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Abstract

Background: Infectious salmon anemia virus (ISAV) causes a multisystemic disease responsible for severe
losses in salmon aquaculture. Better understanding of factors that explain variations in resistance between
individuals and families is essential for development of strategies for disease control. To approach this, we
compared global gene expression using microarrays in fish dying early and late in the time course following
infection from a highly pathogenic ISAV.

Results: Tissues (gill, heart, liver and spleen) from infected Atlantic salmon (cohabitation, ISAV Glesvaer
2/90 isolate) were collected from three stages over the time course of the experiment; early (EM, 0—10%
cumulative mortality (CM), 21-25 days post-infection (DPI)), intermediate (IM, 35-55% CM, 28-31 DPI)
and late (LM, 75-85% CM, 37-48 DPI) mortality. Viral loads were equal in EM and IM but dropped
markedly in LM fish. Gene expression analyses using a 1.8 K salmonid fish cDNA microarray (SFA2.0) and
real-time qPCR revealed a large group of genes highly up-regulated across tissues in EM, which were mainly
implicated in innate antiviral responses and cellular stress. Despite equal levels of MHC class | in EM and
LM, increase of splenic and cardiac expression of immunoglobulin-like genes was found only in LM while a
suite of adaptive immunity markers were activated already in IM. The hepatic responses to ISAV were
characterized by difference between EM and LM in expression of chaperones and genes involved in
eicosanoid metabolism. To develop classification of high and low resistance phenotypes based on a small
number of genes, we processed results from qPCR analyses of liver using a linear discriminant analysis.
Four genes (5-lipoxygenase activating protein, cytochrome P450 2K4-1, galectin-9 and annexin Al) were
sufficient for correct assignment of individuals to EM, LM and uninfected groups, while IM was inseparable
from EM. Three of four prognostic markers are involved in metabolism of inflammatory regulators.

Conclusion: This study adds to the understanding of molecular determinants for resistance to acute ISAV
infection. The most susceptible individuals were characterized by high viral replication and dramatic
activation of innate immune responses, which did not provide protection. The ability to endure high levels
of infection for sustained periods could be associated with lower inflammatory responses while
subsequent protection and viral clearance was most likely conferred by activation of adaptive immunity.
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Background

Infectious salmon anemia has since the early 1990's been
one of the most dangerous viral diseases threatening
Atlantic salmon aquaculture industry. The infectious
salmon anemia virus (ISAV) is a negative single-stranded
RNA virus assigned to the genus Isavirus within the family
Orthomyxoviridae. It mainly infects endothelial cells and
leukocytes and causes a multisystemic disease character-
ized by high mortality with exophthalmia, pale gills,
ascites, hemorrhagic liver necrosis, renal interstitial hem-
orrhage and tubular nephrosis (reviewed in [1,2]). Several
ISAV strains with different pathogenicity are known and
were recently categorized according to the genotype in the
high polymorphic region of the hemagglutinin-esterase
gene and the ability to induce acute versus protracted dis-
ease [3,4]. The fact that the virus' receptor-destroying
enzyme (RDE) lacks activity in Atlantic salmon is thought
to have an important role in mediating the severe clinical
manifestations of infection (e.g. hemagglutination and
anemia) [5,6]. Nonetheless, host factors must make a sig-
nificant contribution to the outcome of infection since
high variation in susceptibility and resistance to ISAV has
been observed. Survival during natural and experimental
infections by any particular virus isolate can range from
0-100% and varies significantly between families (R.
Stigum Olsen, pers. comm.). The presence of a genetic
component for disease resistance is strong evidence for
the existence of protective antiviral responses, however
potential molecular mechanisms that may account for
protection against ISAV are unknown. Association
between specific MHCI alleles and survival has been
shown [7], which imply that a collection of multiple host
factors may explain disease resistance. Although far from
completely resolved, it seems that type 1 interferon (IFN)
does not confer antiviral protection; this might be related
to virus-antagonistic mechanisms [8,9]. There is also evi-
dence that humoral immunity mounted by antibody
responses is less important for survival [4]. Early studies
also suggested that initial activation of T cells, but not B
cells, and suppression of immune function caused by leu-
kopenia is a general result of infection independent of
anemia [10]. Collectively, these results imply that optimal
constellation of multiple host factors are explaining dis-
ease resistance. This is also supported by the fact that low
progression is achieved when breeding for ISAV resistance
(R. Stigum Olsen, pers. comm.) and that only weak effect
quantitative trait loci (QTL) for this trait have been found
(T. Moen, pers. comm.).

In addition to the scientific interest, comparative studies
of salmon with high and low resistance are of great impor-
tance for aquaculture. At present selective breeding and
vaccination are key approaches to disease control, which
employ respectively the innate and acquired protective
mechanisms. Innate defence involves generalized antivi-
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ral responses, such as IFN and IFN-independent proteins
and pathogen-specific antiviral factors referred to as
restriction factors [11,12]. Adaptive immunity in turn
includes humoral and cellular components which interact
with a complex network of immune factors. Assessment of
the relative roles of these mechanisms is vital for the
development of efficient disease control strategies. Fur-
thermore, today's selective breeding for disease resistance
is hampered by a lack of predictive methods. Pathogen
challenge enables identification of the most resistant indi-
viduals; however, infected fish may become carriers of
pathogens and therefore cannot be returned to the farm-
ing environment. Thus, the development of methods for
the prediction of resistance requires a better understand-
ing of the protective host mechanisms.

