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Abstract
Background: Interspecies sequence comparison is a powerful tool to extract functional or
evolutionary information from the genomes of organisms. A number of studies have compared
protein sequences or promoter sequences between mammals, which provided many insights into
genomics. However, the correlation between protein conservation and promoter conservation
remains controversial.

Results: We examined promoter conservation as well as protein conservation for 6,901 human
and mouse orthologous genes, and observed a very weak correlation between them. We further
investigated their relationship by decomposing it based on functional categories, and identified
categories with significant tendencies. Remarkably, the 'ribosome' category showed significantly
low promoter conservation, despite its high protein conservation, and the 'extracellular matrix'
category showed significantly high promoter conservation, in spite of its low protein conservation.

Conclusion: Our results show the relation of gene function to protein conservation and
promoter conservation, and revealed that there seem to be nonparallel components between
protein and promoter sequence evolution.

Background
Comparative analysis is a powerful approach to extract
functional or evolutionary information from biological
sequences (reviewed in [1-3]). There were many pioneer-
ing works on the molecular evolution of mammalian pro-
tein sequences [4], which were followed by large scale
comparative analyses between species. Wolfe and Sharp
[5] analyzed a collection of 363 mouse and rat ortholo-
gous gene pairs, and Murphy [6] examined 615 pairs of
orthologous genes between human and rodents. Maka-

lowski et al. [7] performed a comparative analysis for
1,196 cDNA pairs between human and rodents. These
studies revealed that the evolutionary rates of protein
sequences depend on the protein functions. For example,
ribosomal proteins and Ras-like GTPases are highly con-
served [7], while proteins for antimicrobial host defenses
are highly divergent [6].

On the other hand, comparisons of upstream non-coding
sequences have been conducted to investigate the regula-
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tory sequences. The complete sequences of mammalian
genomes [8-10] facilitated large scale comparisons of
non-coding sequences, which provided insights about
regulatory sequences. Iwama and Gojobori [11] com-
pared the upstream sequences of 3,750 human-mouse
orthologous gene pairs and found that transcription factor
genes, particularly those related to developmental proc-
esses, show high upstream sequence conservation. Lee et
al. [12] also reported that genes involved in adaptive proc-
esses tend to have highly conserved upstream regions in
mammalian genomes. Choi et al. [13] investigated the
levels of non-coding conservation, focusing on tissue-spe-
cific genes.

While many efforts have been made to examine protein
sequence conservation or regulatory sequence conserva-
tion, the relationships between them are poorly under-
stood. Although several researchers have addressed a
similar issue, where the relationship between protein evo-
lution and regulatory evolution was examined based on
microarray expression data [14-19], there is a discrepancy
among their conclusions. Some of the researchers con-
cluded that these two kinds of evolution are decoupled
[14,17], while others claimed that there was indeed a cor-
relation between them [15,16,18,19]. Since a substantial
amount of the regulatory information is embedded in the
promoter region, which is located proximal to the tran-
scriptional start site, examining the protein sequence evo-
lution in relation to the promoter sequence is an
alternative approach to address this problem. Recently,
Castillo-Davis et al. [20] made the first investigation of the
relationship between protein and cis-regulatory sequence
evolution using nematode genomes, and observed a weak
correlation. As a step to broaden our understanding of
genome evolution and function, it seems important to
examine these sequences in mammalian genomes, and to
analyze them in detail to dissect the relationship. How-
ever, such a sequence level analysis has not been carried
out for mammals. One of the main problems is the precise
determination of the TSS, which is indispensable for iden-
tifying reliable promoter regions.

Experimentally validated TSS information can provide a
basis for a reliable promoter analysis. Based on large-scale
collections of full-length cDNAs [21-24], our group con-
structed DBTSS, database of transcriptional start sites
[25,26], which enabled the reliable identification, annota-
tion and analysis of promoter regions [27-29]. Since
abundant TSS data for human and mouse were integrated
into DBTSS, large scale cross-species comparisons of pro-
moter regions became possible [30,31]. Recently, our
group reported an updated version of DBTSS [32], in
which the amount of data was significantly increased.

