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Abstract

Background: The cell cycle has long been an important model to study the genome-wide
transcriptional regulation. Although several methods have been introduced to identify cell cycle
regulated genes from microarray data, they can not be directly used to investigate cell cycle
regulated transcription factors (CCRTFs), because for many transcription factors (TFs) it is their
activities instead of expressions that are periodically regulated across the cell cycle. To overcome
this problem, it is useful to infer TF activities across the cell cycle by integrating microarray
expression data with ChlIP-chip data, and then examine the periodicity of the inferred activities. For
most species, however, large-scale ChIP-chip data are still not available.

Results: We propose a two-step method to identify the CCRTFs by integrating microarray cell
cycle data with ChIP-chip data or motif discovery data. In S. cerevisiae, we identify 42 CCRTFs,
among which 23 have been verified experimentally. The cell cycle related behaviors (e.g. at which
cell cycle phase a TF achieves the highest activity) predicted by our method are consistent with the
well established knowledge about them. We also find that the periodical activity fluctuation of some
TFs can be perturbed by the cell synchronization treatment. Moreover, by integrating expression
data with in-silico motif discovery data, we identify 8 cell cycle associated regulatory motifs, among
which 7 are binding sites for well-known cell cycle related TFs.

Conclusion: Our method is effective to identify CCRTFs by integrating microarray cell cycle data
with TF-gene binding information. In S. cerevisiae, the TF-gene binding information is provided by
the systematic ChIP-chip experiments. In other species where systematic ChlP-chip data is not
available, in-silico motif discovery and analysis provide us with an alternative method. Therefore,
our method is ready to be implemented to the microarray cell cycle data sets from different
species. The C++ program for AC score calculation is available for download from URL http:/leili-

lab.cmb.usc.edu/yeastaging/projects/project-base/.

Background genome-wide analysis have been performed using micro-
Eukaryotic cell cycle is precisely controlled and regulated  array technologies [1-5]. In these studies, expression levels
at the transcriptional, post-transcriptional, and post-trans-  across the cell cycle were measured simultaneously for

lational level. To identify cell cycle regulated genes, several ~ thousands of mRNA transcripts. In order to identify the
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subset of periodically expressed genes in the resulting
microarray gene expression time series data, a number of
computational approaches have been proposed, includ-
ing Fourier analysis [2,6], partial least squares regression
[7], Fisher's G-test [8], model-based method [9], and
methods using some threshold criteria [10]. These
approaches provided useful tools for periodicity analysis
in microarray time series data and have led to the identifi-
cation of hundreds of cell cycle regulated genes. For exam-
ple, Spellman et al. found that about 800 genes are
periodically expressed across the cell cycle in S. cerevisiae.

Transcription factors (TFs) play critical roles in gene
expression regulation. To understand how the cell cycle is
regulated and how cell cycle regulates other biological
processes, such as DNA replication and amino acids bio-
synthesis, it is useful to identify the cell cycle regulated
transcription factors (CCRTFs). We note that in this paper
we use the term "cell cycle regulated" rather than "cell
cycle regulator” as used in previous studies, because it is
often difficult to infer the direction of regulation only
from the microarray cell cycle data. The transcription fac-
tors whose regulatory activities fluctuate periodically
across the cell cycle could be either cell cycle regulator or
effector of the cell cycle regulation. Moreover, the expres-
sion levels of TFs in microarray data may not accurately
reflect their activities in transcription regulation. First, TFs
are often subject to various post-transcriptional and post-
translational modifications, which abolish the significant
correlations between their activities and expression levels.
Second, TFs are usually expressed in relatively low levels
[11,12] and therefore expression changes measured by
microarray hybridization may not be accurate. Therefore,
identification of CCRTFs should be based on the activities
of TFs rather than their expression levels. Considering this
issue and by integrating the microarray cell cycle data with
TF-gene connectivity data from ChIP-chip experiment,
several methods have been suggested to identify yeast cell
cycle transcription factors [13-15], to infer cooperativity
among the transcription factors controlling the cell cycle
in yeast [16], to model the network of yeast cell cycle tran-
scription factors [17], or to reconstruct the transcriptional
regulatory modules of the yeast cell cycle [18].