To obtain a more comprehensive understanding and elu-
cidation of important molecular determinants for survival
towards infectious salmon anemia disease we have com-
pared differences in global gene expression in resistant
and susceptible fish using microarrray technology. Sur-
vival time is commonly used as an estimate of susceptibil-
ity and resistance in pathogen challenge tests. Atlantic
salmon were infected with a common acute ISAV isolate
by cohabitance, which mimics the natural mode of virus
transfer. Tissues from fish within early (EM), intermediate
(IM) and late mortality (LM) groups were sampled and
viral loads were determined by real-time qPCR. We used a
high-density salmonid fish ¢cDNA microarray (SFA2.0
immunochip) designed for studies of responses to patho-
gens and stressors (GEO GPL1212) [13,14]. In compari-
son with previous versions, the updated 1.8 K platform
(GEO GPL6154) has a substantially improved coverage of
immune genes. The microarray analyses were conducted
using EM and LM fish, and since the roles of tissues were
not known we began with individual-pooled samples (n
= 6) of gill, heart, spleen and liver. Next, individual anal-
ysis on liver samples (n = 6) was performed to find prog-
nostic markers, since liver had the highest number of
differentially expressed genes. The results of microarray
analyses indicated possible molecular determinants of
resistance, and to corroborate these conclusions, real-time
qPCR analysis of genes selected by their functional roles
and expression profiles were performed on individual
samples (n = 4/n = 6). For this analysis we also included a
number of genes being markers of adaptive immunity that
were not present on the microarray platform. The devel-
opment of predictors began with individual microarray
comparisons using the liver tissue. Given high costs of
microarray analyses it is customary to develop tests based
on real-time qPCR trying to minimize the numbers of
prognostic genes. We analyzed expression of the candi-
date genes and used linear discriminant analysis for the
classification of samples.
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Results

Experimental infection

The cohabitant transmission of virus from fish injected
with a previously tested viral load enabled the investiga-
tion of the immune response in fish after a natural route
of infection. The chosen ISAV strain (Glesvaer 2/90) is
well characterized and is classified among isolates induc-
ing acute disease progression [4]. A cumulative mortality
(CM) of 84% in the cohabitant fish confirms the highly
pathogenic nature of this ISAV strain (Fig. 1). By termina-
tion 49 days post-infection (DPI) mortality rate had
reached a plateau phase, but if continued mortality would
likely have approached 100% (see virus load in section
below). The injected fish started to die at 12 DPI and at 20
DPI the cumulative mortality had reached 97%. Cohabit-
ants started to die at 21 DPI when nearly all (97%) carrier
fish were dead. There was no mortality in the control tank.
Tanks were monitored continuously and only moribund
fish were sampled for RNA extraction. Based on experi-
ence from similar experiments, sampling was divided into
three stages: early mortality (EM, 0-10% CM), intermedi-
ate (IM, 35-55% CM) and late mortality (LM, 75-84%
CM).

Virus load

The ISAV pathology in sampled fish was confirmed by
clinical examination. Levels of infection in four random
fish from the EM, IM and LM stages were determined by
real-time qPCR analysis of viral RNA in all tissues (Fig. 2).
This is a very sensitive and precise assay, reported to be
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100-fold more sensitive than end-point RT-PCR [15]
which has a threshold detection in the range of 0.01-0.1
TCIDs, [16]. Low standard deviations of Cy (cycle thresh-
old) values within each stage indicated that viral RNA lev-
els were similar between individuals and justified the
comparison of gene expression between the three groups
of mortalities. In general, there was a high viral replication
in EM and IM stages with no significant difference
between these groups, while a marked reduction was
observed in LM (except for liver). Levels in survivor fish
(16%, not moribund) were similar to LM (data not
shown). When transforming C values into viral particles
based on a standard curve of Cfrom in vitro infected cells
this corresponded to a 1000-fold reduction of viral parti-
cles in spleens only within 6 days (from 31-37 DPI),
given that cohabitants were infected simultaneously. No
significant difference was observed between levels of two
ISAV segments (HA and NS1) (data not shown).

Gene expression analyses

Microarray analyses were conducted on gill, heart, liver
and spleen samples pooled from six individuals for each
tissue, and on individual samples of liver (n = 6). The
former indicated tissue-specificity of responses while the
latter allowed for statistical assessment of differences
between the early and late mortalities (EM and LM). Pri-
mary data was submitted to GEO and the processed
results are available in Additional file 1. Genes with differ-
ential expression between EM and LM from microarray
analyses were verified by real-time qPCR on individual

100 -
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Figure |

Experimental ISAV challenge trial. Mortality curves of the standardised ISAV cohabitation challenge among i.p.-injected
carriers (‘'shedder’, grey curve) and cohabitants (‘cohab', black curve).
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Figure 2

Viral loads analysed by real-time qPCR. Viral RNA levels of segment 6 in liver, gill, heart and spleen of four fish from EM,
IM and LM stages. Levels are given as cycle threshold (Cy) values (left Y-axis) and log,, number of viral particles (right Y-axis)
based on a standard curve of C against titrated in vitro infected (Glesvaer 2/90 isolate) ASK (Atlantic salmon kidney) cells.

heart samples (n = 4), and additional genes for adaptive
immune responses not represented on the microarray
were analysed on individual spleen samples (n = 6) from
all stages (EM, IM and LM).

Early mortalities show induced innate antiviral and stress
responses

Many genes were regulated across all tissues and a large
fraction of these showed markedly higher expression lev-
els in EM compared to LM (Fig. 3). Among these were sev-
eral genes related to cellular stress (transcription factor
jun-B, GADD45-p and -y, 78 kDa and 94 kDa glucose-reg-
ulated proteins) as could be expected according to their
involvement in pathological alterations. Up-regulation of
several proteins involved in extracellular transport (Tax
binding protein, microtubule-associated protein RP/EB,
vacuolar ATP synthase and 78 kDa glucose-regulated pro-
tein) was consistent with reticular stress as observed in
various viral diseases [17]. Given the high viral replication
and mortality in EM it was noteworthy how many genes
with pivotal roles in innate antiviral responses were
highly induced at this stage without conferring any protec-
tion (Fig. 3, 4). The src-type tyrosine kinase Jak and signal
transducer/activator of transcription Stat1 play a key part
in induction of IFN-dependent genes [18,19]. Up-regula-
tion of interferon induced protein 44 and double-
stranded RNA-adenosine deaminase (ADAR-1), one of
the key antiviral effectors, was additional evidence for
activation of the IFN-axis. Similar profiles were seen in src-
related tyrosine-protein kinase FRK and ligand for Lck