In this study, we compared promoter sequences as well as
protein sequences for 6,901 human and mouse ortholo-
gous genes, aiming at two points. First, we carried out a
comprehensive comparison of human and mouse pro-
moter sequences, to examine the relationship between
promoter conservation and gene function. Second, we
tried to elucidate what kinds of relationships exist
between promoter conservation and protein conservation
in mammals. In the second part, we not only examined
the extent of correlation between them, but also investi-
gated the relationship in further detail, by decomposing it
based on the functional categories of genes. The results
revealed that there seem to be nonparallel components
between protein and promoter sequence evolution.

Results
Promoter sequence comparison between human and 
mouse
We began the analysis with 8,429 promoter pairs of one-
to-one orthologous genes between human and mouse.
These pairs were compared by using the local alignment
program water from the EMBOSS package [33]. The
resulting distributions of the alignment scores are shown
in Figure 1. The distribution has two peaks: a major peak
around 1000, and a minor peak a little lower than 100.
The minor peak corresponds to the negative control distri-
bution created from randomly shuffled promoter pairs
(depicted with a dashed line), indicating the presence of
non-orthologous promoters that are not evolutionally
related to each other (for an explanation of this phenom-
enon, see Discussion). The apparent separation of the
major and minor peaks indicates that we can discriminate
orthologous promoters from non-orthologous ones by
examining the local alignment scores. For the following
analyses, we used the 6,901 promoter pairs with align-
ment scores ≥ 200 (82% of the initial data set) to elimi-
nate non-orthologous pairs. The threshold of 200 was
chosen so that the proportion of non-orthologous pairs
with scores over the threshold was low enough: 200 is the
1.5 percentile of the negative control distribution, and the
height of the minor peak is 0.16 times that of the negative
control, and thus the proportion of non-orthologous
pairs with scores ≥ 200 is estimated to be 0.24% (see Addi-
tional file 1). It was possible that the offset of representa-
tive TSSs between human and mouse could bias the
alignment scores. We evaluated this effect by estimating
the offset from the differences in the local alignment end
positions and shifting the mouse promoter as much as the
offset. As a result of the promoter alignment with the off-
set correction, we confirmed that the bias was very small
(data not shown). Therefore, we retained the original
approach.
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Relationship between gene function and promoter 
conservation
Based on the promoter sequence comparison between
human and mouse for the 6,901 genes, we investigated
the relationship between gene function and promoter
conservation. Annotations of genes were made by associ-
ating human genes with GO terms. To this end, we devel-
oped a slimmed-down version of the GO vocabulary,
containing 52 terms for biological process (P), 22 for cel-
lular component (C) and 26 for molecular function (F)
(see Materials and Methods and Additional file 2 for
details). We tested whether the alignment scores for a set
of genes associated with a GO term are significantly high
or low by a Wilcoxon rank sum test. The resulting GO
terms with high promoter conservation are listed in Table
1, and those with low conservation are in Table 2 (only
terms with a P-value < 0.01 are in the tables; for the com-
plete list of results, see Additional file 3). Figure 2 shows
the distributions of the alignment scores for several GO
terms with significant tendencies (all of the distributions

for the GO terms listed in Table 1 and 2 are shown in
Additional file 4). When we tried the global alignment
score, we obtained quite similar tendencies (data not
shown). We also confirmed that eliminating the coding
sequences from the promoter dataset does not signifi-
cantly influence the observed tendencies (data not shown,
see Materials and Methods for details).

In Table 1, we confirmed that the most significant terms
are P:development and P:regulation of transcription
[11,12]. Furthermore, an overall observation of the table
revealed that the terms with high promoter conservation
are related to signaling events inside as well as outside of
the cell (P:cell-cell signaling, P:cell surface receptor linked
signal transduction, P:ion transport, and P:intracellular
signaling cascade). On the other hand, Table 2 covers a
wide range of metabolism (P:lipid metabolism, P:carbo-
hydrate metabolism, P:protein biosynthesis, P:proteoly-
sis, P:electron transport, F:oxidoreductase activity,
F:nuclease activity). Table 2 also contains cellular compo-
nents, such as C:mitochondrion, C:lysosome, C:ribosome
and C:peroxisome, which correspond to the metabolism-
related terms.

