T-cell experiments, EI-E3, and CD4+ and CD8+ T-cell experiments, E7—E9) using cells from 6 different healthy donors
are shown.
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Agilent microarrays that target 18,403 human genes were
used to generate the transcriptional profile of activation
for the CD3+ T-cell population, and the CD4+ and CD8+
T-cell subsets. Comparing samples across all time points,
multi-class SAM (false discovery rate of <1%) identified
3793 genes with statistically significant expression
changes in the CD3+ population, 1463 significant genes
in the CD4+ population, and 1258 significant genes in the
CD8+ population. Hierarchical clustering (see Additional
files 1, 2, 3, 4, 5, 6) demonstrated that the transcriptional
patterns of these significant genes among the replicate
biological experiments within each population were
highly reproducible. Thus, for simplicity and ease of pres-
entation, gene expression data from the three biological
experiments for each population were averaged for discus-
sion and analysis below. In order to compare the tran-
scriptional patterns of CD3+, CD4+ and CD8+ T cells, the
significant genes from all experiments were combined to
a total of 4167 unique, significant genes distributed
among the 3 T-cell populations as shown in the Venn dia-
gram of Figure 2. Far more significant genes were identi-
fied in the CD3+ T-cell activation experiments than in the
subset experiments, possibly reflecting a larger repertoire
of genes during activation in the natural, mixed popula-
tion of CD3+ T cells, and thus the synergy and interplay of
the two subsets (CD4+ and CD8+ T cells) in producing a
more complex and multifaceted response. Nevertheless, a

Figure 2

Venn diagram comparison of the significant genes
identified as differentially expressed in the three pop-
ulations. SAM analysis (false discovery rate of <|%) identi-
fied 3793 significant genes in CD3+ population, 1463
significant genes in the CD4+ population and 1258 significant
genes in the CD8+ population.
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large number of the genes were shared by CD4+ and
CD8+ T cells (910 out of 1463 and 1258 respectively),
reflecting the common cellular events shared by CD4+
and CD8+ T cells during the activation process. Hierarchi-
cal clustering of these pooled significant genes (see Addi-
tional files 7 and 8) demonstrated that the 3 populations
shared largely similar transcriptional profiles regardless of
the difference of the sampled timepoints, which, in per-
spective, broadens the significance of identified genes.

Q-RT-PCR was used to validate select microarray results.
Fifteen significant genes with different expression intensi-
ties were selected. As previously reported [12], in our lab-
oratory, data from these Agilent microarrays correlated
strongly with the Q-RT-PCR results, although Q-RT-PCR
data generally show larger fold changes compared to
microarray data (see Additional file 9). We thus conclude
that the T-cell activation process under our experimental
conditions is largely donor invariant, as assessed by both
phenotypic data and transcriptional profiles.

Regulation of ' immune response' genes in T-cell activation
Ontological analysis using the MeV EASE module identi-
fied 203 genes associated with the term 'immune
response’ among the 4167 significant genes, consistent
with the essential roles of T cells in the adaptive immune
response. Hierarchical clustering revealed distinct expres-
sion patterns for these 203 genes and allowed us to divide
them into two clusters: (A) Expression is mainly upregu-
lated compared to resting T cells (0 hour) (Figure 3A); (B)
Expression is mainly downregulated compared to resting
T cells (0 hour) (Figure 3B).

Although we expected differences in gene expression pat-
terns because of the different biology and functions of
CD4+ and CD8+ T cells, the aforementioned 203 genes
show, overall, similar expression patterns among the 3
populations but with several notable exceptions. Within
the upregulated cluster A, notable differences among the
three populations include: (1) genes in clusters I (IL23A,
NR4A2, CD83) and IV (PSMBS8, PSME2, MIF, IFI16,
TNFAIP1, POU2AF1, and OTUB1), which shared similar
gene expression patterns between CD4+ and CD8+ T cells,
but different than those of CD3+ T cells; (2) genes in clus-
ter 11 (XCL1, SLAMF7, BRDG1, CD69, TNFRSF9 and
CD40LG (TNFSF5)) with different gene expression pat-
terns among the 3 populations, and cluster III (CSF3,
IL1RN, BCL6 and TNFSF4) with different gene expression
patterns between the CD4+ and CD8+ populations.
Within the downregulated cluster B, there were a few
genes with different expression patterns in cluster V
(AOAH, CD8A, -B, KLRC]1, -2, -4, KLRD1, CD48, CCLS5,
S100B, CD244, PF4, IGLL1, 1G], FCER1A, ITGBI,
TRIM22, TNFRSF25, LCK and ZAP70), mainly between
CD4+ and CD8+ T cells, and cluster VI (IFIT5, ISGF3G,
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Figure 3

Expression profiles of genes associated with the Gene Ontology term 'immune response'. Genes that were differ-
entially expressed temporally in T-cell activation of the three (CD3+, CD4+ and CD8+) populations were divided into two
groups (A with mostly upregulated genes and B with mostly downregulated genes) according to their distinct expression pat-
terns based on hierarchical clustering using the Euclidian distance metric. Color denotes degree of differential expression com-
pared to 0 hour (saturated red = 3-fold up-regulation, saturated green = 3-fold down-regulation, black = unchanged, gray = no
data available). Clusters (I-VI) of genes with different expression patterns among the three populations were noted on the side.
Expression data shown are averages from three independent biological experiments for each T-cell population.
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IL6R, CD164, HLA-E, TYROBP and TNFRSF1A), mainly
between CD3+ T cells and CD4+, CD8+ subsets.