SH2 domain p62 which regulate various immune
responses, being involved in a complex network of signal
transduction pathways. Further downstream, up-regula-
tion of several IFN-responsive genes involved in antigen
processing and presentation (2 m encoding MHCI light
chain, tapasin, proteasome activator complex, ubiquitin,
cathepsins) indicated an early activation of adaptive
immunity in EM. Broad induction of GADD45-3 and -y
could contribute to increased survival of immune cells
through interaction with NF-xB pathway [20,21]. Further
evidence for early immune cell activation was increased
leukocyte migration and recruitment (up-regulation of
chemokines and receptors; SCYA110-2/CCL7-like,
SCYA106/CCL21-like, CXCR4-like) and monocyte and
lymphocyte maturation and activation (up-regulation of
regulator of G-protein signalling/RGS1, Fc-gamma recep-
tor/CD64, TNFR5/CD40, LECT2). A number of EM-
induced genes could be involved in other functions along
with antiviral defense; galectins are small, highly con-
served proteins that bind sugars and other ligands and can
work as both positive and negative regulators of various
immune functions [22,23]. Coordinated regulation of
galectins and interferons was reported in mammals
[24,25].

Late survival is associated with reduced viral load and
activation of adaptive immunity

A group of genes induced at the LM versus EM stage was
of major interest since they could point to responses
important for resistance or late survival. Microarray anal-
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Figure 3
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EM-induced genes with similar expression changes across tissues. Data are log-ER (Expression Ratio). Microarray
analyses were conducted on individual liver samples (the group means are shown, n = 6; underlined values mean significantly
different groups, p < 0.05) and in pooled samples (n = 6 per tissue) of liver, gill, heart and spleen (the average values of two
slides are shown). Up- and down-regulated genes are highlighted with orange and green scales, as shown below the figure. NS
means not significant (p < 0.01, t-test, 6 spot replicates per gene).
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Figure 4

Real-time qPCR analysis of early induced genes in heart from EM and LM. Selected genes from microarray were;
galectin-3 binding protein (GAL3BP), galectin |-like (GALI), tripartite motif protein/ring finger protein (TRIM/RING), tyrosine-
protein kinase FRK (FRK), signal transducer/activator of transcription | (STATI), CCAAT/enhancer binding protein beta (C/
EBPb), beta-2 microglobulin-1 BA| (B2M). Data are mean relative expression ratios * SE of 4 infected individuals relative to 4
controls (C) per stage, normalized against |18S rRNA levels and adjusted for PCR efficiency. Bars with different letters are sig-

nificantly different (p < 0.05).

yses of heart, spleen and gills revealed a coordinated
induction of Ig-related genes (Fig. 5). A gene similar to
CD179f (Ig-kappa chain V-I; see Additional file 1)
encodes a receptor found on the surface of pre- and pro-B
cells involved in signal transduction and differentiation,
allelic exclusion at the Ig heavy chain locus, and promo-
tion of Ig light chain gene rearrangements [26]. Function-
ally related were also two other similarly induced
transcripts of the IgM heavy chain (Ig-mu heavy chain dis-
ease protein and Ig-mu chain C region membrane-
bound). The CD84 leukocyte antigen is also interesting in
this context, being highly expressed in certain B-cell sub-
sets and belonging to the recently discovered family of sig-
naling lymphocyte activating molecule (SLAM)-related
receptors (SRR), a group of surface molecules whose main
function seems to be the fine-tuning of lymphocyte
responses [27]. Among this class of LM induced genes
were also five Ig-kappa genes involved in B-cell receptor
(CD79a/B) signalling (Ig-kappa chains V-1V region B17-
1+2, V-1II region VG, V-IV region JI and V-IV region Len).
Collectively, the expression profiles of these genes indi-
cated that a general activation of B-lymphocyte matura-
tion and humoral immunity occurred among the late

survivors. However, the gene homologous to the B-cell
receptor itself was unregulated or down-regulated in
spleen together with some B-cell regulatory genes. Nota-
bly, MHC class II (a.- and invariant chain 11), which is the
mediator of Ag-presentation in B-cells (and other APCs),
was also down-regulated in spleen at both EM and LM
stages, but was induced in heart of LM but not EM.

To further detail the features of the adaptive immune
responses observed in LM we designed qPCR primers for
well-known genes of humoral (IgM, -Z and -D heavy
chain) and T-cell mediated (CD8* CTL response; CD8aq,
CD4+ Tyl response; IFN-y and T2 response; TGEF-B)
immunity. For this analysis we also included fish in the
IM stage and increased the number of individuals (6 per
stage) to see if the viral clearance observed in LM was
explained by a general activation of adaptive immunity in
IM. The results showed that IgM and IgZ, but not IgD
(data not shown), were induced at all stages versus control
but in opposite manners (Fig. 6). IgM mRNA peaked at
EM and declined towards the later stages (IM and LM)
while IgZ was steadily induced towards peak levels at LM.
Kinetics of IgM expression was similar to CD4 and TGF-.
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Figure 5

Immunoglobulin-related transcripts induced in LM. Microarray expression (mean log(ER) + SE) in gill, heart, liver and
spleen (6 individuals pooled per tissue) of | | immunoglobulin-related clones designated by the Unigene clusters and most sim-
ilar mammalian proteins: Omy.9391 (similar to Ig-kappa chain V-Ill region VG and Ig-kappa chain C region), Omy.|5640 (similar
to Ig-gamma-2 chain C region and Ig-mu chain C region membrane-bound), Ssa.78 (similar to Ig heavy chain V-IIl region HIL),
Ssa.709 (similar to Ig-kappa chain V-I region WEA and to Ig-kappa chain V-IV region B17-2), Omy.416 (similar to Ig-kappa chain
V-1V region JI), Omy.23312 (similar to Ig-kappa chain V-IV region BI7-1), Omy.30091 (similar to Ig-kappa chain V-IV region
Len) and Omy.| 1287 (similar to Ig-mu heavy chain disease protein). Asteriks indicates significantly different groups (p <

0.0001).