Relationship between gene function and protein 
conservation
The protein conservation tendencies were examined in a
similar manner to those of the promoter conservation,
using protein sequences obtained from the RefSeq data-
base. Since the alignment score largely depends on the
protein length, we used the percentage identity for protein
sequences, instead of the alignment scores. GO terms
showing high protein conservation are listed in Table 3,
and those with low conservation are in Table 4 (only
terms with a P-value < 0.01; for the complete list of results,
see Additional file 5). Figure 3 shows the distributions of
conservation levels for several GO terms with significant
tendencies (all of the distributions for the GO terms in
Table 3 and 4 are shown in Additional file 6). When we
tried global alignment, we obtained quite similar tenden-
cies (data not shown), which is reasonable, given that the
coverages of the local alignments were mostly over 95%
(data not shown).

Table 3 includes well-known categories for high protein
conservation: actins [4], ribosomal proteins, Ras-like
GTPases [7] and RNA processing [34], and for low protein
conservation, P:immune response [6]. By looking over
Table 3, we realized that the categories are composed of a
series of processes required for gene expression; from
intracellular signaling cascade and regulation of transcrip-
tion, to RNA processing, protein biosynthesis and intrac-
ellular transport. We also find C:cytosol and
C:nucleoplasm, where the above-mentioned processes
take place, and C:actin cytoskeleton, which is known to be 

Distribution of alignment scores of human and mouse pro-motersFigure 1
Distribution of alignment scores of human and 
mouse promoters. The distribution for the orthologous 
gene pairs is depicted by the solid line, and the distribution 
for the negative control pairs is shown by the dashed line. 
The x-axis is shown in a logarithmic scale.
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Table 1: GO categories with high promoter conservation. Terms of biological process are labeled as P, cellular component as C, 
molecular function as F.

GO term Number of genes P-value

P:development 649 0
P:regulation of transcription 602 1.67E-15
F:transcription factor activity 263 3.44E-15
P:transcription 640 4.11E-14
P:nervous system development 154 1.99E-10
P:organ development 213 2.30E-10
P:signal transduction 994 5.19E-10
F:DNA binding 628 3.19E-08
P:morphogenesis 212 9.78E-08
P:cell surface receptor linked signal transduction 363 2.23E-06
P:negative regulation of metabolism 107 1.02E-05
F:receptor binding 221 1.90E-05
P:cell-cell signaling 176 2.27E-05
F:cytoskeletal protein binding 137 4.97E-05
P:negative regulation of biological process 327 6.87E-05
F:ion channel activity 98 9.87E-05
C:extracellular matrix 111 0.000119
C:actin cytoskeleton 85 0.000164
P:cell differentiation 173 0.000179
P:cell adhesion 242 0.000182
P:cellular morphogenesis 111 0.000607
F:ion transporter activity 237 0.001493
P:protein amino acid phosphorylation 213 0.001593
P:ion transport 239 0.001825
F:protein kinase activity 220 0.002033
P:intracellular signaling cascade 431 0.006872
P:chromosome organization and biogenesis 105 0.007832
C:plasma membrane 608 0.008026

Table 2: GO categories with low promoter conservation. Terms of biological process are labeled as P, cellular component as C, 
molecular function as F.