Genes sharing similar expression patterns between CD4+
and CD8+ T cells, but different than CD3+ T cells, are
likely important players in the communication between
CD4+ and CD8+ compartments. Although not previously
associated with T-cell activation, the decreased upregula-
tion of NR4A?2 (coactivator of general gene transcription)
[13] and increased upregulation of IFI16 (transcriptional
repressor) [14] and PSMB8, PSME2, and OTUBI1(pro-
teases) [15-17] are possibly involved in the delayed T-cell
activation and proliferation of the CD4+ and CD8+ sub-
sets compared to CD3+ T cells. The significant downregu-
lation (at 48-96 hours) of IGLL1 and IGJ
(Immunoglobulins), FCER1A (receptor), CD164 (nega-
tive regulator proliferation) and IRF9 (transcription fac-
tor) in CD3+ T cells, but not in CD4+ or CD8+ subset
suggests that these proteins are affected by the co-presence
and/or communication between the two subsets. Genes
with different expression patterns between CD4+ and
CD8+ subsets are possibly involved in cell-type-specific
characteristics and functions. For instance, expression of
TNFSF5 (CD40LG) has been mainly reported in CD4+ T
cells, facilitating the activation of CD8+ T cells [18].
Indeed, a preferential transcriptional upregulation of
TNFSF5 was observed in CD4+ T cells, supported by a pro-
tein abundance assay (Figure 4). Interestingly, TNFSF5
was also upregulated in CD8+ T cells (although not as
strongly as in CD4+ T cells), supporting the recently
reported expression of TNFSF5 in CD8+ T cells in the
absence of CD4+ T cells [19]. This is an example demon-
strating that, with the comparative analysis of the expres-
sion patterns among the 3 populations, our data capture
significant differential transcriptional events. Transcrip-
tional differences between CD4+ and CD8+ subsets were
validated and supported by protein abundance assays of
selected genes (TNFSF4, -5, -RSF9, KLRD1, CD48 and
CD69) (Figure 4). Some of these genes (encoding
cytokines and receptors) are discussed in detail below.

Cytokines act as messengers between cells, regulating their
functions and activity. The production of cytokines is pre-
cisely controlled temporally in the immune response, and
so are cytokine receptors. Thus, the significantly regulated
cytokines and cytokine receptors in T-cell activation were
sorted based on their functions listed by NCBI [20] (Fig-
ure 5 and Figure 6) and are discussed below.

Cytokines and Chemokines

A group of chemokines (CCL3, CCL4, CCL20, CXCL9, -
10, -11, XCL1 and XCL2) showed a steady increasing
expression upon anti-CD3/anti-CD28 stimulation in all 3
populations with the exception that XCL1 was not upreg-
ulated in CD4+ T cells. The strong upregulation of these
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genes is likely responsible for the proinflammatory
response of T cells, including the recruitment of T cells as
well as other leukocytes to the sites of inflammation.
CCL20 is mainly secreted by epithelial cells and macro-
phages [21], and CXCL9, -10, -11 are mainly secreted by
dendritic cells and macrophages [22,23]; their expressions
have not been reported in T cells. Supernatant ELISA
assays confirmed the significant continuous transcription
upregulation of CCL20 (Figure 7), suggesting the induc-
tion of CCL20 secretion in T-cell activation. The preferen-
tial expression of XCL1 and XCL2 in CD8+ T cells suggests
that these proteins might have roles in activation and/or
functions of cytotoxic T cells [24]. A few chemokines
showed high expression in resting T cells (CCL5, CCL18
and CXCLS5), suggesting their importance in the homeos-
tasis of resting T cells in the peripheral immune system.
Interferon gamma (IFNG), INFG-inducible protein 16
(IF116), IEN regulatory factor 4 (IRF4), -1, and IFNG-
inducible Guanylate binding proteins (GBP1 and -2) were
all upregulated (Figure 5 and Figure 8A). Supernatant
ELISA assays revealed that the secreted IFNG protein level
continuously increased throughout the 96 hours (Figure
8B). IFNG has important immunoregulatory functions
such as antiviral and anti-tumor activity, and as an activa-
tor of macrophages [25], yet its functions in T-cell activa-
tion remains unknown. The orchestrated transcriptional
regulation of IFN regulatory factors, IFNG, and INFG-
inducible proteins and the significant induction of IFNG
protein secretion suggest that IFNG secreted by T cells has
an important role in T-cell activation.