In this paper, we suggest a two-step method to identify the
CCRTFs in yeast. First, for each TF we infer its activity in
each time point of the microarray data, resulting in an
activity profile for it. This is achieved by integrating micro-
array expression data with systematic ChIP-chip data [19]
or motif discovery data [20] using the BASE method [21].
In the second step we use the Fisher's G-test to examine
the periodicity of these TF activity profiles to identify the
CCRTFs. Based on the combination of microarray data
and ChIP-chip data, we identify 42 CCRTFs at 4% false
discovery rate (FDR), including 23 experimentally vali-
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dated cell cycle TFs. More importantly, by combining
microarray expression data with in-silico motif discovery
data, we identify 8 motifs with known associated TFs at
3.5% FDR, among which 7 are associated with established
cell cycle TFs. Thus, our method is able to identify CCRTFs
in species other than S. cerevisiae, in which microarray cell
cycle data have been generated whereas large-scale ChIP-
chip data are still not available.

Results

Periodic activity fluctuation of TFs across the cell cycle
We integrate the microarray cell cycle gene expression data
with the ChIP-chip data to infer TF activities at 18 time
points of the microarray data, resulting in 203 activity
change score (AC score) profiles each corresponding to a
TF. These AC score profiles measure the activity fluctua-
tion of TFs at each of the 18 time points in the cell cycle.
The AC score for a TF reflects the relative activity of this TF
in the synchronized sample with respect to the non-syn-
chronized control at a time point. For a transcription acti-
vator, a positive AC score indicates its activity
enhancement and a negative AC score indicates its activity
reduction. For a transcription repressor, the inverse con-
clusion should be made. See section "Methods" for detail
definition and calculation of AC scores. Then average per-
iodogram is applied to these AC score profiles and the
original gene expression data (only the expressions for TF
coding genes are selected from the microarray data) to
investigate the existences of TFs that fluctuate periodically
in the activity and in the expression level, respectively.

As shown in Figure 1, the average periodogram exhibits a
dominate peak at the Fourier frequency of 0.11 in both
the inferred AC score data (Figure 1A) and the gene
expression data (Figure 1B), suggesting the existences of
periodical components. The Fourier frequency 0.11 corre-
sponds to the genuine frequency of the cell cycle, since the
microarray data covers exactly two cell cycles by 18 time
points. These results indicate that the existences of the cell
cycle regulated TFs can be detected at both the activity
level and the expression level. Nevertheles, when we test
the significance of periodicity for each of the TFs using the
Fisher's G-test, we find that much more TFs show periodic
fluctuation in the activity level (Figure 1C) than in the
gene expression level (Figure 1D). At the 0.01 significance
level, we identify 42 CCRTFs based on the inferred TF
activity profiles, whereas only 4 TFs are found to be cell
cycle regulated based on the original expression data.
These results confirm our hypothesis that cell cycle regu-
lation of TFs takes place mainly at the activity level rather
than at the gene expression level and as a consequence the
CCRTFs should be be identified based on their activities.

We note that the original microarray cell cycle data con-

tains four separate experiments, corresponding to four dif-
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Periodicity of TF activities and expression levels across the cell cycle. The average periodograms for inferred TF AC
score data and TF expression data are shown in (A) and (B), respectively. The Fisher's G-tests are applied to each of the 203
TF AC score profiles and expression profiles. Distributions of the resulting p-values are shown in (C) and (D), respectively.

ferent cell cycle synchronization method: eo-factor arrest,
temperature arrest by cdc15 mutant, temperature arrest by
cdc28 mutant, and elutriation, respectively. Our analysis
indicates that the a-factor arrest data achieves the highest
quality, since the average periodogram for the inferred TF
activity profiles from the other three data sets [see Addi-
tional File 1] exhibit one or multiple un-expected peaks,
which may result from noise or the effect of synchroniza-
tion treatment to the TF activities. Therefore, in this paper
we focus our analysis on the microarray cell cycle data
synchronized by o-factor arrest.

Cell cycle regulated TFs

We identify 42 CCRTFs that are periodically activated in a
cell cycle dependent manner at the 0.01 significance level,
among which 23 have been experimentally verified
according to previous studies [2,22-24]. The detail infor-
mation for these CCRTFs is listed in Table 1. As shown,
these CCRTFs include the well established cell cycle regu-
latory transcription factors: Mbp1, Swi4, Swi6, Mcm1,
Fkh2 and Ndd1 [25].