GO term Number of genes P-value

C:mitochondrion 398 5.31E-09
F:oxidoreductase activity 309 2.07E-08
C:lysosome 77 9.94E-08
C:ribosome 114 7.54E-07
P:lipid metabolism 260 1.04E-06
P:carboxylic acid metabolism 225 4.43E-06
F:structural constituent of ribosome 130 5.76E-06
P:amino acid metabolism 112 0.000102
P:electron transport 151 0.000236
P:catabolism 260 0.000251
P:carbohydrate metabolism 220 0.000278
C:peroxisome 49 0.000623
P:protein biosynthesis 283 0.00063
F:nuclease activity 60 0.000772
P:response to biotic stimulus 318 0.000893
C:nucleolus 63 0.004455
P:immune response 270 0.005437
F:iron ion binding 111 0.0055
F:peptidase activity 227 0.005592
P:proteolysis 259 0.006844
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Distribution of alignment scores of human and mouse promoters for several categories with significant tendenciesFigure 2
Distribution of alignment scores of human and mouse promoters for several categories with significant ten-
dencies. For the high conservation tendency, actin cytoskeleton (A) and extracellular matrix (B), for the low conservation ten-
dency, lysosome (C) and ribosome (D). For each of A-D, the solid line shows the distribution of the alignment scores for genes 
with the specific GO term, and the dashed line shows the distribution for the control gene set (see Materials and Methods for 
details).
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involved in transcription [35]. On the other hand, in
Table 4, the terms with low conservation are related to
extracellular regions or cell surface (C:extracellular space,
C:extracellular matrix, C:plasma membrane, F:receptor
activity, F:receptor binding, P:cell-cell signaling or P:cell
adhesion) or to membrane-bounded organelles (C:lyso-
some, C:mitochondrion or C:peroxisome). Other terms,
such as F:oxidoreductase activity, F:peptidase activity,
F:nuclease activity, P:electron tansport and P:proteolysis,
correspond to the functions of these cellular components.

Relationship between promoter conservation and protein 
conservation
To examine the relationship between promoter conserva-
tion and protein conservation, we calculated the correla-
tion coefficient of promoter conservation (raw alignment
score obtained by water) and protein conservation (per-

centage identity obtained by water). This correlation was
very weak (the Kendall's rank correlation is 0.193, see
Additional file 7 for the scatter plot), suggesting that the
promoter and protein sequences are under different types
of selective pressure. We further investigated the relation-
ship between protein and promoter conservation in
detail, by decomposing it based on GO categories. From
Tables 1, 2, 3 and 4, the terms that have significant conser-
vation tendencies for both protein sequences and pro-
moter sequences were extracted and compiled as a 2 by 2
cross table (Table 5). Although this table was basically
made by the GO annotations of human genes, the results
of the same analysis based on mouse annotations are
superimposed, as both analyses were consistent. P:cell-
cell signaling was the only exceptional case, showing low
protein conservation based on human annotation and
high protein conservation on mouse annotation. An

Table 3: GO categories with high protein conservation. Terms of biological process are labeled as P, cellular component as C, 
molecular function as F.

GO term Number of genes P-value

F:GTPase activity 88 0
F:GTP binding 160 0
P:intracellular transport 350 0
P:small GTPase mediated signal transduction 126 1.11E-16
F:RNA binding 290 1.33E-15
C:cytosol 171 3.70E-11
P:RNA processing 198 3.25E-10
C:Golgi apparatus 216 5.63E-10
P:intracellular signaling cascade 431 2.57E-09
C:spliceosome complex 37 6.46E-09
P:transcription 640 1.76E-08
P:regulation of transcription 602 2.02E-08
F:ATP binding 520 2.85E-08
C:actin cytoskeleton 85 5.37E-08
P:vesicle-mediated transport 190 7.02E-08
P:cytoskeleton organization and biogenesis 155 9.26E-08
F:cytoskeletal protein binding 137 1.44E-07
P:secretory pathway 102 7.91E-07
C:nucleoplasm 107 1.22E-06
C:ribosome 114 1.36E-06
P:protein biosynthesis 283 1.56E-06
P:ubiquitin cycle 235 2.86E-06
F:ion channel activity 98 7.08E-05
P:protein amino acid phosphorylation 213 0.000101
F:ATPase activity 130 0.000143
C:endomembrane system 163 0.000154
F:protein kinase activity 220 0.000178
P:nervous system development 154 0.000293
F:transcription factor activity 263 0.000465
C:microtubule cytoskeleton 115 0.000595
C:vesicle 86 0.000732
F:structural molecule activity 307 0.000801
F:structural constituent of ribosome 130 0.000843
F:ubiquitin-protein ligase activity 144 0.001969
C:organelle membrane 242 0.004122
P:cell cycle 340 0.006445
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examination of the contents of the two gene sets revealed
that the observed difference seems to be derived from the
different GO annotation status between human and
mouse. Specifically, 151 genes out of 176 are annotated as
P:cell-cell signaling only in human, and these genes seems
to contribute to the low protein conservation tendency
(see Additional file 8). Since human annotations are more
abundant, we made the tables with human annotations,
and added marks for mouse annotations.