Some of the interleukins (IL2, -23A, -5 and -8) were also
upregulated, and with distinct patterns. The expression
pattern of IL23A in CD3+ T cells was significantly differ-
ent than that in CD4+ or CD8+ T cells. Expressed by acti-
vated dendritic cells, IL23 has anti-tumor effects through
inducing CD4+ T-cell proliferation and its anti-tumor
effects are reportedly to be inhibited by the depletion of
CD4+ or CD8+ subset [26]. These expression differences
among the three populations suggest that IL23A might be
implicated in the communication between CD4+ and
CD8+ T cells. Early upregulation of IL5 (reportedly a B-cell
and eosinophil differentiation factor) [27] and IL8 (a neu-
trophil-activating factor) [28] suggests that they might
have important roles in T cells as activating/differentia-
tion factors. The downregulation (at 48-96 hours) of
IL1B, mainly secreted by macrophages [29], and IL15, an
important cytokine in lymphocyte survival [30], upon
anti-CD3/anti-CD28 stimulation was unexpected.

A few members of the TNF family (TNFSF6 (FASLG), -4, -
5 and TNF) were upregulated while others (LTB (TNESF3)
and TNFSF12-TNFSF13) were downregulated. A preferen-
tial expression in CD8+ T cells especially at 72 hours was
observed for TNFSF4. TNFSF4 has been hypothesized to
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Figure 4

Protein expression profiles supported the different transcription patterns between CD4+ and CD8+ subsets.
CD4+ T cells and CD8+ T cells were selected, stimulated (with anti-CD3/anti-CD28 antibodies), cultured separately and har-
vested at the indicated timepoints of culture. Flow cytometric assays were carried out for the selected genes with different
transcription patterns between CD4+ and CD8+ subsets ((A) TNFSF5, (B) TNFSF4, (C) TNFRSF9, (D) KLRDI, (E) CD48,
and (F) CD69). Data from two independent CD4+ and CD8+ T-cell experiments, E8 and E9, are shown.
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Transcription profile of significant cytokines (A) and
cytokine receptors (B). Cytokines and cytokine recep-
tors, belonging to the 'immune response' Gene Ontology
category, were sorted. Membership to these sets was manu-
ally curated from the corresponding gene pages in NCBI [20]
and references therein. Color denotes degree of differential
expression compared to 0 hour (saturated red = 3-fold up-
regulation, saturated green = 3-fold down-regulation, black =
unchanged, gray = no data available). Expression data shown
are averages from three independent biological experiments
for each T-cell population.
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have costimulatory functions in both CD4+ and CD8+
subsets [31,32]. However, no subset-specific functions of
TNFSF4 have been reported. Flow-cytometric analysis
confirmed its significant upregulation at 72 hours in
CD8+ T cells (Figure 4B). This preferential expression sug-
gests that in CD8+ T cells, TNFSF4 might play an impor-
tant role, possibly with cytotoxic effector functions
besides the reported costimulatory functions.

A few cytokines (GPI, OSM and MIF) also displayed
increased expression mainly at 10-96 hours. Neither the
expression nor the function of these genes has been previ-
ously reported in T cells.

Receptors

The upregulation of several key receptors (IL2RA (CD25),
ICOS, and IL21R) was expected and confirms the validity
of our data. However, the temporal expression patterns of
these upregulated receptors, including those expressed
throughout these experiments (IL2RA (CD25),
ADORA2B), early (IL4R, IL21R, FAS) or late (IL1R2,
TNFRSF8 and CTLA4), provide new insights that reflect
their roles in T-cell activation. For instance, the late upreg-
ulation of CLTA4 is consistent with its inhibitory func-
tions in T-cell activation [31]. The upregulation of FAS at
4-10 hours implies that FAS might have facilitating func-
tions in early T-cell activation in addition to its known
role in inducing apoptosis in fully activated cells [33]. The
L4 receptor is critical for inducing the development of the
Th2 lineage of effector T cells [34]. The simultaneous early
upregulation of IL4R and IL5 (a signature cytokine of Th2
cells) suggests that the Th1/Th2 balance might be biased
towards the Th2 direction in our experiments. Significant
differential expression of receptors, which have not been
reported in T cells, call for attention to their possible role
in T-cell activation. These include the upregulation of
IL1R2 (as well as its binding proteins ILIRN and IL1RAP)
at 96 hours and the constant upregulation of ADORA2B
(G protein-coupled adenosine A2b receptor). Extensive
upregulation of TNFRSF9 was observed in CD8+ subsets
through 6-72 hours, but not in CD3+ T cells or CD4+ T
cells. Flow cytometry analysis supported this preferential
expression of TNFRSF9 in CD8+ T cells at the protein level
(Figure 4C). TNFRSF9 has been reported as a costimula-
tory receptor in T cells, but not in a subset specific manner
[25]. This continuous strong upregulation of TNFRSF9 in
CD8+ T cells indicates its specific involvement in the acti-
vation, proliferation and differentiation of cytotoxic T
cells.