Figure 2 demonstrates the inferred activity profiles and the
original gene expression profiles of four CCRTFs identi-
fied by our method. In these examples, the activity pro-
files exhibit an apparent signature of periodicity across the
cell cycle, whereas at the gene expression level the perio-
dicity can not be detected. According to our permutation
results, an AC score greater than 10 or less than -10 sug-
gests a strong evidence of TF activation or repression. As
shown, the activities of these four TFs vary dramatically
during the cell cycle, indicating that they may play impor-
tant regulatory roles in certain stages of the cell cycle.
However, their expression changes in the original micro-
array data are often neglectable and do not show substan-
tial variation across the cell cycle.

In the 42 CCRTFs identified by our method, 19 have not
been experimentally validated to be cell cycle regulated.
But several of them have been reported as putative cell
cycle TFs in several computational studies. For example,
Bas1 and Gat3 have been identified as cell cycle TFs by
Tsai et al. [13]; Abf1, Gat3, and Nrgl have been identified
by Wu et al. [18]; Hap2 has been identified by Yang et al.
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Table I: Cell cycle regulated transcription factors in yeast
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TFa Phaset p-value g-value Average AC score
M/GI Gl S G2
ABFI 2.0E-05 5.5E-04 -35 7.0 16 9.2
ASHI 6.0E-04 0.0055 -4.0 104 57 62
BASI 0.0011  0.0074 -0.3 -40 -23 |6
DAL80 1.3E-04 0.0019 4.1 -4.1 -46 -5.4
FKH2 M 7.8E-04 0.0064 -9.1 -11.4 46 164
FZFI 9.9E-04 0.0072 0.0 -7.6 -19 00
GAT3 9.9E-04 0.0072 -2.2 141 15 -69
GCR2 5.0E-05 9.0E-04 -2.9 -8.1 50 5.1
HAP2 |.6E-04 0.0020 -25 -6.0 28 34
HAP3 0.0077  0.035 2.1 -7.6 26 -l
HIRI S 8.0E-04 0.0064 -10.7 -1.2 13.5 7.0
HIR2 S 2.3E-04 0.0027 -12.5 -03 16.5 9.6
HIR3 S 5.0E-05 9.0E-04 -9.9 -1.4 13.8 7.7
IFHI 0.0075  0.035 0.8 93 47 74
KSSI 8.1E-04 0.0064 0.6 -6.1 -6.2 -20
MBPI GI,S 0 2.0E-04 -106 222 117 -I8
MCMI G2,M 0.0021 0.0l 1.5 79 -78 79
MET32 3.0E-05 6.4E-04 -0.6 -6.2 -03 5.2
MET4 0.0019  0.011 -8.0 2.3 1.4 127
MSNI 6.2E-04 0.0055 -4.4 1.7 55 37
NDDI M 5.3E-04 0.0052 -1.8 -13.3 -79 158
NRGI 0.0035 0018 2.4 -38 -38 -55
OoTUI M/GI 0.0019  0.011 0.8 9.7 42 -07
PHO2 I.1IE-04 0.0019 -3.1 3.1 20 38
REBI 0 8.0E-05 -2.0 74 15 65
RGMI 0.0063  0.031 -0.7 10.3 00 -6.0
RMEI 3.0E-05 6.4E-04 -5.0 27 5.9 53
SPT2 0.0022 0.012 -5.2 -5.2 5. 6.7
SRDI M/GI 0.0084  0.035 1.0 -10.3 -03 0.l
STP4 G2/M 1.4E-04 0.0019 32 6.0 -3.7 -5.4
SWi4 GI,S 0 5.0E-05 -l64 19.6 162 11.0
SWIS Gl 0.0054  0.028 9.5 13.0 -67 -11.9
SWI16 GI,S 0 5.0E-05 -16.8 19.8 158 11.0
TBSI 4.8E-04 0.0049 -3.7 -30 6.8 63
TYE7 GI/S 0.0098  0.039 0.1 7.5 23 1.0
UGA3 0.0013  0.0086 3.1 -5 48 -6.2
UPC2 0.0015 0.0092 0.9 9.0 32 -07
YAP7 0.0017 0.010 0.0 -7.7 28 00
YER184C 0.0093  0.038 4.7 1.9 -7.6 -638
YGRO067C 0.0063  0.031 2.7 5.7 43 4]
YOXI M/GI 2.5E-04 0.0027 3.5 -38  -75 -69
YPR196W 1.3E-04 0.0019 29 4.0 43  -1.7