Table 5 illustrates the relationship between protein con-
servation and promoter conservation, on the functional
category basis. GO terms in the upper right cell, which
have high conservation for both protein and promoter
sequences, are related to transcription regulation or intra-
cellular signaling. In contrast, the membrane-bounded
organelles engaged in metabolism are in the lower left
cell, showing low conservation for both protein and pro-
moter. Interestingly, several terms are in the upper left and
lower right cell, indicating opposite characteristics for pro-
tein and promoter conservation. For example, although
genes related to signaling events showed high promoter
conservation, they do not always have high protein con-
servation, but can even have low protein conservation;
P:cell-cell signaling shows low protein conservation,

while F:regulation of transcription shows high protein
conservation. An analogous situation can be seen in the
case of genes with low promoter conservation; among
metabolism-related terms, C:ribosome shows high pro-
tein conservation, while C:mitochondrion shows low pro-
tein conservation. These results illustrate that there seems
to be a nonparallel component in protein and promoter
sequence evolution.

Protein and promoter conservation of ribosomal proteins
Unlike other categories, C:ribosome shows a bimodal dis-
tribution of protein conservation (Figure 3B); one is
around 100% identity, and the other ranges from 70% to
90%. Consistently, several categories related to C:ribos-
ome (P:protein biosynthesis and F:structural constituent
of ribosome) also show bimodal distributions (Addi-
tional file 6). This result could be due to different evolu-
tionary rates between cytoplasmic and mitochondrial
ribosomal protein [36]. Therefore, we checked the anno-
tations for the genes in the C:ribosome category, using the
NCBI RefSeq database [37]. In fact, the peak with high
protein conservation is substantially composed of cyto-
plasmic ribosomal proteins, while the peak with lower
protein conservation mainly comprises nuclear-encoded
mitochondrial ribosomal proteins (Additional file 9).

Table 4: GO categories with low protein conservation. Terms of biological process are labeled as P, cellular component as C, 
molecular function as F.

GO term Number of genes P-value

P:response to biotic stimulus 318 4.08E-49
P:immune response 270 1.16E-44
C:extracellular space 179 3.49E-37
P:response to stress 446 5.05E-26
F:oxidoreductase activity 309 2.35E-12
F:receptor activity 391 1.11E-11
F:receptor binding 221 2.15E-11
P:lipid metabolism 260 5.95E-11
P:electron transport 151 7.64E-10
C:lysosome 77 6.38E-08
F:peptidase activity 227 6.15E-07
P:cell proliferation 258 1.65E-06
P:cell adhesion 242 2.16E-06
C:mitochondrion 398 3.00E-05
P:proteolysis 259 4.53E-05
C:extracellular matrix 111 5.52E-05
C:peroxisome 49 8.02E-05
F:nuclease activity 60 8.50E-05
C:plasma membrane 608 0.000291
P:apoptosis 244 0.001373
P:carboxylic acid metabolism 225 0.002527
P:response to abiotic stimulus 148 0.004444
P:positive regulation of biological process 275 0.004599
P:response to chemical stimulus 129 0.004626
P:lipid biosynthesis 101 0.005576
P:cell-cell signaling 176 0.006021
P:sensory perception 111 0.008042
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Distribution of percentage identities of human and mouse protein sequencesFigure 3
Distribution of percentage identities of human and mouse protein sequences. For the high conservation tendency, 
actin cytoskeleton (A) and ribosome (D), for the low conservation tendency, extracellular matrix (B) and lysosome (C). For 
each of A-D, the solid line shows the distribution of the identities for genes with the specific GO term, and the dashed line 
shows the distribution for the control gene set (see Materials and Methods for details).
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Notably, the general protein conservation tendency
described in previous sections holds here: proteins in the
cytosol show high protein conservation, while proteins in
membrane-bounded organelles, such as mitochondria,
have low protein conservation.