In contrast, expression of CD8a was markedly induced
from EM to IM/LM stages and correlated with IFN-y
expression (from the EM to IM stage). It must be noted
that the significance of the data varied due to individual
variation, but all qPCRs were replicated three times in
both the reverse transcription step and in PCR, giving
identical results. Thus, the pronounced reduction in virus
load from IM to LM might be explained by both develop-
ing antibody responses (IgZ) and activation of T-cell
mediated immunity at IM, either through a specific CD8+*
cytotoxic and/or Ty;1 response. Notably, this activation
corresponded with induced antigen presentation, e.g. a
broad elevation of MHCI mRNA levels across all tissues.
However, MHCII (a- and invariant chain) was generally
down-regulated in late survivors except for up-regulation
in heart LM, the tissue with highest viral RNA levels.

Late mortalities show reduced hepatic expression of
chaperones and genes involved in metabolism of steroids,
lipids and xenobiotics

A suite of chaperones from different groups (heat shock
proteins and cognates, DnaJ homologs and T-complex
proteins) showed consistently lower expression levels in
liver from LM compared to EM (Table 1). Chaperones are
essential for the life cycle of viruses, being involved in rep-
lication, translation, transport and assembly of viral pro-
teins. Viruses from diverse groups are known to use
chaperones of the hosts and/or produce own proteins
with protein folding properties [28-31]. Chaperones are
commonly used as markers of cellular stress. Although
fish from all study groups was sampled in a moribund
state, higher expression levels of chaperones suggested
more severe stress in individuals with early mortality.

In liver ISAV also affected genes involved in steroid and
lipid metabolism (Table 2). Functional consequences of
the potential decrease in metabolism of highly unsatu-
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Figure 6

Real-time qPCR analyses of genes related to adaptive immunity from spleen at all stages. Selected genes were;
heavy chains of immunoglobulin zeta (IgZ) and immunoglobulin mju (IgM), T cell coreceptors CD4 (CD4) and CD8alpha
(CD8a), T},2 cytokine transforming growth factor beta (TGFb), T, | cytokine interferon gamma (IFNg). Data are mean relative
expression ratios * SE of 6 infected individuals relative to 6 controls (C) per stage, normalized against 18S rRNA levels and
adjusted for PCR efficiency. IFN-y expression is shown with own Y-axis for easier comparison between genes. Bars with differ-

ent letters are significantly different (p < 0.05).

rated fatty acids (delta-6 fatty acid desaturase), bile
(sodium/bile acid cotransporter) and steroids (3-oxo-5-
beta-steroid 4-dehydrogenase and estradiol 17 beta-dehy-
drogenase) are unclear given the complex interaction of
these pathways with virus replication, immunity and

Table I: Microarray expression of genes encoding chaperones in liver. The data are mean log(ER) * SE.

stress. However since these genes showed little or no dif-
ference between EM and LM, their expression apparently
did not influence resistance to virus in our experiment.
Disparity between fish with different survival times was
better seen in a group of genes associated with metabo-

Genes EM LM LM-EM!
Heat shock protein HSP 90-beta 0,97 + 0,22 -0,15+0,13 -1,13
Heat shock cognate 70 kDa 0,35+0,19 -0,70 + 0,07 -1,05
Heat shock cognate 71 kDa 0,42 + 0,21 -0,60 £ 0,10 -1,02
Heat shock 70 kDa-8 0,01 +£0,15 -0,89 + 0,09 -0,90
Heat shock protein 75 kDa-2 -0,87 + 0,08 -1,36 £ 0,10 -0,48
Heat shock factor 2-2 -0,78 £ 0,10 -1,28 + 0,04 -0,50
DnaJ homolog subfamily B member |1 0,98 £ 0,25 -0,02 + 0,27 -1,00
Dna) homolog subfamily C member 9 -1,02+£0,16 -1,69 £0,13 -0,68
Dna) homolog subfamily A member 2 024 £ 0,11 -0,40 + 0,09 -0,64
T-complex protein |, subunit 5 0,86 + 0,12 0,27 £ 0,12 -0,59
T-complex protein |, gamma subunit -0,53 +0,12 -1,02+0,10 -0,49
'Difference of mean log(ER) between two groups. All mean log(ER) were significantly lower in LM (p < 0.001, t-test, n = 12).
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Table 2: Hepatic microarray expression of genes implicated in metabolism of lipids and steroids. The data are mean log(ER) * SE.

Genes EM LM LM-EM
CCAAT/enhancer binding protein delta! -0,26 £ 0,19 -1,07 £ 0,20 -0.81
Leukotriene B4 receptor!?2 -1,17 20,11 -1,85+0,16 -0.68
Carboxylesterase HU la! -0,48 £ 0,11 -1,42 £ 0,37 -0.94
Delta-6 fatty acid desaturase -1,16 £0,11 -1,04 £0,19 0.12
Cytochrome P450 2K4!2 -0,36 £ 0,15 -1,19+0,16 -0.83
Cytochrome P450 2F|!2 -1,09 + 0,13 -1,85+0,19 -0.76
3-oxo-5-beta-steroid 4-dehydrogenase -1,62 + 0,43 -2,07 + 0,50 -0.45
Estradiol |7 beta-dehydrogenase -0,71 £0,13 -0,93 £ 0,21 -0.22
Prostaglandine D synthase -1,09 + 0,23 -0,92 + 0,27 0.17
Progesterone receptor component 2! -0,67 £ 0,16 -1,15+0,17 -0.48
Estrogen-responsive B box protein! -0,45 0,10 -1L,I1£0,15 -0.66
D-3-phosphoglycerate dehydrogenase! -0,86 £ 0,12 -1,23 £ 0,06 -0.37
Sodium/bile acid cotransporter! -0,94 + 0,07 -1,30 + 0,08 -0.36
All-trans-13,14-dihydroretinol saturase? -0,98 £ 0,16 -1,27 £ 0,09 -0.29
5-lipoxygenase activating protein'2 0,34+0,14 1,55+ 0,32 1.21
Annexin Al!2 -0,16 + 0,09 1,59 + 0,55 1.75

ISignificant difference between groups (p < 0.05, t-test, n = 12). 2Involved in metabolism of eicosanoids

lism of eicosanoids, which may play both positive and
negative roles in viral diseases as regulators of pathogen
life cycle (replication) and inflammation [32,33]. Cyto-
chromes P450 can have different modes of action being
involved in metabolism of eicosanoids and xenobiotics as
well carboxylesterase HU1 [34]. C/EBP delta, an agonist
of peroxisome proliferator-activated receptor is one of the
key factors required for differentiation of adipocytes [35].
This gene was suppressed in contrast to alpha/beta type
(Fig. 3, 4). Differential regulation of C/EBP isoforms has
been reported under various acute conditions [36,37].