Transcription of a number of other receptors, not previ-
ously reported in the context of T-cell action, was down-
regulated, likely to help achieve an efficient T-cell
activation. These include IL7R (which shares the IL2
receptor gamma chain (IL2RG) with IL2RA) [35], CCR5,
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Schematic showing the significantly regulated genes of cytokines and receptors. Membership to these sets was
manually curated from the corresponding gene pages in NCBI [20] and references therein. The regulation of gene transcription
in CD3+ T cells, compared to 0 hour, is denoted by different color (green: downregulation; red: upregulation) at each time-

point in the sequence of 4, 10, 48 and 96 hours.

TNFRSF25 and TNFRSF1A (apoptosis inducing receptors)
[36,37], CCR7 (enabling cells for secondary lymphoid
organ homing) [38] and IL6R (regulating cell growth and
differentiation in neutrophils) [39]. The unexpected
downregulation of IL2RG (as opposed to the strong
upregulated IL2RA) and of integrins (ITGAL, ITGB1 and
ITGB2), the components of LFA-1 (reportedly a receptor
for costimulatory signal in T-cell activation [40]), was
somewhat surprising and deserves detailed attention.

Our data reveal the transcriptional dynamics of a few pre-
ciously reported upregulated cell-surface antigens includ-
ing CD83 [41] (expressed throughout) and SLAMF1
(CD150) [42] (expressed early), and novel ones such as
CD59 (expressed early) and CD72 (expressed late). Inter-
estingly, CD83 showed increased expression upon stimu-
lation in CD3+ T cells, decreased expression at 24-72

hours in CD4+ T cells, but no change in CD8+ T cells.
CD83 expressed on dendritic cells delivers costimulatory
signals to T cells for activation [43], and CD83 expressed
on T cells has been hypothesized to be involved in T-cell
activation with its detailed function yet to be defined [41].
These apparently different expression patterns among the
three populations indicate that CD83 might have differ-
ent roles in CD4+ versus CD8+ subsets, and may be pos-
sibly implicated in the communication of the subsets. In
contrast to CD3+ or CD4+ T cells, SLAMF7 showed signif-
icant increased expression in CD8+ T cells at 6-24 hours.
SLAMF?7 regulates the cytotoxity of NK cells [44], and
migration/adhesion of B cells [45]; however, its function
in T cells has not been reported. This preferential expres-
sion of SLAMF7 in CD8+ T cells suggests that it might be
involved in the development of the cytotoxicity of CD8+
T cells.
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Figure 7

Supernatant ELISA analysis of CCL20 secretion in
three independent CD3+ T-cell experiments. CD3+ T
cells were selected, stimulated (by anti-CD3/anti-CD28 anti-
bodies) and the supernatants were harvested at the indicated
timepoints of culture. Data from three independent CD3+ T-
cell experiments, E3—E5, are shown.

Among the mainly downregulated cell-surface antigens,
the simultaneous downregulation of CD3D, CD3G,
TRAT1 (TCR-associated transmembrane adaptor 1) and
TYROBP (ZAP70 binding protein) along with the down-
regulation of LCK and ZAP70 (TCR associated tyrosine
kinases) are likely part of the orchestrated regulation of T-
cell activation. CD53, CD96, and CD97 shared similar
expression patterns (upregulated at 4 hours and then
downregulated at 48-96 hours). However, little is known
about their roles in T-cell activation. We also observed the
downregulation of CD8B and CD8A in CD8+ T-cell, pos-
sibly as a part of the CD8+ T-cell activation machinery.
Interesting, binding partners, cell-surface antigens CD48
and CD244, demonstrated opposite expression patterns.
CD48 was continuously downregulated in CD4+ T cells,
but not in CD8+ T cells; while CD244 was continuously
downregulated in CD8+ T cells, but not in CD4+ T cells. It
has been hypothesized that T cells costimulate each other
through the interactions of CD244 and CD48 [46]. This
cell-type-specific downregulation of CD48 (CD4+ T-cell)
and CD244 (CD8+ T-cell) suggests that this CD244-
CD48 interaction might be cell-type-specific, between the
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Figure 8

Regulation of IFNG in T-cell activation. (A) Schematic
showing the significantly regulated genes associated with
IFNG. The regulation of gene transcription in CD3+ T cells,
compared to 0 hour, is denoted by different color (green:
downregulation, red: upregulation) at each timepoint in the
sequence of 4, 10, 48 and 96 hours. (B) Supernatant ELISA
analysis of IFNG secretion in three independent CD3+ T-cell
experiments, E3—E5. CD3+ T cells were selected, stimulated
(by anti-CD3/anti-CD28 antibodies) and the supernatants
were harvested at the indicated timepoints of culture.