ke Tsai? Function
M
5.5 7 no ARS-Binding Factor |
9.1 3 no inhibitor of HO transcription
5.3 7 yes purine and histidine biosynthesis
2.1 0 no nitrogen degradation
18.1 7 yes activation of M phase specific target genes
6.3 7 no sulfite metabolism
1.7 3 yes unknown
6.9 6 no glycolysis regulatory protein
5.0 6 no global regulator of respiratory gene expression
5.7 8 no global regulator of respiratory gene expression
4.8 5 yes histone Regulation
4.3 5 yes histone Regulation
27 5 no histone Regulation
9.0 8 no regulate silencing at telomeres and HM loci
6.2 8 no filamentous growth and pheromone response
-17.4 3 yes cell cycle regulation from GI to S phase
156 8 yes activator of G2 and M phase-specific
5.0 7 no methionine biosynthetic
-3.1 5 yes regulator of the sulfur amino acid pathway
0.2 5 no invasive growth;; hyperosmotic response
23.2 7 yes activator of a set of late-S-phase-specific genes
4.8 8 no glucose repression; regulates a variety of
9.8 7 no may contribute to regulation of protein
4.0 6 no phosphate metabolism
7.7 7 no RNA polymerase | enhancer binding protein
-84 2 no putative transcriptional repressor
0.6 5 no promotes mitosis ; sporulation
45 6 no interact with histones and SWI-SNF components
1.7 7 no rRNA processing
-0.6 I no has similarity to Stp|p, Stp2p, and Stp3p
-17.6 4 yes regulate gene expression of G| specific
93 2 yes activates expression of early Gl-specific genes
-16.8 4 yes regulate transcription at the G1/S transition
2.0 6 no unknown
5.6 7 no putative activator in Ty|-mediated gene
2.1 0 no GABA-dependent induction of GABA genes
8.5 7 no sterol regulatory element binding protein
7.4 7 no putative basic leucine zipper transcription
2.3 0 no putative zinc cluster protein
6.4 8 no unknown
7.2 0 vyes repress ECB (early cell cycle box) activity
-0.3 I no putative maltose activator

a: known CCRTFs are shown in bold; b: known phases of TFs; c: inferred phases for TFs by Formula (6); d: whether identified as CCRTFs in [13]

[14]; Basl and Spt2 have been identified by Cokus et al.
[17]. Further investigation of these TFs might provide new
insight into the mechanisms about how the cell cycle is
regulated or how the cell cycle regulates other cellular
processes. The yeast cell cycle can be divided into five dif-
ferent phases: M/G1, G1, S, G2 and M. In the microarray
cell cycle data, each of the five stages corresponds to 4 (M/
G1, G1, S, and M) or 2 (G2) time points. We calculate the
average AC scores of each TF over the time points corre-
sponding to a common phase as shown in Table 1. The
phase-specific AC scores reflect the cell cycle behavior of a

TF. For example, our results indicate that Fkh2 achieves
the highest activity at M phase (average AC score is 18.1)
and the lowest activity at G1 phase (average AC score is -
11.4); Hir2 achieves the highest activity at S phase (aver-
age AC score is 16.5) and the lowest activity at M/G1
phase (average AC score is -12.5); Mbp1 achieves the
highest activity at G1 phase (average AC score is 22.2) and
the lowest activity at M phase (average AC score is -17.4).
All these inferences are consistent with the well estab-
lished knowledge that Fhk2, Hir2 and MBP1 are M phase,
S phase and G1, M phase specific transcription factor,
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respectively. Moreover, we also estimate the active phase
of each CCRTF using the statistical method described in
subsection "Phase estimation" of the "Method". These 42
CCRTFs are categorized into 9 groups: k = 0, 1,...,8. The
groups k = 0, 1, the groups k = 2, 3, the groups k = 4, 5, the
group k = 6, and the groups k = 7, 8 achieve maximum
activity at phase M/G1, G1, S, G2 and M, respectively. The
statistically estimated phases for these 42 CCRTFs are also
consistent with the established knowledge about these
transcription factors. We apply clustering analysis to the
inferred activity profiles of the 42 CCRTFs using the hier-
archical clustering method [26]. As shown in Figure 3, the
TFs that are activated in common phases of the cell cycle
tend to be clustered together. For example, previous stud-
ies indicate that the complex SBF formed by Swi4 and
Swi6 and the complex MBF formed by Swi6 and Mbp1
regulate the expression of late G1 genes [25,27,28];
Mcm1, together with Fkh1 or Fkh2, recruits the Ndd1 pro-
tein in late G2, and controls the transcription of G2/M
genes [25,28,29]. Consistently, as shown in Figure 3,
Swi4, Swi6 and Mbp1 follow into the same cluster that
exhibits the highest activity at phase G1; Mcm1, Fhk2 and
Ndd1 follows into the same cluster that exhibit the high-
est activity at phase M. Other than the hierarchical cluster-
ing, the above described phase estimation inherently
provides a clustering method for the 42 CCRTFs, which
categorize them into 9 groups: k = 0, 1,...,8. The image
presentation of these 9 groups is shown in the supplemen-
tary documents [see Additional File 2].