Development of prognostic markers

Microarray screening with subsequent qPCR analyses of
candidate genes is a widely used approach for developing
prognostic markers. We wished to try a hypothesis-free
strategy meaning that gene expression profiles were used
with no surmise on gene functions. Therefore the candi-
date genes (Table 3) were chosen exclusively by their
expression profiles (differences between EM and LM). Six
individual liver samples from each of EM and LM stages
were used as a training set in a linear discriminant analy-
sis. For this analysis a function was constructed which
took positive values in EM and negative values in LM
while intercept with X-axis marked a boundary between
these groups (Fig. 7). Furthermore, the classifier was veri-
fied in an independent test set, which included fish from
all stages and controls. The uninfected fish were well sep-
arated from the challenged, and as expected, the values of
predictor function were negative as well as in LM. The
individuals from EM and LM were all assigned to the cor-
rect classes. Fish with early mortality formed a sharply
outlined group however IM was not separated from LM.
The genes were ranked by Wilks' coefficients. To evaluate

the minimum number of genes required for the correct
class assignment we used forward and reverse procedures.
The genes were either added or deleted one by one starting
with respectively highest and lowest ranks, the predictor
function was re-calculated and the results were compared
to those shown in Fig. 7. In both cases, four genes (5-
lipoxygenase activating protein, cytochrome P450 2K4,
galectin-9 and annexin A1) were determined as the mini-
mum number required to build the function that ensured
robust class prediction. These genes changed expression in
different directions (Table 2) and interestingly, three of
four genes were related to metabolism of eicosanoids
which are inflammatory regulators of lipid origin.

Discussion

We searched for the host factors that may account for dif-
ferent susceptibility and resistance to ISAV in Atlantic
salmon. This question is of great importance for the devel-
opment of protective strategies in aquaculture. With the
exception of one study that reported possible association
of specific MHC class I alleles with survival [7] there is no
evidence in the literature of defensive/offensive responses
that could underlie individual variation resistance to
ISAV. An advantage of research on infectious diseases in
fish is the possibility to challenge large numbers of indi-
viduals and to locate groups with markedly different per-
formance. Survival time is commonly used as a simple
measure of resistance based on the assumption that it is
determined principally by antiviral defense and/or sever-
ity of the pathological alterations. One cannot neglect the
possibility that differences in survival times are largely sto-
chastic by nature. Then given similar physiological condi-
tions (all fish were sampled in a moribund state) we could
expect comparable phenotypes in the groups with differ-
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m Test set

O Training set

-25

Figure 7

Class prediction based on qPCR analyses of eight genes in liver. The training and test sets were analyzed in two inde-
pendent experiments indicated with different colours. The predictor function was constructed by linear discriminant analysis of
the training group and verified using the test group. Numbers of individuals: 1-9 — EM, 10-23 — M, 24-35 — LM and 3645 —

control.

ent survival times; however our studies revealed marked
differences between the study groups (stages). Survival
time can depend on the level of infection determined by
the probability and time-point of encounter with patho-
gens and/or with active or passive protective mechanisms.
Notably, an identical challenge test as used here was pre-
viously shown to be very efficient in that all cohabitants
were simultaneously infected [38], justifying that survival
times could be explained by protective mechanisms. The
viral loads were remarkably lower in LM however we did
not find significant difference between EM and IM (except
for liver). Therefore viral load was an important, but not
the only factor, influencing survival times. Dramatic acti-
vation of the innate immune responses in EM fish was a
notable and intriguing finding. Such responses were
observed at different cellular levels with possible affects
on the binding of ligands, perception and transduction of
signals, regulation of gene expression and antiviral effec-
tors. Importantly, many genes with significantly higher
expression levels in EM are known to be IFN-dependent
and as expected these responses were characterised by low
tissue specificity. Our result was in line with a recent find-
ing that induction of type I IFN and IFN-dependent genes
in ISAV infected fish and cells did not provide protection
against virus [8,39]. In addition, knowledge is emerging
on potential IFN-antagonistic mechanisms of ISAV's NS1
protein [9], which is well-known from influenza [40]. We

do not know whether strong antiviral responses were det-
rimental to fish. Such a possibility cannot be excluded,
however, it is likely that activity of the IFN axis was
directly related to the viral load (which was greater in
EM). Induction of galectins was a striking feature of the
early broad tissue responses to ISAV. Regulation of these
genes with IFN was reported in higher vertebrates [24,25]
and recently in trout macrophages [41]. It is known that
galectins can be used by virus [42]. However, strong
responses in phylogenetically remote species (fish and
mammals) to diverse viruses such as ISAV in salmon and
rhabdovirus (VHSV) in trout [43] make such a possibility
very unlikely. Proteins with ability to bind diverse ligands
can work as factors that restrict the propagation of the
virus. Studies on these mechanisms, which unlike the gen-
eralized antiviral responses appear more pathogen-spe-
cific, represent a rapidly emerging area. Probably the best
known achievement is identification of tripartite motif
proteins and cyclophilin A, that may account for inter-
specific differences in resistance to HIV [12]. Interestingly,
we observed up-regulation of ring finger/tripartite motif
protein and cyclophilins, but without association to
increased survival. We cannot reject the potential varia-
tion in the ability to restrict propagation of ISAV. To assess
this possibility it will be necessary to screen for viral loads
in a large number of challenged individuals, preferably
from families with markedly different resistance. Overall,
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Table 3: Real-time qPCR primers used in the study
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Genes Primers GenBank

ISAV segment 6 2 5-AGGCCAAAAACGGAAATGGA-3 AF220607
5-CCGTCAGTGCAGTCATTGGTT-3

18S rRNA b 5-GCCCTATCAACTTTCGATGGTAC-3 AJ427629
5-TTTGGATGTGGTAGCCGTTTCTC-3

Galectin-3 binding prot © 5-CCAGACCAACAGTGTTCACTTCAGC-3 BX079375
5-ACGTGAAAGACATACCTGCCCTCAC-3

