- )
BIVIC Genomics BioMed Centa

Research article

A linkage map of the Atlantic salmon (Salmo salar) based on
EST-derived SNP markers

Thomas Moen*12, Ben Hayes!2, Matthew Baranskil!2, Paul R Berg!3,
Sissel Kjoglum#, Ben F Koop?>, Willie S Davidson®, Stig W Ombholt!3 and
Sigbjorn Lien!:3

Address: !CIGENE - Centre of Integrative Genetics, As, Norway, 2AKVAFORSK - Institute of Aquaculture Research, As, Norway, 3Institute of
Animal and Aquacultural Sciences, Norwegian University of Life Science, As, Norway, 4Aqua Gen AS, Trondheim, Norway, 5Centre for Biomedical
Research, Department of Biology, University of Victoria, Victoria, British Columbia, Canada and ¢Department of Molecular Biology and
Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada

Email: Thomas Moen* - thomas.moen@akvaforsk.no; Ben Hayes - ben.hayes@akvaforsk.no; Matthew Baranski - matt.baranski@akvaforsk.no;
Paul R Berg - paul.berg@umb.no; Sissel Kjoglum - sissel . kjoglum@aquagen.no; Ben F Koop - bkoop@uvic.ca;
Willie § Davidson - wdavidso@sfu.ca; Stig W Ombholt - stig.omholt@umb.no; Sigbjern Lien - sigbjorn.lien@umb.no

* Corresponding author

Published: |5 May 2008 Received: 19 October 2007
BMC Genomics 2008, 9:223  doi:10.1186/1471-2164-9-223 Accepted: 15 May 2008
This article is available from: http://www.biomedcentral.com/1471-2164/9/223

© 2008 Moen et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The Atlantic salmon is a species of commercial and ecological significance. Like other salmonids, the
species displays residual tetrasomy and a large difference in recombination rate between sexes. Linkage maps with full
genome coverage, containing both type | and type |l markers, are needed for progress in genomics. Furthermore, it is
important to estimate levels of linkage disequilibrium (LD) in the species. In this study, we developed several hundred
single nucleotide polymorphism (SNP) markers for the Atlantic salmon, and constructed male and female linkage maps
containing SNP and microsatellite markers. We also investigated further the distribution of male and female
recombination events across the genome, and estimated levels of LD between pairs of markers.

Results: The male map had 29 linkage groups and was 390 cM long. The female map had 30 linkage groups as was 1983
cM long. In total, the maps contained |38 microsatellite markers and 304 SNPs located within genes, most of which were
successfully annotated. The ratio of male to female recombination events was either close to zero or very large, indicating
that there is little overlap between regions in which male and female crossovers occur. The female map is likely to have
close to full genome coverage, while the majority of male linkage groups probably lack markers in telomeric regions
where male recombination events occur. Levels of r2 increased with decreasing inter-marker distance in a bimodal
fashion; increasing slowly from ~60 cM, and more rapidly more from ~12 cM. Long-ranging LD may be consequence of
recent admixture in the population, the population being a 'synthetic' breeding population with contributions from
several distinct rivers. Levels of r2 dropped to half its maximum value (above baseline) within 15 cM, and were higher
than 0.2 above baseline for unlinked markers (‘useful LD') at inter-marker distances less than 5 cM.

Conclusion: The linkage map presented here is an important resource for genetic, comparative, and physical mapping
of the Atlantic salmon. The female map is likely to have a map coverage that is not far from complete, whereas the male
map length is likely to be significantly shorter than the true map, due to suboptimal marker coverage in the apparently
small physical regions where male crossovers occur. 'Useful LD' was found at inter-marker distances less than 5 cM.
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Background

The Atlantic salmon (Salmo salar) is a species of world-
wide significance as a prized species in recreational fishing
and a major contributor to the world's aquaculture pro-
duction. The genomes of the Atlantic salmon and other
salmonids are purported to be derivates of an autotetra-
ploidisation event that occurred in their common ances-
tor 25 to 100 million years ago (reviewed in [1]). The
subsequent re-diploidisation process is not yet complete,
and is illustrated in such phenomena as duplicated DNA
markers (e.g. [1]); the formation of tetravalent complexes
during male meioses [2]; the apparent linkage of non-
linked loci due to non-random dissociation of the tetrav-
alent complexes (pseudolinkage) [3,4]; unusual, partly
tetrasomic, segregation patterns [1,5-7]; as well as chro-
mosome arm numbers twice that of most other fin-fish
species (reviewed in [8]). Furthermore, the formation of
tetravalent complexes in males is believed to be the cause
of another phenomenon observed in salmonids, very
large differences in recombination rates between males
and females that vary according to chromosomal region
[6,9-13].