Besides the protein conservation, we examined the pro-
moter conservation tendency for the two subsets of the
C:ribosome category, cytoplasmic and mitochondrial
ribosomal proteins. In contrast to the protein conserva-
tion, we could not observe a significant difference in the
conservation levels between these two subgroups (P-value
= 0.34 by Wilcoxon rank sum test; see Additional file 10
for details of the distributions). The plot of promoter con-
servation levels against protein conservation is shown in
Figure 4. Apparently, the protein conservation is drasti-
cally different between cytoplasmic and mitochondrial
ribosomal proteins, whereas the distribution of promoter
conservation is quite similar. This result underscores the
decoupled property of protein and promoter sequence
evolution.

Discussion
When we conducted a comprehensive comparison of pro-
moter sequences for human and mouse orthologous

genes, we noted that the promoter pairs of orthologous
genes contained non-orthologous promoters. The source
of these non-orthologous promoters could be the poten-
tial false pairings in the orthologous table. Another possi-
ble reason is the presence of alternative promoters
[38,39], which can result in the failure to select the corre-
sponding TSSs between human and mouse. The other
possible cause is the existence of species-specific promot-
ers; for example, our group recently reported that there are
human promoter sequences whose counterparts are com-
pletely missing in the mouse genomic sequences [40].
Nevertheless, despite these problems that may cause mis-
pairing of non-orthologous promoters, as much as 82% of
the promoter pairs were shown to be evolutionally related
in the data set. Although the dynamic aspects of TSSs, such
as TSS diversification ad TSS turn over, have been high-
lighted recently [38,39,41,42], our results show that the
representative TSS for each gene has been generally sus-
tained during the evolution of the human and mouse lin-
eages.

We focused on gene pairs with promoters that appeared to
be truly evolutionally related, and examined the relation-
ship between promoter conservation and gene function.
We found that the terms with high promoter conservation

Table 5: Summary of GO categories that show significant conservation tendencies for both protein and promoter sequences. 

Promoter conservation
High F:receptor binding (221) * P:regulation of transcription (602) *

P:cell-cell signaling (176) * F:transcription factor activity (263) *
C:extracellular matrix (111) * P:transcription (640) *
P:cell adhesion (242) P:nervous system development (154) *
C:plasma membrane (608) F:cytoskeletal protein binding (137) *

F:ion channel activity (98) *
C:actin cytoskeleton (85) *
P:protein amino acid phosphorylation (213) *
F:protein kinase activity (220) *
P:intracellular signaling cascade (431) *

Low P:proteolysis (259) * P:protein biosynthesis (283) *
F:peptidase activity (227) * F:structural constituent of ribosome (130) *
P:immune response (270) C:ribosome (114) *
P:response to biotic stimulus (318)
F:nuclease activity (60) *
C:peroxisome (49) *
P:electron transport (151) *
P:carboxylic acid metabolism (225)
P:lipid metabolism (260) *
C:lysosome (77) *
F:oxidoreductase activity (309) *
C:mitochondrion (398) *

Low High
Protein conservation

In each cell, the GO categories are ordered by promoter conservation. The number of genes for each term is shown in parentheses. GO 
annotations associated with human genes were used to make this table. '*' represent GO terms that show a significant tendency not only for the 
human annotation but also for the mouse annotation.
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are related to signaling events inside as well as outside of
the cell. Considering that the promoter conservation lev-
els reflect the regulatory information contained in the
sequence, the results suggest that these genes require more
regulatory information embedded in the promoter. It is
reasonable to suppose that more regulatory information
enables more sophisticated changes of expression levels,
thereby allowing these proteins to work effectively as sig-
naling molecules. On the other hand, genes involved in
metabolism, which showed low promoter conservation,
may require relatively less regulatory information in their
promoter sequences. Consistently, a recent study revealed
that housekeeping genes tend to show reduced upstream
sequence conservation [43]. Specifically, in relation to
ribosomal proteins, Perry et al. [44] pointed out that most
of their promoters contain transposable elements, result-
ing in a low conservation. The reduced regulatory infor-
mation in the promoters of ribosomal proteins might be
compensated by the translational regulation mechanism
directed by the 5' terminal oligopyrimidine sequence in
their mRNAs [45].