Galectin-like | < 5-CAGCAACCCTTCTTCAATCCGAGA-3 CA344100
5-TCTCCCTGTCACAGTGATGGTCTTC-3

Tripartite motif/ring finger protein ¢ 5-TGTTCTGTTGCTCCGTCTGTCTGGA-3 CA376536
5-TTCAGCCAGCACGGTGTTTCTCTTC-3

Tyr-protein kinase FRK ¢ 5-TAGACATGGCACCATGGACCCTC-3 CA349577
5-GGGTTCTTCAGTGCAGACAGCCA-3

STATI © 5-GAACATGGAGGAGTCCAATGGAAGC-3 CA343225
5-GGACCCTCATTTGATCTGTTGCCT-3

CCAAT/enhancer binding protein beta © 5-TACGTCCTGGGCTATCCTGAACTGC-3 CA348284
5-CCAGACGAACCGTTGTTGTCCA-3

Beta-2-microglobulin ¢ 5-TCGTTGTACTTGTGCTCATTTACAGC-3 AF180478
5-CAGGGTATTCTTATCTCCAAAGTTGC-3

IgM heavy chain (CH) ¢ 5-ATACGGTGACCCTGACTTGCTACGT-3 $48652
5-TTCTCTCCACCGGCTCATCATCA-3

IgZ CH-like ¢ 5-AGCACCAGGGACAAACCACCAT-3 CA372094
5-TTCACACTCGGTGGGTTCAGAGTC-3

IgD CH 4 5-TCTTCAGGAGCTGAGGACAGATGGA-3 AF278717
5-AAACCCATCCACCTTCCAGCTGA-3

CD44d 5-TGCATTGTTCCTCTCTTCCACAGC-3 AY973028
5-CCGTCCCAAGGTACCATAGTACCAA-3

TGF-beta 4 5-AATCGGAGAGTTGCTGTGTGCGA-3 EU08221| |+
5-GGGTTGTGGTGCTTATACAGAGCCA-3 AJ007836

CD8-alpha 5-CGTCTACAGCTGTGCATCAATCAA-3 AY693391
5-GGCTGTGGTCATTGGTGTAGTC-3

Interferon-gamma 9 5-TTCAGGAGACCCAGAAACACTAC-3 AJg41811
5-TAATGAACTCGGACAGAGCCTTC-3

GRB2-related adaptor protein 2 © 5-TGACTTTACTGCCACTGCTGAGGAC-3 CA353121
5-CAGTCATCATTGGTGCCCAAGATC-3

Annexin Al-| ¢ 5-CTCCAGGAAATTGAACACCGCGA-3 CA364941
5-AAGGCTGCGATGAAGGACATGGT-3

5-lipoxygenase activating protein © 5-TCTGAGTCATGCTGTCCGTAGTGGT-3 CA369467
5-CCTCCCTCTCTACCTTCGTTGCAAA-3

Regulator of G-protein signaling 1-1 ¢ 5-GACTCCTAACCTCCAATGCTTCGAC-3 CA383094
5-CGAATCTCTCTCCATCAGCCCATA-3

Cytochrome P450 2K4-1| ¢ 5-TTCACCCTCCACCCTTCACCTC-3 EV384586
5-ATCTCAGACCCGGCTCACAGCA-3

Galectin-9 ¢ 5-TCGCTGATTGTGAATGGTGCTCAC-3 CX035552
5-CAGGGTTGGAGAAGGCAATGGATT-3

Heat shock protein HSP 90-beta-2¢ 5-GAACCTCTGCAAGCTCATGAAGGA-3 BX074486
5-ACCAGCCTGTTTGACACAGTCACCT-3

Cathepsin S © 5-CGAAGGGAGGTCTGGGAGAGGAAT-3 CA355014

5-GCCCAGGTCATAGGTGTGCATGTC-3

aViral RNA quantification. b Reference gene. ¢ Microarray confirmation and EM-induced genes, Fig. 4. 4 Adaptive immune responses all stages, Fig. 6.

¢ Development of class prediction, Fig. 7.

it was obvious that the innate antiviral responses did not
provide protection to ISAV-infected salmon.

Apart from active protection, survival time may depend
on the tolerance or ability to endure high viral loads, and
comparison of the hepatic responses tended to support

this possibility. Regulation of heat shock proteins plus
other chaperones regarded as evidence for cellular stress,
is a common feature of various viral diseases [44]. These
chaperones changed expression in both directions, how-
ever levels in LM were consistently lower than in EM. We
could also see evidence for less severe inflammatory
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responses in LM. While many inflammatory regulators
showed similar profiles at all stages, there was a difference
in expression of genes involved in the metabolism of
eicosanoids, which have been found to play an important
part in pathogenesis of many viral diseases [33]. Impor-
tantly, two genes induced in LM (5-lipoxygenase activat-
ing protein and annexin A1) were identified as the most
valuable markers for the discrimination of groups with
different survival times. Both genes encode for proteins
associated with phospholipase A2 and are regarded as
important targets for anti-inflammatory therapy [45,46].
Annexin Al inhibits phospholipase A2, which releases ara-
chidonic acid from cellular membranes. Arachidonic acid
is subsequently transformed to prostaglandins, throm-
boxane and leukotrienes collectively termed eicosanoids
(reviewed in [47]) and 5-lipoxygenase activating protein
plays a key part in one of these pathways. Differences
between EM and LM were seen in several more genes of
eicosanoid metabolism while prostaglandin D synthase
was equally down-regulated in both groups.