Two low-density maps have been published for Atlantic
salmon [10,14], in addition to the SALMAP map, a
higher-density, female microsatellite map made available
online [15]. This latter map is developed from segregation
data from two females from the river Tay in Scotland
[12,16], and contains ~700 microsatellite type I and type
II markers, out of which approximately 200 have been
linked to BACs in the physical map [17]. Further progress
in Atlantic salmon genomics relies on these existing maps
being expanded with additional markers; in particular
with Single Nucleotide Polymorphism (SNP) markers,
since these are the most frequent polymorphisms in addi-
tion to being the markers of choice for high-throughput
genotyping. Of particular value are SNP markers located
within transcribed regions, to create more links between
the genetic and physical maps.

Here, we provide an update of an ongoing project aiming
at detecting, testing, and mapping large numbers of EST-
derived SNP markers in Atlantic salmon [18,19]. We also
present a SNP/microsatellite map to be used as a frame-
work map, onto which additional SNP markers can later
be added. Furthermore, we present more detailed results
on sex-specific differences in recombination rates than
has been provided before for this species. Finally, we
report on levels of linkage disequilibrium (LD) between
markers in the aquaculture strain from whence the map-
ping parents were sampled. Levels of LD vary between spe-
cies and between populations [20-26], and have major
implications for the feasibility of performing e.g. associa-
tion studies and for fine-mapping Quantitative Trait Loci

(QTL).
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Results

Detection and testing of SNP markers

Hayes et al. [18] previously described the in silico detec-
tion of a large number of putative SNPs for Atlantic
salmon, and the subsequent experimental testing of 86 of
these SNPs in a diverse validation panel. In the present
study, another set of 1369 SNP markers were tested in a
similar validation panel (Table 1). Of the 1369 SNPs, 668
were polymorphic, reliably scored, and non-duplicated
(Table 2). Of the 668 polymorphic, non-duplicated SNPs,
307 were chosen to be genotyped in the mapping families.
These 307 SNPs had an average minor allele frequency of
0.27, and an average observed heterozygosity of 0.29
(results for individual SNPs in Additional File 1). Out of
307 SNPs, 244 (79%) resided in genes that could be iden-
tified and annotated (Additional File 1).

Linkage map

The mapping families, 10 full-sib families from a com-
mercial breeding company, were genotyped for 307 SNPs
and for 146 microsatellite markers. Out of the 307 SNP
markers, 304 were polymorphic in at least one mapping
parent. The SNPs belonged to 263 contigs, 222 of these
having one SNP, 36 having two SNPs, and five having
three SNPs.

All but four of the informative SNPs were integrated into
the map, as were all 138 informative microsatellite mark-
ers. The male and female maps consisted of 29 and 30
linkage groups, respectively (Figures 1 to 3, Table 3, Addi-
tional File 2). The male map was 390 cM long with 434
markers in total, while the female map was 1983 cM long
with 425 markers in total. Lengths of linkage groups
ranged from 0 cM to 59.7 cM on the male map, and from

Table |: Samples used for SNP validation

Country River/population No of samples
Canada Conne 3
Canada Placentia Bay 3
Iceland Laxa 3
Iceland Leirvogsa 3
Ireland Moy 3
Ireland Suir 3
Norway Aqua Genab 4
Norway Byglandsfjordenb 4
Norway Numedalsldgen 3
Norway SalmoBreed? 3
Norway/Finland Tana-Jiesjokka 3
Russia Neva 3
Russia Varzuga 3
Spain Asou 3
Spain Pas 3

aAquacultural population
bThe Aqua Gen and Byglandsfjorden populations came in the form of
8 FI hybrids between the two.
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Table 2: Experimental validation of SNPs

SNP type No. Freq.
Normal 668 48.8%
MSV 47 3.4%
PSV 67 4.9%
All homozygous 379 27.7%
Failed 208 15.2%
Total 1369 100.0%

SNPs in the "normal” category were polymorphic, reliably scored and
non-duplicated. MSV (multiple sequence variant) [49] SNPs were
likely duplicated with polymorphism at one or both loci, PSV
(paralogous sequence variants) SNPs were heterozygous in all
animals, and thus likely duplicated without polymorphism. Failed SNPs
displayed poor clustering of genotypes and/or unreliably scored
genotypes.