Related discussions on regulatory sequence conservation
have been made for specific categories of genes. Iwama
and Gojobori [11] found that transcription factor genes,
particularly those related to developmental processes,
show high upstream sequence conservation, suggesting
that these genes form highly connected regulatory net-
works. Lee et al. [12] reported that genes involved in adap-
tive processes tend to have highly conserved upstream
regions in mammalian genomes, and also suggested the
complex combinatorial circuitry of their transcriptional
regulation. There have been other approaches based on
whole genome comparisons, where highly conserved
non-coding regions were found to be associated with
developmental genes [34,46,47]. However, as Lee et al.
suggested [12], most of these regions are far from genes
and have little overlap with promoter regions. Thus, it
seems that these regions are conserved independently
from the promoter regions.

The conserved elements in the promoter may be either
very short, or spread over a much longer region than the
1,200 bases. In both cases, our measures will report poor
conservation when there is just a right amount of it. The
local alignment score we used to measure promoter con-
servation can be roughly considered as a combination of
identity and alignment length. Identity reflects the rates of
substitutions and indels, and length reflects larger inser-
tions, such as transposon insertions. When we examined
the promoter conservation tendency for each GO term, by
using alignment length or percentage identity as a meas-
ure of conservation, the tendencies were consistent with
each other (Additional file 11). Thus, the evolutionary
pressures of each functional category on alignment length
and identity work in the same direction.

When we investigated the relationship between protein
conservation and promoter conservation in mammals, we
observed a very weak correlation between them. This sug-
gests that substantial portions of the evolutionary changes
of promoter and protein sequences are under different
types of selective pressures. This observation is consistent
with the nematode [20] and yeast [48] cases, and thus the
very weak correlation between protein and promoter con-
servation might be universal from unicellular organisms
to higher vertebrates.

In order to understand the relationship of protein and
promoter sequence conservation in terms of gene func-
tions, we examined it by a decomposition based on GO
categories. When we dissected not only promoter conser-
vation but also protein conservation, different trends were
observed for proteins and promoters. As for proteins, high
conservations were observed for terms related to a wide
range of gene expression processes that occur in the
cytosol and the nucleoplasm, while low conservations

Scatter plot of protein conservation and promoter conserva-tion for two subsets of ribosomal proteinsFigure 4
Scatter plot of protein conservation and promoter 
conservation for two subsets of ribosomal proteins. 
Crosses represent cytoplasmic ribosomal proteins (58 
genes). Dots represent mitochondrial ribosomal proteins (41 
genes). The conspicuous outlier corresponding to (56, 302) 
does not seem to be an actual ribosomal protein, and might 
have been erroneously annotated by an electronic procedure 
(see Additional file 9).
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were observed for terms related to extracellular regions,
cell surface and membrane-bounded organelles (such as
mitochondrion, peroxisome and lysosome). Although the
results for the membrane-bounded organelles seem sur-
prising, considering that they often carry out basic, con-
served metabolic process, they can also be considered as
being topologically "outside" of the cell, given that they
are on the opposite side of the membrane from the
cytosol. The problem of the determinant of the protein
evolutionary rate [49,50] needs to be solved to fully clarify
the phenomenon. Nevertheless, our observation provides
the trends of the protein sequence evolution in terms of
functional categories. Comparing these trends with those
of promoters, we found that these two kinds of trends are
nonparallel: protein conservation depends on whether
they are on the cytosolic side or not, while promoter con-
servation seems to depend on whether the gene is related
to signaling or metabolism. Specifically, cytoplasmic
ribosomal proteins, which exist in the cytosol and are
engaged in metabolism, have high protein conservation
in spite of low promoter conservation. On the other hand,
cell-cell signaling genes, which act outside or at the surface
of the cell to convey signals, show low protein conserva-
tion in spite of high promoter conservation. These terms
may provide evidence that decoupled properties exist
between protein and promoter sequence evolution.