Microarray analyses revealed only one group of genes
(immunoglobulin-related) that were higher induced in
LM compared to EM. Changes in levels of these transcripts
could be due to maturation and/or migration of immune
cells to the heart and spleen, the two most heavily infected
organs, and suggested an activation of adaptive immune
responses in late survivors. The microarray includes
eleven Ig clones corresponding to seven Unigene clusters.
The exact roles of these salmon genes are not known,
however their putative mammalian homologs are
involved in early B-cell development. Apart from mediat-
ing antibody responses, mature B cells are crucial for acti-
vation of effector helper T cells [48]. Equally important
was the fact that induction of these Igs correlated with a
viral clearance among LM fish. This prompted an
extended qPCR analysis including all arms of adaptive cel-
lular immunity, and showed that the expression kinetics
of IgM, -D and -Z heavy chains, the most likely mediators
of antibody responses in salmon, were quite different. The
reason for this is at best speculative, but it could indicate
different roles for IgM and IgZ in salmonid immunity (e.g.
innate natural versus humoral neutralizing antibodies).
Perhaps more interesting was the induction of CD8a and
IFN-y, but not TGF-B (T2 marker), in IM and LM fish
which correlated with viral clearance in LM fish. An opti-
mal Ty1 response, consisting of virus-specific (IFN-y)-
secreting CD4+ T cells and cytotoxic CD8+T cells that lyse
virus-infected cells [49], is crucial for clearance of influ-
enza virus infection in humans [50]. Further strengthen-
ing the significance of a cytotoxic response was the fact
that MHC class 1, the key activator of CD8+* T cells, was
consistently induced in all tissues and stages. These results
also support recent observations that ISAV survival corre-
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lated more strongly to the level of cell-mediated responses
than did humoral responses [4].

Collectively, these findings demonstrate the power of
functional genomics in untangling the complexities of
virus-host interactions and viral pathogenesis. From anal-
ysis of gene expression profiles we suggest that common
features of highly pathogenic ISAV include high viral rep-
lication, dramatic induction of innate immunity without
protection and subsequent activation of cell-mediated
immunity and reduced inflammation associated with
viral clearance. Similarities to influenza pathogenesis are
striking; fatalities of the 1918 influenza virus is caused by
rapid replication kinetics resulting in an excessively vigor-
ous innate immune and inflammatory response that con-
tributes to severe tissue damage, disease and death
[51,52].

The need for prognostic and diagnostic tools for control of
aquaculture diseases is urgent. We compared conse-
quences of the acute and protracted forms of ISAV infec-
tion, but to search for prognostic markers our
experimental design was not appropriate as analyses
should have been conducted before challenge. Nonethe-
less, we regard this study as a step towards this task, which
can help to clarify a number of important questions. An
ideal strategy for prediction of resistance would be an in
vitro test, such as stimulation of primary cultures (e.g.
peripheral blood cells) with ISAV and subsequent gene
expression analysis. However because we did not find any
broad-tissue responses associated with improved resist-
ance the feasibility of such approach is ambiguous. The
LM group was characterized by activation of adaptive
immune responses which are systemic by nature and
require complex interactions of different cellular elements
and humoral factors. Given the pivotal role of acquired
responses, the development of animal models will be
essential for studies on fish resistance to viral pathogens.
We used materials from this experiment as a pilot study
for the development of predictors based on microarray
and qPCR analyses. Four genes were sufficient for accurate
class assignment and importantly, this was achieved using
linear discriminate analyses, a gold standard approach to
tasks of this kind.

Conclusion

In conclusion, three groups with different survival times
were characterized by distinct phenotypes suggesting that
resistance at early and late stages of ISAV could be
explained by different molecular host determinants. Early
mortality associated with highly pathogenic form of ISAV
was characterized by high viral replication, dramatic up-
regulation of innate immune mechanisms and cellular
stress. Intermediate mortalities shared common features
with EM (high viral load) in contrast to the late group of
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survivors where a significant viral clearance coincided
with activation of adaptive cellular immunity and reduced
inflammation. Overall, development of adaptive immune
responses in salmonid fish requires several weeks after
pathogen challenge, which is consistent with our results.
Ability to survive to this point is likely to have crucial
importance for the outcome of disease.

Methods

Experimental infection

Tissue samples from control and ISAV infected fish origi-
nated from a reference challenge trial performed at VESO
Vikan (Veterinary Science Opportunities, Namsos, Nor-
way). The trial was approved by The National Animal
Research Authority (see Availability and requirements sec-
tion for URL) according to the 'European Convention for
the Protection of Vertebrate Animals used for Experimen-
tal and other Scientific Purposes' (EST 123). Unvaccinated
juvenile Atlantic salmon (average size 22.8 gram at start)
were kept in separate tanks at 12°C under controlled con-
ditions (water flow, fish density etc.) and acclimatised for
one week before challenged. In one tank, 300 fish (here-
after referred to as cohabitants) were cohabitated with 60
marked fish each i.p.-injected with a virus dose of 7.2 x
103 TCIDs, of a third passage of ISAV strain Glesvaer 2/90
(National Veterinary Institute, Oslo, Norway). A separate
tank contained 40 unvaccinated control fish of same size
and origin which were kept under identical conditions
(density, temperature, water flow and feeding) as chal-
lenged fish. Standardized tissue sampling (heart, spleen,
gills and liver) was performed from 12, 24 and 12 mori-
bund fish from respectively EM (0-10% CM), IM (35-
55% CM) and LM (75-84% CM) stages (cohabitants) and
similarly from half the number of controls at the same
time-points as challenged fish. Samples were immediately
stored in >10x excess volume of RNAlater (Invitrogen,
Carlsbad, CA, USA) at 4°C overnight following -20°C
until RNA extraction. All fish were negatively tested for
immune status by ELISA testing for Vibrio salmonicidae,
Vibrio anguillarum O1 and O2, Moritella viscosa and IPNV
before challenge. Moribund fish were confirmed clinically
positive for ISAV. No mortality was observed among con-
trol fish.

RNA extraction and cDNA synthesis

Total RNA from tissue was isolated using PureLink Micro-
Midi kit (Invitrogen) using manufacturer's protocols and
guidelines. RNA quantity was measured by Nanodrop
(Thermo Fisher Scientific, Waltham, MA, USA) and integ-
rity confirmed by gel electrophoresis. Samples were pre-
cipitated and stored under ethanol at -70°C. cDNA
synthesis was performed on 2 pg DNAse-treated (Turbo
DNA-free™, Ambion, Austin, TX, USA) total RNA using
TagMan® Reverse Transcription reagents (Applied Biosys-
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tems, Foster City, CA, USA) and random hexamer prim-
ers, according to manufacturer's protocol.