19.8 cM to 117.1 cM on the female map (Table 3). For the
most part the same linkage groups were identified for the
male and the female, with the following exceptions i) two
linkage groups on the male map (s9 and s17) that each
corresponded to two linkage groups on the female map,
and ii) one linkage group on the female map (d21) that
corresponded to two linkage groups on the male map. For
57 of all possible marker pairs informative in both sexes,
the orientation of markers was not the same in the two
sexes (Additional File 3). However, in all 57 cases the dis-
tance between markers on the male map was relatively
small (< 1.7 cM), so that these differences most likely
reflect upon minor genotyping errors or missing geno-

types.

We did not observe in our data set any certain instances of
pseudolinkage, the apparent linkage of non-linked chro-
mosomes sometimes observed in male salmonids [5].
One likely homeologous relationship that has not been
reported before [12] was found; marker Ssa418/i was
located on LG24, while Ssa418/ii was located on LG16.

Difference in recombination patterns between sexes and
between parents

Male recombination rates were much lower than female
recombination rates in large parts of the genome. In some
regions, however, male recombination rates were signifi-
cantly higher than those of females. Invariably, these
regions were located at the end of linkage groups (Figures
1 to 3). Ratios of male to female recombination fractions
for adjacent markers tended to be either close to zero or
very large (Figure 4). Of the male linkage groups, 16 had
all their markers grouped into one very tight cluster, 11
had one large cluster of closely linked markers located at
the end of the linkage group, and one had a large central
cluster bordered by markers on either side (Figures 1 to 3,
Table 3).
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Linkage disequilibrium

Levels of LD, measured through the correlation coefficient
between pairs of loci 12, were calculated for all microsatel-
lite-SNP pairs with minor allele frequency (SNP) > 0.2
and heterozygosity (microsatellite) > 0.5. The average 12
for marker pairs with markers located on different linkage
groups was 0.16. The average 12 for physically, but not
genetically linked marker pairs (markers located more
than 50 cM apart on the same linkage group) was 0.20.
Levels of 12 increased with decreasing inter-marker dis-
tance from ~60 cM, increased more rapidly more from
~12 cM (Figure 5), while 12 dropped to half its maximum
value (above baseline) within 15 cM.

Discussion

Linkage map

The male map contained 29 linkage groups, correspond-
ing well with the most common karyotype in European
Atlantic salmon, which has 2n = 58 [27]. Most likely,
therefore, each male linkage group corresponds to a sepa-
rate chromosome. The female map, on the other hand,
contained 31 linkage groups, including two pairs of link-
age groups that each corresponded to a single male homo-
logue. Each of these two pairs is likely to correspond to a
single linkage group with a large segment not covered by
markers.

The lack of markers in at least two segments of the female
map shows that the female map is shorter than the true
female genetic map. At the same time, the low number of
female-informative markers that could not be mapped, in
conjunction with the relative good fit of the map length
with the length of the SALMAP map (1810 cM; [15]), indi-
cates that the female map coverage most likely is not far
from complete. The male map, on the other hand, may
still be considerably shorter than the true male genetic
map, due to recombination events apparently being local-
ised to a small physical region (see below).

Map distances should be expected to be slight overesti-
mates since any genotype errors would tend to inflate
genetic distances. Although practically all genotypes
resulting in double crossovers were re-checked in detail
and corrected if necessary, genotype errors cannot be
ruled out, in particular not for markers located at the end
of linkage groups (where they cannot be revealed by test-
ing for double crossovers).

Contrary to expectation, we did not observe any instances
of pseudolinkage in the data set. Pseudolinkage describes
the apparent linkage in male mapping parents of markers
that are not linked in female mapping parents, with an
excess of non-parental genotypes in offspring, and is
believed to be caused by the non-random breaking up of
tetravalent complexes formed during male meiosis [5].
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Table 3: Properties of linkage groups
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LG Q@ meioses with n recombination events 9 map length " map length Markers on & Markers on & J" map marker
(cM) (cM) map map clusters
n=0 n=l n=2 nx3