CD244 expressing CD8+ T cells and CD48 expressing
CD4+ T cells.

Upon activation, killer cell lectin-like receptors (KLRB1,
KLRG1, KLRF1, KLRC1, -2, -4, and KLRD1) showed
mainly decreased expression. First discovered in NK cells,
the expression of inhibitory receptors (KLRG1, KLRBI,
KLRC1, and KLRD1) [47,48], and activating receptor
KLRC2 [49] has also been reported in activated CD8+ T
cells, involved in TCR signalling, but not in activated
CD4+ T cells or naive T cells. The shared downregulation
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of these KLRs along with that of some less-well-studied
members (KLRF1 and KLRC4) suggests that their function
might not be limited to effector CD8+ T cells, and that
they are implicated more broadly in T-cell activation. Sur-
prisingly, members of both MHC classes I and II were
expressed in resting T cells (0 hour; data not shown). Sev-
eral genes encoding MHC class Il members (HLA-DPBI1,
HLA-DMB, HLA-DRB3, HLA-DQB1, and HLA-DPA1)
showed decreased expression upon stimulation, while
some MHC class I molecules (HLA-G and HLA-E) were
downregulated at 48-96 hours.

Granzymes

Secretion of cytotoxic granules is one of the major effector
functions of cytotoxic T cells to induce apoptosis in target
cells [50]. Perforins, granulysin and granzymes are the
core components of the dense cytotoxic granules respon-
sible for target cell lysis. Most of the granzyme genes
(GZMB, -A, -H, -K, except for GZMM), but not GNLY and
PRF1, were significantly regulated (Figure 9A). GZMA and
GZMK were considerably downregulated throughout the
experiments. It is likely that T cells have not acquired the
full cytotoxic effector functions at this stage of the activa-
tion. However, GZMB was transcriptionally upregulated
in both CD4+ and CD8+ T cells, and this was supported
by data from a protein abundance assay (Figure 9B).

Discussion

Genome-scale transcriptional profiling can add signifi-
cant new information for better understanding T-cell acti-
vation as an important biological process of the immune
response. Previous efforts had examined T-cell activation
at one single time point [8,9] or addressed costimulatory
signal effects using only a single experiment [10,11].
Using multiple donors, in this study we focused on the
temporal, donor-independent gene expression patterns
not only in the CD3+ T cells, but also in the CD4+ and
CD8+ subsets. We identified donor-independent signifi-
cantly regulated genes in T-cell activation in CD3+ T cells
(from the activation of co-cultures of CD4+ and CD8+ T
cells in their natural ratio), and the CD4+ and CD8+ sub-
sets. CD3+ T cells had far more significantly differentially
expressed genes than CD4+ or CD8+ T cells (Figure 2).
Regardless, the transcription profiles of the pooled signif-
icant genes in T-cell activation shared largely similar pat-
terns among the three populations.

Anti-CD3/anti-CD28 stimulation induced expression pat-
tern changes of 'immune response' genes which are con-
sistent with the important roles of T cells in the adaptive
immune response. Not only well-known cytokines (e.g.,
IL2, IFNG, TNFSF6 (FASLG)) and cytokine receptors
(IL2RA (CD25), CD69Y, ICOS), but also numerous novel
ones, for T-cell activation, were differentially expressed.
Among the novel cytokines, the strongly upregulated
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Figure 9

GZMB was upregulated continuously in all three pop-
ulations. (A) Transcription profile of significantly regulated
granzymes (GZMB, -A, -H, and -K). Color denotes degree of
differential expression compared to 0 hour (saturated red =
3-fold up-regulation, saturated green = 3-fold down-regula-
tion, black = unchanged, gray = no data available). Expression
data shown are averages from three independent biological
experiments for each T-cell population.(B) Intracellular pro-
tein expression profiles of GZMB in the CD4+ and CD8+
subsets. CD4+ T cells and CD8+ T cells were selected, stim-
ulated (by anti-CD3/anti-CD28 antibodies), cultured sepa-
rately and harvested at the indicated timepoints of culture to
analyze the protein expression via by flow cytometric assays.
Data from four independent CD4+ and CD8+ T-cell experi-
ments, E8—EI |, are shown.

chemokines (e.g.,, CCL3, -4, CCL20, CXCL9, -10, -11)
might have important roles in enhancing T-cell activation
in addition to their functions in cell trafficking, while the
downregulated CCL5, IL5 might rather be involved in
maintaining the homeostasis of resting T cells.