Microarray analyses

The salmonid fish cDNA microarray SFA2.0 immunochip
contains 1800 unique clones printed each in six spot rep-
licates. The genes were selected by their functional roles
and the platform is enriched in a number of functional
classes such as immune response (236 genes), cell com-
munication (291 genes), signal transduction (245 genes)
and receptor activity (126 genes), apoptosis (120 genes),
cell cycle (76 genes), protein catabolism (90 genes) and
folding (70 genes) and response to oxidative stress (39
genes). The gene composition and sequences are provided
in GEO (GPL6154). Microarray analyses were conducted
on fish from EM and LM stages. A common reference
design of hybridization was applied and RNA pooled
from 6 uninfected fish per tissue and per stage was used as
control. Pooled samples of gill, liver, heart and spleen
(equal amounts of RNA from 6 individuals per tissue)
were analyzed in a dye-swap design; two slides were used
for each sample with reverse assignment of dyes. Individ-
ual comparisons (6 fish from EM and 6 fish from LM)
were done on liver samples in a single-slide format and
one slide per each sample was used. The samples (20 pg
RNA in each) were labeled with Cy3-dUTP and Cy5-dUTP
(Amersham Pharmacia, Little Chalfont, UK) using the
SuperScript™ Direct cDNA Labeling System (Invitrogen).
The cDNA synthesis was performed at 43°C for 3 hours in
a 20 pl reaction volume, followed with RNA degradation
with 0.2 M NaOH at 37°C for 15 min and alkaline neu-
tralization with 0.6 M Hepes. Labeled cDNA was purified
with Microcon YM30 (Millipore, Beford, MA, USA). The
slides were pretreated with 1% BSA fraction V, 5 x SSC,
0.1% SDS for 30 min at 50°C and washed with 2 x SSC
for 3 min and 0.2 x SSC for 3 min at room temperature
and hybridized overnight at 60°C in a cocktail containing
1.3 x Denhardt's, 3 x SSC, 0.3% SDS, 0.67 ng pl-! polya-
denylate and 1.4 pg pl-! yeast tRNA. After hybridization
slides were washed at room temperature in 0.5 x SSC and
0.1% SDS for 15 min, 0.5 x SSC and 0.01% SDS for 15
min, and twice in 0.06 x SSC for 2 and 1 min, respectively.
Scanning was performed with GSI Lumonics ScanArray
4000 (PerkinElmer Life Sciences, Zaventem, Belgium) and
images were processed with GenePix Pro 6.0 (Axon,
Union City, CA, USA). The spots were filtered by criterion
(I-B)/(S;+Sg) = 0.6, where I and B are the mean signal and
background intensities and S;, Sy are the standard devia-
tions. The low quality spots were excluded from analysis
and genes presented with less than three high quality
spots on a slide were discarded. After subtraction of
median background from median signal intensities, the
expression ratios (ER) were calculated. Lowess normaliza-
tion was performed first for the whole slide and next for
twelve rows and four columns per slide. The differential
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expression was assessed by difference of the mean log-ER
from zero (6 spot replicates per each gene, Student's t-test,
p < 0.01). The log-ER values in individual liver samples
were compared with t-test (p < 0.05). Data were submit-
ted to GEO (GPL6154).

Quantitative real-time RT-PCR (qPCR)

qPCR primers (Table 3) were designed using the Vector
NTI software (Invitrogen) and synthesized by Invitrogen.
To avoid genomic DNA amplification, amplicons were
when possible placed over introns and product size and
specificity were confirmed by agarose gel electrophoresis
and melting curve analysis (Tm calling; LightCycler 480,
Roche Diagnostics, Mannheim, Germany). PCR efficiency
(E) was determined from tenfold serial dilutions of cDNA
for each primer pair and calculated according to Rasmus-
sen [53]. Each pair of primers was tested on different sam-
ples in the same plate to ensure optimal reproducibility
and repeated testing was performed on whole template
setup or a random selection of samples to ensure inter-
assay reproducibility. As common reference gene 18S
rRNA was used, which was previously optimised and val-
idated [54]. Four potential reference genes were tested
(18S rRNA, EF-1alpha and two other non-regulated genes
from the microarray results; SEC13-related protein and
NADH-ubiquinone oxidoreductase 19 kDa subunit)
using the BestKeeper [55] and GeNorm [56] software,
however only 18S rRNA met qualifications of stability.
PCR assays were optimized using 2 x SYBR® Green Master
Mix (Roche Diagnostics) and varying amounts of cDNA
and primer concentrations. Optimal PCR conditions in a
12 ul reaction volume were 3 ul 1:10 diluted cDNA for all
assays (1:2000 for 18S rRNA). Primer concentrations were
0.4-0.6 uM. PCR was performed in duplicates (triplicates
for E-curves) in 96-well optical plates on LightCycler 480
(Roche Diagnostics). Running conditions were 5-10 min
pre-incubation following 40 cycles of 95°C for 5 sec,
60°Cfor 15 sec, 72°C for 15 sec. Cycle threshold (Cy) val-
ues were calculated using both the fit points and second
derivative methods (Roche Diagnostics), with respective
rejection of C;values above 37 and 35. Relative expres-
sion of mRNA was calculated using the AAC; method
adjusted for E. Statistics was calculated using Unistat ver-
sion 5.5 (Unistat, London, UK). Difference between
groups was analyzed with ANOVA with subsequent New-
man-Keuls test (p < 0.05). The design of analyses and
numbers of samples are indicated in Table 3.

Development and verification of predictors based on qPCR
analyses

Eight genes were chosen for the development of predictors
based on results from microarray analyses of the liver
(Table 3). A training group included six fish from EM plus
six fish from LM. The Cvalues as determined by qPCR
were processed with linear discriminant analyses using
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Statistica 6.0. The prediction function was verified with
independent samples from all study groups (10 individu-
als from control, 9 from EM, 14 from IM and 12 from
LM).
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