| 1118 687 75 0 103.8 1.21 6 6 |

2 1090 671 108 I 68.4 0 26 23 |

3 1473 390 17 0 87.6 23 15 14 2

4 861 787 231 | 117.1 24 16 17 |

5 1065 759 56 0 743 1.4 15 17 |

6 1269 560 48 3 83.5 1.3 20 20 2

7 1248 630 2 0 56.8 56.4 12 12 2

8 1416 445 18 | 49.7 84 20 21 2
9T NA NA NA NA NA 32,6 NA 16 2
9aQ 1236 577 66 | 46.1 NA 12 NA NA
9bQ NA NA NA NA NA NA | NA NA
10 1014 717 146 3 107.1 20.1 29 30 2
I 1139 601 139 | 101.9 0 14 14 |
12 767 907 206 0 99.3 10.8 18 18 2
13 1589 291 0 0 29.4 12.6 13 29 2
14 1273 58I 25 | 40.2 57.8 12 12 2
15 1638 242 0 0 384 1.5 9 9 |
16 1661 214 5 0 432 4.6 9 9 2
170 NA NA NA NA NA 29.1 NA 15 3
17Q 1871 9 0 I 2.5 NA 2 NA NA
17Q 1458 300 11 I 109.4 NA 13 NA NA
18 1417 431 32 0 65.8 583 9 9 2
19 1691 189 0 0 26.8 1.2 6 6 |
20 1586 282 12 0 56.5 0.5 9 9 |
219 1625 240 15 0 41.4 NA 10 NA NA
2lad NA NA NA NA NA 0 NA | |
21bd NA NA NA NA NA 0.1 NA 9 |
22 969 862 47 2 68.3 0 15 14 |

23 1242 595 40 3 98.7 I 16 I5 |
24 1247 561 69 3 103.7 0 9 9 |
25 1263 595 22 0 55.2 1.3 12 12 |
28 1334 513 32 | 102 18.2 13 14 2
31 1815 65 0 0 29.2 32 5 5 |
33 1494 374 9 3 56.2 325 9 9 2
A 1832 35 13 0 19.8 0.3 6 6 |

QFemale-specific linkage groups
O'Male-specific linkage groups

Pseudolinkage has earlier been found in several salmonid
mapping studies [3,4,6,9,13]. In a recent study on an F1
cross between Atlantic salmon of Canadian and European
origin, utilising a subset of the SNP markers described in
the present study, pseudolinkage was observed between 5
pairs of linkage groups (Boulding et al., submitted). The
difference in occurrence of pseudolinkage between the lat-
ter study and the present study is in line with a hypothesis
stating that pseudolinkage occurs more frequently in
inter-strain hybrids than in pure strain fish [5,9,28]. It
should be noted, however, that our findings with respect
to pseudolinkage are indicative rather than conclusive
since grandparental genotypes were not available, mean-
ing that pseudolinkage could, if present, only be detected
as weak linkage in males between markers unlinked in
females (and not from excess of non-parental genotypes).

Also, since linkage phases were deduced from linkage
analysis and not from grandparental genotyping, linkage
between markers within male linkage groups could theo-
retically be due to pseudolinkage rather than to classical
linkage. However, all markers on the male map were
either i) very closely linked to other markers within the
same linkage group, and hence very unlikely to be linked
through pseudolinkage, or ii) appearing on the homolo-
gous linkage group in the female map. From this we con-
clude that pseudolinkage would be unlikely to be the
cause of any observed linkages on this map.

Difference in recombination patterns between sexes
In salmonids, male recombination rates are much
reduced compared to female recombination rates [9-
11,14]. In rainbow trout the ratio between male and
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Figure |

male and female linkage maps for Atlantic salmon (linkage groups d01 to s08). Male and female linkage groups have
prefixed s- and d-respectively. The linkage group nomenclature (numbers) is the same as in the map developed by the SALMAP
project [15], except for one linkage group (sA/dA) that contains no markers present on the SALMAP map. The map units are
Kosambi cM.
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Figure 2

male and female linkage maps for Atlantic salmon (linkage groups d09a to sl7b). Male and female linkage groups
have prefixed s- and d-respectively. The linkage group nomenclature (numbers) is the same as in the map developed by the
SALMAP project [15], except for one linkage group (sA/dA) that contains no markers present on the SALMAP map. The map

units are Kosambi cM.
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Figure 3

male and female linkage maps for Atlantic salmon (linkage groups sl17 to dA). Male and female linkage groups have
prefixed s- and d-respectively. The linkage group nomenclature (numbers) is the same as in the map developed by the SALMAP
project [15], except for one linkage group (sA/dA) that contains no markers present on the SALMAP map. The map units are

Kosambi cM.
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Figure 4

Male and female recombination rates for pairs of adjacent markers (d09a to sl17b). Only markers on linkage groups
with a |-to-| relationship between the male and female homologue were considered (i.e. linkage groups 17 and 21 were

excluded).

female recombination has been found to vary considera-
bly across linkage groups, with male recombination rates
being severely depressed relative to female recombination
rates in areas proximal to centromeres, but elevated in
regions distal to centromeres [9]. This finding has been
investigated further in rainbow trout [12], and the same
phenomenon has been shown in Arctic char [13] and
Atlantic salmon [10,29], though not in detail for the latter
species. The results presented here support these earlier
findings, but indicate that the site-specific differences in
recombination rate between sexes are even more pro-
nounced in Atlantic salmon than in rainbow trout (com-
pare Figure 4 with Figure 2 from [9]). Since female
recombination rates are much higher than male recombi-
nation rates for a large majority of adjacent marker pairs
(Figures 1 to 3, Figure 4), it seems reasonable to assume
that the regions where male recombination events occur
are substantially smaller in physical terms than the corre-
sponding female regions. This, again, means that, while it
is likely that the female map presented here is close to full

coverage, the true male map may be substantially longer
than the presented male map. Higher marker densities
will be needed to identify markers located in the regions
where male recombination occurs, i.e. telomeric regions.