Our method fails to identify several known cell cycle TFs,
including Ace2 and Fkh1. It turns out that the activities of
Ace2 does fluctuate periodically across the cell cycle (g-
value = 0.010), but the period calculated by the periodog-
ram is different from the genuine period of the cell cycle.
For the Fkh1, although its activity profile shows an obvi-
ous fluctuation in each of the two cell cycles [See Addi-
tional File 3], the activities in the two cell cycles are not
consistent with each other and thereby it fails to pass the
Fisher's G-test (g-value = 0.19). This may be caused by
noise or by the influence of synchronization treatment to
the activity of transcription factors, which we will discuss
in more detail in the next section.

Influence of the cell cycle synchronization methods

In order to measure gene expression during the cell cycle,
the yeast cells must be synchronized using certain tech-
niques, such as o-factor arrest and temperature arrest.
However, these synchronization techniques may perturb
the cell status and result in activity modification of TFs
[30]. As a consequence, the periodic activity fluctuation of
some CCRTFs may be perturbed and can not be detected.
Figure 4 shows the effect of the a-factor to the activity of
four different TFs. As shown in Figure 4A-C, Digl, Ste12
and Tec1 exhibit extraordinary high activities at the initia-
tion of the time series after releasing from the a-factor
arrest (AC scores are 22.3, 31.9 and 16.1, respectively). For
Ace2, although its activity is only moderately up-regulated
at the initiation of the time series (AC scores is 6.8), the
periodicity of its activity profiles is perturbed by the o-fac-
tor treatment. As shown in Figure 4D, the activity profile
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of Ace2 exhibits quite different patterns in the two consec-
utive cell cycles. In fact, Digl, Stel2 and Tecl are tran-
scription factors that are activated by the MAP kinase
signaling cascade and involved in the regulation of genes
in mating or pseudohyphal/invasive growth pathways
[31-33]. a-factor pheromone is the activator of the MAP
kinase pathway [34], so it is not surprising to see the up-
regulation of Digl, Ste12, and Tecl by the o-factor treat-
ment.

According to previous studies, Stel2, Tecl, and Ace2 are
all regulated in a cell cycle dependent manner. However,
the a-factor treatment used to synchronize the cell cycle
perturbs the periodic activity fluctuation of these TFs in
the cell cycle time series, and as a consequence these

CCRTFs can not be identified by our method. The statisti-
cal method proposed by Tsai et al. may avoid this prob-
lem, since it is not based on the test of periodicity [13].
According to their method, a TF is reported to be cell cycle
regulator if the activity of the TF does not keep constant in
the cell cycle and there exists at least one phase in the cell
cycle where the TF is significantly up- or down-regulated.
This method may result in some false positive findings.
For example, the cell cycle regulator Digl identified by
Tsai et al is obvious not a CCRTF according to its activity
profile shown in Figure 4A.

Cell cycle associated regulatory motifs
TF activities in the cell cycle can be inferred by integrating
the microarray expression data with systematic ChIP-chip
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data. For most species, however, the large-scale ChIP-chip
data is still not available. In this case, how to identify the
CCRTFs? Here we provide an alternative strategy by iden-
tifying the cell cycle associated regulatory motifs. We first
identify all the putative motifs that are significantly
enriched in the promoter regions of all yeast genes. By
integrating the systematic motif discovery data with the
microarray cell cycle data, we calculate the AC score for
each motif at each time point of the microarray cell cycle
data. Suppose that there exists a DNA binding protein
(e.g. a TF) for each motif, the AC score of a motif reflects
the activity of its DNA binding protein at a time point. We
define a motif as cell cycle associated regulatory motif, if
its AC score profile fluctuates periodically across the cell
cycle.