Conclusion
In this study, we examined the relationship between pro-
tein conservation and promoter conservation in detail, by
decomposing it based on functional categories. Our
results show the relation of gene function to protein con-
servation and promoter conservation, and revealed that
there seem to be nonparallel components between pro-
tein and promoter sequence evolution. We believe that
this study will provide a basis to understand the evolution
of mammalian genes and their regulation. Further efforts
are now being made to construct reliable promoter
sequences based on full-length cDNAs. Future analyses of
multiple species will clarify the evolutionary mechanisms
of the coding and regulatory sequences more precisely.

Methods
Sequence comparison
From DBTSS, we obtained human and mouse ortholo-
gous gene pairs with experimentally validated TSS infor-
mation. The definition of an orthologous relationship is
based on HomoloGene [51]. One-to-multi orthologous
relationships were removed, resulting in 8,429 one-to-
one orthologous gene pairs. Since the TSSs for a given
gene are not fixed but vary on the chromosome, a repre-
sentative TSS was defined for each gene, as described in
Yamashita et al. [27]. Based on the positions of represent-
ative TSSs, sequences from -1000 to +200 were defined as
putative promoter sequences. Promoters of orthologous

gene pairs were aligned by the local alignment program
water from the EMBOSS package [33]. In addition, pro-
moter pairs to be used as a negative control were created
by shuffling the original pairings, and were aligned simi-
larly. The protein sequences of orthologous gene pairs
were obtained from the NCBI reference sequence (RefSeq)
database [37]. They were also aligned with water. For
additional analyses by global alignments, needle from the
EMBOSS package was used. Furthermore, we confirmed
the results after eliminating coding sequences contained
in promoter sequences, as follows. The coding sequences
downstream of the TSSs were removed by restricting the
promoter sequences from -1000 to -1 of the TSSs. In addi-
tion, since 16% of the shortened sequences (1,101 out of
6,901) still contained coding sequences, we used the
other 5,800 sequences for the additional analyses.

To display the distributions of the alignment scores, they
were transformed by common logarithmic transforma-
tion, and then the densities were estimated by R with the
Gaussian kernel and a band width of 0.5. For protein
sequences, protein diversity, instead of identity, was sub-
jected to the logarithmic transformation. In addition, to
avoid zero before the logarithmic transformation, a small
number was added. Thus, 105 - identity was subjected to
the logarithmic transformation. This transformation is
similar to that described in a previous study on protein
evolutionary rates [49].

Annotations of genes
Annotations of genes were based on the gene ontology
(GO) [52]. The GO annotations for the human and
mouse genes were obtained from the gene2go file at NCBI
[53]. In this study, to summarize the attributes of the
genes, we developed a slimmed-down version of the GO
vocabulary (GO slim), as follows. A set of high level terms
was selected to cover most aspects of each of the three
ontologies (52 terms for biological process, 22 terms for
cellular component and 26 terms for molecular function;
for the complete list of selected GO terms, see Additional
file 2). Basically, GO terms containing over 100 genes
were selected, although well-known cellular components
with smaller number of genes, such as C:lysosome and
C:peroxisome, were also included. Overly general terms,
such as C:cell, P:physiological process and F:binding, were
removed, because their biological interpretation seems
uninformative. Each GO term was mapped to the GO slim
terms using map2slim.pl from the go-perl package [54].
Note that several GO slim terms can be assigned to a sin-
gle gene; that is, the GO slim terms are not mutually exclu-
sive. In the other sections of the paper, the GO slim terms
are referred to as "GO term" for short.
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Significance test for the extent of conservation
We tested whether the alignment scores (or percentage
identities) of a set of genes associated with a given GO
term are significantly high or low by a Wilcoxon rank sum
test. It should be noted that the genes used as a control
group of a term are those that are not associated with the
term, but with other terms. For example, in the case of
'transcription' of biological process, 640 genes are associ-
ated with the term among 6,901 genes. Of the 6,261 genes
that are not associated with 'transcription', 2,116 genes
are missing terms of biological processes. Since these
"uncharacterized" genes had low sequence conservation
tendencies, we eliminated them from the control gene set.
The resulting control set in the case of 'transcription' is
thus composed of 4,145 genes.
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