A number of cell-surface receptors not previously associ-

ated with T-cell activation, were differentially expressed,
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including downregulated CCR5, TNFRSF25, TNFRSF1A,
CCR7 and IL6R, and upregulated CD59 and CD72. A
number of the receptors involved in TCR activation
(CD3D, CD3G, TRAT1, ITGAL, ITGB1, ITGB2, CD8A and
CD8B (CD8+ T-cell specific) along with LCK, ZAP70 and
TYROBP, were all simultaneously downregulated. Little is
known about the expression and functions of KLRs in rest-
ing T cells. The downregulated KLR receptors are likely
involved in the homeostasis of resting T cells. It is also
possible that they regulate T-cell activation through TCR
signalling. Surprisingly, both MHC class I and class II
molecules were transcriptionally expressed in resting T
cells (0 hour) (data not shown), and MHC class II mole-
cules were significantly downregulated upon T-cell activa-
tion. MHC Class I and class II molecules are receptors on
APCs, but not T cells, for the activation of CD8+ and
CD4+ T cells, respectively.

Comparison of the expression patterns among the three
populations provided further insights. Different expres-
sion patterns between CD4+ and CD8+ T cells (XCL1, -2,
SLAMF7, CD244, CD48, TNFRSF9, TNESF4, -5, CSF3, and
GZMH) were observed, suggesting their subset specific
involvement/functions in T-cell activation. Among these
genes, very little is known about XCL2 and SLAMF7 in T
cells. Genes (IL23A, NR4A2, CD83, PSME2, PSMB8, MIF)
with similar expression patterns between CD4+ and
CD8+ T cells, but different than those in CD3+ T cells are
likely involved in the communication between CD4+ and
CD8+ subsets. These and the large number of novel genes
in the context of T-cell activation that were identified in
this study offer new research targets for a more complete
understanding of T-cell activation.

Conclusion

Our study captured novel temporal patterns of previously
known but many novel, in the context of T-cell activation,
genes ontologically classified under the term 'immune
response’. These patterns were reproducibly and robustly
identified as donor independent, and were selectively
confirmed by Q-RT-PCR and protein-level assays. Com-
prehensively integrating previous knowledge, we identi-
fied novel significant genes associated with the immune
response in T cells, as well as subset specific genes, and
genes implicated in the communication between CD4+
and CD8+ T cells. This study improves our understanding
of the biology and the underlying regulation of T-cell acti-
vation in the natural CD3+ population, as well as in the
CD4+ and CD8+ subsets.

Methods

Cells and culture system

Healthy-donor peripheral blood mononuclear cells
(PBMCs) (AllCells, Berkeley, CA) were used to negatively-
select CD3+ T cells, CD4+ and CD8+ T cells (Pan T Cell

http://www.biomedcentral.com/1471-2164/9/225

Isolation Kit I, CD4+ T Cell Isolation Kit II, and CD8+ T
Cell Isolation Kit II, Miltenyi Biotech, Sunburn, CA). Cells
were activated polyclonally with anti-CD3/anti-CD28
Mab (1:1)-coated magnetic beads (500 fmol/bead)
(Dynabeads M-450 Epoxy, Dynal Biotech, Lake Success,
NY) [51]. The ratio of beads to cells was 3:1. CD3+ cell
cultures from three individual donor samples were seeded
at 1 x 10° cells/mL in T-flasks and cultivated for 96 hours
in serum-free AIM-V medium with 100 U/mL IL2 (Chi-
ron, Emeryville, CA) and 2% human serum (Sigma-
Aldrich St. Louis, MO) as described [52]. CD4+ cells and
CD8+ cells from another three individual donors were
cultured for 72 hours in the same manner. Cell counting
and sampling for flow cytometry and microarray analysis
were carried out at 0, 4, 10, 48 and 96 hours in CD3+ T-
cell experiments, E1-E5, and at 0, 6, 12, 24, 48 and 72
hours in CD4+ T-cell and CD8+ T-cell experiments, E7-
E11. This study was approved by the Northwestern Uni-
versity IRB.

Flow cytometry

The following monoclonal antibodies (Mabs) for flow
cytometry were purchased from BD Biosciences (San Jose,
CA) unless otherwise stated and included CD3
(FITC+PE), CD4 PE, CD8 PE, CD25 PE, CD69 PE, TNFSF4
PE, CD40LG (TNESF5) PE, TNFRSF9 PE, KLRD1 PE,
CD48 PE, GZMB PE (Invitrogen, Carlsbad, CA). Flow
cytometry was carried out as described [12,53]. Briefly, all
samples were gated on forward scatter and on propidium
iodide negative (PI-) to eliminate debris and dead cells.
For intracellular detection of GZMB, cells were first
stained with anti-CD4-FITC (or anti-CD8-FITC) and then
fixed, permeabilized, and stained as previously described
[54]. 10,000 gated events from each tube were acquired
using a FACscan (BD Biosciences) or LSRII flow cytometer
(Becton Dickinson). Quantibrite beads (BD Biosciences
Immunocytometry Systems) labelled with different
amounts of PE molecules were used to quantify surface or
intracellular protein levels and normalize measurements
between timepoints.