The most common karyotype of European Atlantic
salmon consists of 16 metacentric and 42 acrocentric
chromosomes [27]. If one assumes that male recombina-
tion occurs on all chromosomes, but only in telomeric
regions, the complete male map should contain 8 linkage
groups where a large central cluster of markers is sur-
rounded by markers on both sides, and 21 groups with a
large cluster at one end. In the map presented here, only
linkage group 17 has a central cluster surrounded by
markers on either side, indicating that the corresponding
chromosome is one of the metacentric chromosomes. All
other linkage groups have either only one cluster or one
cluster with markers on one side, and thus may have one
or two telomeric regions not covered by informative
markers. Further evidence for the identification of linkage
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Figure 5

Levels of LD between microsatellite-SNP pairs located on the same linkage group plotted versus genetic dis-
tance. SNPs with minor allele frequencies < 0.20 and microsatellites with heterozygosity < 0.50 were excluded. Full line = 6t
degree polynomial best fit to the data; broken line = average level of LD between physically unlinked markers (for comparison).

groups (i.e. chromosomes) as meta- or acrocentric could
be extracted from the lengths of linkage groups (female
map), and from the number of meioses with more than
one recombination event (Table 3); if one assumes com-
plete interference [30-33] then acrocentric chromosomes
should have genetic lengths of ~50 cM and a small inci-
dence of meioses with more than one crossover, while
metacentric chromosomes should have genetic lengths of
~100 cM and a higher incidence of meiosis with two or
more crossovers [12]. The linkage group size and number
of meioses with > 2 recombinants for linkage group 17
supports this hypothesis.

The site-specific distribution of male and female recombi-
nation events must be taken into account when QTL
experiments are designed. In Atlantic salmon, it has
become quite common to first perform a coarse genome
scan using male segregation only and one or a few mark-
ers per linkage group, on the assumption that there is

practically no recombination in males ([34]; Boulding et
al., submitted). While this strategy will work for most
parts of the genome, QTLs located in telomeric regions
(which are also gene-rich regions) will probably be
missed unless markers located in these regions are added.
Identification of more markers in telomeric region would
therefore be highly useful.

In this study, we exploited the lack of male recombination
in large parts of the genome to draw more information
out of the data. More specifically, for markers located in
such regions, when both parents were heterozygous and
identical within a given family, heterozygous (and thus, a
priori uninformative) offspring were assumed to have
inherited the chromosome segment without recombina-
tions from their respective fathers. In this way, alleles
inherited from sire and dam could be deduced, and the
markers could be re-coded as fully informative. It should
be pointed out that this strategy was only used if no male
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recombinations had been observed in a priori informative
offspring, meaning that no recombination had been
observed in a minimum of 92 (but usually many more)
meioses. The strategy was therefore conservative.

Linkage disequilibrium

The individuals used for the LD study were a subset of the
mapping parents; more specifically, 16 mapping parents
that belonged to the same breeding population, the
remaining four animals belonging to another population.
Phase-known data were used, since haplotypes could be
deduced with very high certainty due to large family sizes.

Only microsatellite-SNP pairs were used for calculation of
LD, thus mimicking the mapping of a QTL (usually
assumed to be bi-allelic) using microsatellites. LD was
also computed between SNP-SNP pairs (results not
shown), and found to be much lower than for microsatel-
lite-SNP LD. Levels of microsatellite-microsatellite LD
were comparable to those of microsatellite-SNP LD,
though slightly higher (results not shown). Lower LD val-
ues for SNP-SNP pairs when compared to microsatellite-
SNP or microsatellite-microsatellite pairs is likely to be, at
least in part, a consequence of differences in heterozygos-
ity between marker types [35,36]. However, it could also
be due in part to higher mutation rates of microsatellites
relative to SNPs, which would impact upon levels of LD
(reviewed in [37]). To avoid marker pairs with low infor-
mation content, SNPs with minor allele frequencies
below 0.2 and microsatellites with heterozygosities below
0.5 were culled from LD analysis.

The average 12 between markers located on different link-
age group was higher than expected (2= 0.16). This could
be caused by limited effective population size and/or by
relatedness between individuals in the sample (there were
three pairs of full-sibs in the sample). However, removing
closely related animals did not decrease, but rather
increased r2 between unlinked markers, indicating that the
small sample size may have been the main reason for high
LD between unlinked markers. Levels of 12 is biased
upwards when sample sizes are small, although much less
so than the LD statistic D' [38]. At the same time, LD may
have been slightly biased downward by the original detec-
tion of SNPs in EST sequences coming from a limited
number of animals of both Canadian and Norwegian ori-
gin. Detection of SNPs in a small number of diverse ani-
mals could lead to an overrepresentation of old mutations
among the set of SNPs, and thus to underestimation of LD
between markers. It is difficult to assess the joint effect of
these two factors. However, we have assumed that bias in
levels of LD would not greatly affect conclusions regard-
ing changes in LD with changing inter-marker distance.

http://www.biomedcentral.com/1471-2164/9/223

LD between linked markers seemed to increase with
decreasing inter-marker distance in a bi-modal manner.
LD first increases slowly from ~60 cM, then more rapidly
from ~12 cM. This finding may reflect upon the fact that
the population from whence the haplotypes were derived
is a 'synthetic' population, formed seven generation ago
from individuals from different Norwegian rivers [39].
Due to the limited number of meioses since the formation
of the base population (in this context less than four
because only female crossovers would occur for most
chromosomal regions), LD within linkage groups caused
by population stratification would be expected to persist
for long distances. Over shorter distances, LD would be
caused both by population subdivision and by LD inher-
ent in the wild population from whence the breeding
population was formed. Since LD observed in the popula-
tion is likely to be partly caused by population admixture,
the results described here may not be relevant for wild
Atlantic salmon populations. However, many breeding
populations, and thus populations used for scanning of
QTL/genes affecting commercial traits, are admixed in the
same sense, and may thus display similar patterns of LD.

Levels of LD were calculated in order to estimate the
marker densities needed to perform LD-based mapping in
Atlantic salmon. The measure 12 is equal to the amount of
information provided by one locus about the other,
meaning that for a gene-trait association to be detected,
sample size must be increased by 1/r2 if a marker in LD
with the trait-affecting gene is used rather than the gene
itself. Levels of 12 from 0.1 to 0.3 have been proposed as
minimum values of 'useful 1d' [40,41], in which case sam-
ple sizes would have to be increased by a factor of three to
10 in order to achieve maximum power. If one accepts 12
> 0.2 as the threshold, 'useful LD' could in this study be
found at inter-marker distances below ~5 cM, indicating
that ~400 fully informative, evenly spaced markers would
be sufficient to at least start capturing inherent LD infor-
mation. Thus, currently available maps ([15]; present
study) could in principle provide a template for LD map-
ping to some extent. To fully exploit LD in the Atlantic
salmon genome, however, more dense maps would prob-
ably be needed.

Conclusion

In this study, we constructed male- and female genetic
linkage maps of Atlantic salmon, elucidated further the
distributions of recombination events in males and
females, and provided initial data on levels of linkage dis-
equilibrium. The female map presented here is likely to
represent the true genetic map well, whereas the male map
is probably incomplete due to male recombination being
localised to narrow telomeric regions. There appear to be
little overlap between regions in which male and female
recombination events occur. Levels of LD (r2) were more
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than 0.2 above the baseline for unlinked markers at inter-
marker distances less than 5 cM. At inter-marker distances
larger than 15 cM, 12 decreased slowly, possibly reflecting
LD due to population admixture that have had limited
time to be broken down by recombination. The map pre-
sented here will serve as a framework map onto which a
larger number of SNP markers, currently being identified
from alignment of EST sequences and from DNA re-
sequencing [42], will be added.

Methods

SNP discovery

Putative SNP were discovered in silico, as described in [18].
In brief, 100,866 EST chromatograms were base-called
and aligned using the software programs Phred [43] and
Phrap (P. Green, unpublished), whereupon putative SNPs
were identified using PolyBayes [44] and checked by man-
ual inspection. The ESTs were derived from several indi-
viduals of the Canadian McConnell strain and from
several individuals from the Aqua Gen strains [18,45,46].