RNA extraction and quality control

Total RNA was extracted from frozen cells using the Total
RNA Isolation Mini Kit (Agilent, Wilmington, DE). RNA
samples were re-suspended in RNase-free water and
stored at -80°C. RNA yield and purity were assessed spec-
trophotometrically at 260 and 280 nm (Biomate 3,
Thermo Spectronic, Marietta, OH). RNA integrity was
evaluated using a Bioanalyzer 2100 (Agilent).

DNA-microarray experiments and data analysis

Microarray-based transcriptional analysis was carried out
for samples at each timepoint, using the 'reference’ design
[53], with Human Thymus Total RNA (Ambion, Austin,
TX) as the reference RNA. Approximately half of the indi-
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vidual microarrays were replicated and the correlation
coefficient between these technical replicates was above
0.90. Detailed experimental procedures and the use of the
SNNLERM-algorithm [55] for data normalization were
described [53]. Further analysis (significant genes identifi-
cation, hierarchical clustering and gene ontology assign-
ment) was carried out using 'MultiExperiment Viewer
(MeV)' from The Institute for Genomic Research (TIGR)
[56]. Raw and normalized data were deposited in the
Gene Expression Omnibus (GSE6607 (CD3+ T-cell exper-
iment), GSE7571 (CD4+ T-cell experiment) and GSE7572
(CD8+ T-cell experiment)) [57]. Within each population
(three biological replicates using cells from different
donors), multi-class SAM (Significance Analysis of Micro-
arrays) with a false discovery rate <1% was used to select
genes that show statistically different expression between
groups. A group is defined as all the samples belonging to
the same timepoint regardless of the donors. Briefly, there
were 5 groups (0 hour, 4, 10, 48 and 96 hours) in the set
of CD3+ experiments, E1-E3, and 6 groups (0 hour, 6, 12,
24, 48 and 72 hours) in the set of CD4+ experiments and
CD8+ experiments, E7-E9. The three samples from bio-
logical experiments in each group were treated as repli-
cates. To focus on the expression change, gene expression
at each time point was compared to that of 0 hour in each
experiment. Gene Ontology annotations, as curated by
European Bioinformatics Institute, were retrieved from
the Gene Ontology Consortium website [58]. Hierarchical
clustering was performed with the Euclidian distance met-
ric.

Quantitative RT-PCR (Q-RT-PCR)

cDNA was obtained from total RNA samples using the
High-Capacity cDNA Archive Kit and Q-RT-PCR was per-
formed with Assays-on-Demand kits (Applied Biosys-
tems; Foster City, CA) as described [12]. The amount of
mRNA for each sample was normalized using the average
of two housekeeping genes (Glucuronidase-§ and 18S).
The use of GUSB (Hs99999908_m1) and 18S
(Hs99999901_s1) genes as housekeeping genes has been
previously tested in our lab [12,53]. Primers (Applied Bio-
systems, Foster City, CA) for the following functionally
diverse set of genes were used: FOS (Hs01119267_gl1),
MYB (Hs00920564_m1), JUN (Hs99999141_s1), CAT
(Hs00156308_m1), MAPK6 (Hs00957318_gl), SOD2
(Hs00167309_m1), SORD (Hs00973148_m1), STATI
(Hs01014001_m1) in CD3+ T-cell experiments, E1-E3;
and GZMA (Hs00196206_m1), GZMB
(Hs00188051_m1), MYB (Hs00920564_m1), FASLG
(Hs00899442_m1), EGR1 (Hs00152928_m1), EGR2
(Hs00166165_m1), and EGR3 (Hs00231780_m1) in
CD4+ and CD8+ T-cell experiments, E8 and E9. Genes
were chosen to reflect differentially expressed genes of a
wide range of microarray signal intensities.
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Supernatant ELISA assay of CCL20 and IFNG

Culture supernatants were collected at 4, 10, 48 and 96
hours in three CD3+ T-cell experiments, E3-E5, and ana-
lyzed for concentrations of CCL20 and IFNG by ELISA
(R&D Systems, Minneapolis) following the manufac-
turer's instructions.

Abbreviations

PBMC: peripheral blood mononuclear cell; MHC: major
histocompatibility complex; APC: antigen-presenting cell;
TCR: T-cell receptor; HLA: human leukocyte antigen; KLR:
killer cell lectin-like receptor; LFA: lymphocyte function-
associated antigen; GO: Gene Ontology; TNF: tumor
necrosis factor; NK cells: natural killer cells; Mab: mono-
clonal antibody; PI: propidium iodide; FITC: fluorescein
isothiocyanate; PE: phycoerythrin; Q-RT-PCR: quantita-
tive reverse-transcription polymerase chain reaction.
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Additional file 1

Reproducibility of expression profiles of the T-cell activation in CD3+
cells. Hierarchical clustering (using the Euclidian distance metric) of the
3793 significant genes in T-cell activation of CD3+ cells in three inde-
pendent biological experiments, E1-E3, (timepoints at 4, 10, 48 and 96
hours) demonstrated high reproducibility. Color denotes degree of differ-
ential expression compared to 0 hour (saturated red = 3-fold upregulation,
saturated green = 3-fold down-regulation, black = unchanged, gray = no
data available).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-225-S1.pdf]

Additional file 2

Complete list of the 3793 significant genes in T-cell activation of CD3+
cells in three independent biological experiments, E1-E3. Color denotes
degree of differential expression compared to 0 hour (saturated red = 3-
fold upregulation, saturated green = 3-fold down-regulation, black =
unchanged, gray = no data available).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-225-S2 xls]
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Additional file 3

Reproducibility of expression profiles of the T-cell activation in CD4+
cells. Hierarchical clustering (using the Euclidian distance metric) of the
1463 significant genes in T-cell activation of CD4+ cells in three inde-
pendent biological experiments (timepoints at 12, 24, 48 and 72 hours in
one experiment, E7; and timepoints at 6, 12, 24, 48 and 72 hours in the
other two experiments, E8 and E9) demonstrated high reproducibility.
Color denotes degree of differential expression compared to 0 hour (satu-
rated red = 3-fold upregulation, saturated green = 3-fold down-regulation,
black = unchanged, gray = no data available).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-225-83.pdf]

Additional file 4

Complete list of the 1463 significant genes in T-cell activation of CD4+
cells in three independent biological experiments, E7—E9. Color denotes
degree of differential expression compared to 0 hour (saturated red = 3-
fold upregulation, saturated green = 3-fold down-regulation, black =
unchanged, gray = no data available).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-225-S4 xls]|

Additional file 5

Reproducibility of expression profiles of the T-cell activation in CD8+
cells. Hierarchical clustering (using the Euclidian distance metric) of the
1258 significant genes in T-cell activation of CD8+ cells in three inde-
pendent biological experiments (timepoints at 12, 24, 48 and 72 hours in
one experiment, E7; and timepoints at 6, 12, 24, 48 and 72 hours in the
other two experiments, E8 and E9) demonstrated high reproducibility.
Color denotes degree of differential expression compared to 0 hour (satu-
rated red = 3-fold upregulation, saturated green = 3-fold down-regulation,
black = unchanged, gray = no data available).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-225-85.pdf]

Additional file 6

Complete list of the 1258 significant genes in T-cell activation of CD8+
cells in three independent biological experiments, E7—E9. Color denotes
degree of differential expression compared to 0 hour (saturated red = 3-
fold upregulation, saturated green = 3-fold down-regulation, black =
unchanged, gray = no data available).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-225-86.xs]

Additional file 7

The three populations, CD3+, CD4+ and CD8+ T cells, shared largely
conserved expression patterns for the significant genes, demonstrated by
the hierarchical clustering (using the Euclidian distance metric) of the
combined 4167 significant genes upon T-cell activation in CD3+, CD4+
and CD8+ T-cell populations (average of three biological-replicate exper-
iments for each population). Color denotes degree of differential expres-
sion comparing to 0 hour (saturated red = 3-fold upregulation, saturated
green = 3-fold down-regulation, black = unchanged, gray = no data avail-
able).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-

Additional file 8

Complete list of the combined 4167 significant genes upon T-cell activa-
tion in CD3+, CD4+ and CD8+ T-cell populations (average of three bio-
logical-replicate experiments for each population). Color denotes degree of
differential expression comparing to 0 hour (saturated red = 3-fold upreg-
ulation, saturated green = 3-fold down-regulation, black = unchanged,
gray = no data available).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-225-S8 xls]

Additional file 9

Q-RT-PCR validation of microarray results across multiple culture sam-
ples. (A) Q-RT-PCR versus microarray log expression ratios (timepoint vs.
0 hour) from CD3+ T-cell activation experiments, E1-E3, (for all 12 (=
3 x 4) timepoints: 4, 10, 48 and 96 hours of 3 experiments) for each of
the 8 selected genes (FOS, MYB, JUN, CAT, MAPKG, SORD, SOD2,
and STAT1). (B) Q-RT-PCR versus microarray log expression ratios
(timepoint vs. 0 hour) from CD4+ and CD8+ T-cell activation experi-
ments, E8 and E9, (for all 20 (= 2 x 2 x 5) timepoints: 6, 12, 24, 48 and
72 hours of 2 experiments) for each of the 7 selected genes (EGR1, EGR2,
EGR3, FASL, GZMA, GZMB, and MYB).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-225-89.pdf]
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