Validation and characterisation of SNPs

From among the 2507 putative SNP discovered in silico,
1369 were chosen to be experimentally validated based
on read quality and number of reads with rare allele.
These SNPs were genotyped in a panel of 47 Atlantic
salmon from across the species range (Table 1). SNP gen-
otyping was done using the MassARRAY system from
Sequenom (San Diego, USA). PCR-primers and exten-
sion-primers were designed using the software SpectroDE-
SIGNER v3.0 (Sequenom). Multiplexes and primer
sequences  are  available on  request  sigb-
jorn.lien@umb.no. Multiplexing levels were between 20
and 29. All SNP genotyping was performed according to
the iPLEX protocol from Sequenom (available at [47]).
For allele separations the Sequenom MassARRAY™ Ana-
lyzer (Autoflex mass spectrometer) was used. Genotypes
were assigned in real time [48] by using the MassARRAY
SpectroTYPER RT v3.4 software (Sequenom) based on the
mass peaks present. All results were manually inspected,
using the MassARRAY TyperAnalyzer v3.3 software
(Sequenom). Classification of SNPs was based on this
manual inspection. The categories were: 1) normal = poly-
morphic, reliably scored and non-duplicated; 2) MSV
multiple sequence variant) [49] = SNPs were likely dupli-
cated with polymorphism at one or both loci (character-
ised by heterozygote excess, more than one cluster of
heterozygotes, and presence of homozygotes); 3) PSV
(paralogous sequence variant) = duplicated SNP without
homozygotes; 4) all homozygous = all animals were
homozygous; and 5) failed assay = poor clustering of gen-
otypes and/or unreliably scored genotypes. Sequences of
SNPs and contigs can be found in Additional File 1.

http://www.biomedcentral.com/1471-2164/9/223

Annotation of SNPs

Sequences containing SNPs were clustered into contigs
using a two stage Phrap assembly process. The first stage
assembly of 434,384 Atlantic salmon EST sequences
(parameters 100 minmatch and 0.99 repeat_stringency)
resulted in 119,912 contigs which were then reassembled
(2nd stage; 300 minmatch and 0.96 repeat_stringency)
into 81,398 contigs [50]. Complete contigs containing
SNPs compared (BLASTX) to CDD and Swissprot data-
bases and annotated with the top BLASTX hit if the data-
base match had an e-value of < 1010, Matches to
hypothetical proteins and genomic sequences were fil-
tered out.

Genotyping of mapping population

The mapping families were provided by the breeding
company Aqua Gen AS, and were used also for QTL map-
ping for resistance against the viral disease Infectious Pan-
creatic Necrosis (IPN) (Moen et al., in prep.). Hence, the
offspring had been challenge tested for resistance to IPN.
The 20 mapping parents came from two different year
populations of Aqua Gen salmon; 16 from year class
2001, and 4 from year class 2000. Both populations were
formed in the yearly 1970's from salmon from different
Norwegian rivers [39], and have been maintained as more
or less closed populations since (with increase in inbreed-
ing per generation < 0.5%; S. Kjoglum, Aqua Gen, pers.
com.). In total, 192 offspring from each of 10 full-sib fam-
ilies, and their parents, were genotyped. The parents of the
mapping population can, in the context of the present
study, be regarded as random animals sampled from the
broodstock population. DNA extraction was carried out
using the DNAeasy 96 kit from QIAGEN (Venlo, the Neth-
elands). Within each family, microsatellites were geno-
typed for the 96 least and the 96 most resistant animals.
SNPs were genotyped on the mapping families for two
reasons; 1) to position the SNPs on the linkage map, and
2) to provide more markers for eventual fine-mapping of
QTL-regions. In order to achieve these two goals in an
affordable manner, we chose to genotype all SNPs for
IPN-resistant animals only. The animals were genotyped
for 307 SNP markers and for 148 microsatellites. SNP gen-
otyping was carried out as described above.

Most of the microsatellite markers used in this study were
chosen from the SALMAP microsatellite map of Atlantic
salmon (as it was in 2006) [15], and were collectively cho-
sen to ensure good genome coverage. The microsatellite
markers were distributed across 32 PCR multiplexes that
were subsequently combined into 16 multiplexes for cap-
illary electrophoresis. Primer sequences and multiplex
information is available on request. Polymerase chain
reactions (PCR) were performed in volumes of 5 pl, using
0.25 units of AmpliTaq Gold (Applied Biosystems), 250
pM dNTP mix, 1.5 mM MgCl,, 0.25 -1 pmol of each
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primer (depending on amplification efficiency of each
marker in multiplex), 0.25 ul DMSO, and 5 ng DNA tem-
plate. PCR cycling conditions were 95°C for 10 minutes,
35 cycles of 94°C for 30 seconds, 54 °C for 1 minute, and
72°C for 1 minute, followed by a final extension of 60°C
for 45 minutes. The lengths of the fluorescent PCR prod-
ucts were determined relative to the LIZ500 size standard
(Applied Biosystems) on a 3730 DNA Analyzer (Applied
Biosystems), using GeneMapper 4.0 (Applied Biosystems)
software for allele calls.

Construction of linkage map

Since recombination rates in salmonids have been shown
to differ dramatically between sexes, separate male and
female maps were constructed. Marker grouping and ini-
tial marker ordering was done in Joinmap 3.0 [51]. A Join-
map 3.0 input file was made for each mapping parent (in
double haploid format), containing information on alleles
inherited from that parent only. Marker grouping was
done at a minimum LOD score of 4.0. Following marker
grouping, homologous linkage groups from each sire and
each dam were integrated into single sex-specific maps.
The marker orders determined by Joinmap 3.0 were tested
and corrected using the flips function of CRIMAP, with a
moving window of 7 markers (flips7). Using the final
marker orders as calculated by CRIMAP, the data was
examined for unlikely double recombinants, for incon-
sistencies in marker order between parents, using a cus-
tom Visual Basic for Applications (VBA) for Excel
program. Segregation distortion was tested for using the
same program, by incorporating a Pearson's goodness-of-
fit test for 1:1 segregation of alleles from individual par-
ents to offspring. Double recombinants occurring over
small distances were checked for genotyping error. Mark-
ers displaying segregation distortion (P < 0.01) were also
inspected. After marker orders and potential genotype
errors had been verified, the final maps were constructed
using the fixed function of CRIMAP. The Kosambi map-
ping function was used. Map drawings were made using
Joinmap 3.0 [51].

Since SNPs are bi-allelic, there were frequent occurrences
of both parents of a family being heterozygous for the
same two alleles of a SNP. In such cases, all heterozygous
offspring were initially uninformative for mapping. We
exploited the complete lack of male recombinants in most
parts of the genome to deduce the inheritance of alleles in
situations where i) both parents were heterozygous for the
same two alleles of a SNP (marker A), and ii) the SNP was
linked without any observed male recombinants to
another marker (marker B); the latter marker being fully
informative in the male. The steps of the deduction proc-
ess were 1) determine the linkage phase between A and B
in the male parent, 2) use the linkage phase to deduce
which allele was inherited from the father at A, to off-
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spring heterozygous at that marker, and 3) assign the
other allele at A (of heterozygous offspring) to the female
parent. This strategy was applied during the process of
checking the data, automated through a VBA program.

Before map construction, SNP markers located within the
same contig were combined to produce one marker point

(i.e. a haplotype).

Linkage groups were numbered according to the SALMAP
map, using shared microsatellites to infer homologies.
Whenever two or more markers were shared between a
linkage group and its SALMAP homologue, the linkage
group was also oriented in the same way as the SALMAP
linkage group. One linkage group did not share any mark-
ers with any linkage group on the SALMAP map, and was
termed "A". In the cases where two unlinked (in this data
set) female segments corresponded to a single male
homologue X, the segments were designated Xa and Xb to
indicate that they were likely to be part of the same link-
age group (and vice versa for unlinked male segments cor-
responding to a single female homologue).

The chrompic function of CRIMAP was used to count
number of recombination events per meiosis.

Linkage disequilibrium

The animals used for calculation of LD were a subset of
the mapping parents, more specifically the 16 parents that
came from the breeding population of major representa-
tion. Thus, the data set consisted of 32 haplotypes. Only
microsatellite-SNP pairs were used, to mimic the mapping
of a QTL using microsatellite markers. SNPs with minor
allele frequencies < 0.2 and microsatellites with heterozy-
gosities < 0.5 were culled. Composite SNP markers (hap-
lotypes of SNPs within the same contigs) were grouped
with microsatellites. The haplotypes of the mapping par-
ents were deduced at every linkage group using a custom-
made VBA program. Briefly, the program performed these
steps (for every linkage group within every mapping par-
ent): 1) Start at the first informative marker from one of
the linkage group; 2) find the linkage phase between that
marker and the next informative marker, minimising the
number of recombination events in the offspring; 3) pro-
ceed in this manner to find the linkage phase between all
informative marker, and thus to build the two haplotypes;
and 4) for monomorphic markers, insert the same allele
in both haplotypes. Measures of LD were calculated using
the function haploxt of the program GOLD [52]. The LD
measure was the correlation coefficient, r2, calculated as
the square of Cramer's V [53]. The sampling effect was cor-
rected for by subtracting 1/(number of haplotypes) from
12 [54]. Sved's equation [55] was fitted to the data using
the nlinfit function of MATLAB, but provided a poor fit (as
expected, since LD in the population would be expected to
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be caused by other factors in addition to drift). Instead, a
6th degree polynomial was fitted to the data.
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