We identify 537 putative motifs and calculate their AC
score profiles in the cell cycle. Figure 5A shows the average
periodogram for the AC score profiles of these 537 motifs.
As shown, it exhibits a dominate peak at the Fourier fre-

quency 0.11, the genuine cell cycle frequency. We test the
significance of periodicity for these profiles and the distri-
bution of their p-values is shown in Figure 5B. Among
these 537 putative motifs, 97 are found to be cell cycle
associated at the 0.01 significance level according to our
analysis (FDR = 0.04). In these 537 putative motifs, 46
can be associated with known TFs according to previous
literatures, including 12 cell cycle TFs: Ace2, Fkh1, Hir2,
Mbp1, Mcm1, Ndt80, Rpn4, Skn7, Stel2, Swi4, Ume6,
and Xbp1. In the 46 motifs with known TFs, 8 are found
to be cell cycle associated motifs according to our results.
These 8 motifs are known to be regulated by Mbp1, Swi4,
Hir2, Ndt80, Rpn4, Skn7, Abfl, and Mcm1, respectively.
Among them, 7 are experimental verified cell cycle TFs
and the other one, Abf1, is reported to be cell cycle TF in
the computational analysis performed by Wu et al. [18].
Detail information for these motifs is listed in the supple-
mentary documents [see Additional File 4] and the
inferred activity profiles of them are shown in Figure 6.
Note that we miss 5 cell cycle TFs: Ace2, Fkh1, Stel2,
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Ume5, and Xbp1. Our analysis indicates that the activity
of Ace2 fluctuates periodically across the cell cycle (p-
value = 0.0011), but the estimated Fourier frequency is
not equal to the cell cycle frequency. This is consistent
with the result obtained using ChIP-chip data. For the
other four missed cell cycle TFs: Fkh2 (p-value = 0.025),
Xbpl (p-value = 0.015), Stel2 (p-value = 0.076), and
Ume6 (p-value = 0.067), the p-values from periodicity test

are relatively small, although they do not pass our criteria.
Overall, these results suggest that our method is able to
identify CCRTFs with high accuracy by integrating micro-
array expression data with the motif discovery data from
pure in-silico sequence analysis.
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AC score profiles for 8 cell cycle associated motifs with known TFs identified by our analysis.
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Discussion

To test whether a TF is cell cycle regulated, Tsai et al. exam-
ine if there exists at least one phase in the cell cycle where
the TF is significantly activated by comparing the expres-
sion levels of its target genes with those of non-target
genes [13]. In this paper, we propose a two-step method:
infer the activity profiles of a TF in the cell cycle and then
test the significance of its periodicity. In comparison with
the method suggested by Tsai et al., our method has the
following advantages: (1) it need not to pre-define the tar-
get and non-target gene sets for each TF based on more or
less arbitrarily selected threshold setting and is thereby
easier to be implemented; (2) it deals with TF activity per-
turbation caused by synchronization treatment in a more
conservative manner, and thereby avoid some false posi-
tive findings; (3) it can detect the CCRTFs that are period-
ically but moderately activated during the cell cycle. On
the other hand, there is also a limitation for this method:
synchronization treatments may perturb the periodic
activity fluctuation of some TFs and result in false nega-
tives. In order to achieve more accurate results, it may be
useful to combine these two methods. For example, after
the implementation of our method, we can further exam-
ine the AC scores of those non-CCRTFs at the initial time
point. If the initial AC score of a TF is significantly high or
low, its activity may be perturbed by the synchronization
treatment. We therefore exclude one or more initial time
points and apply the Tsai et al.'s method to the remaining
time points to examine again whether it is cell cycle regu-
lated.

Several methods have proposed to infer the TF activities
from microarray expression data by integrating it with
ChIP-chip data or motif information [35-40]. All these
methods assume a linear relationship between gene
expressions and TF-gene binding affinities (ChIP-chip
data), motif occurrences, or motif matching-scores, which
may not be valid considering the high complexity of gene
transcriptional regulation. Moreover, some of these meth-
ods, such as gNCA, require a complicated pre-processing
step and some constraints. In contrast, our method does
not require the linear assumption and easy to be imple-
mented. It is exciting to see that the CCRTFs can be iden-
tified with high accuracy by integrating microarray cell
cycle data with the in-silico motif discovery data. Microar-
ray cell cycle data sets are available for several species,
including fission yeast, mouse and human. On the other
hand, systematic ChIP-chip data are still not available for
most species other than the budding yeast. Our method
may be applied to the microarray cell cycle data in these
species to identify the all the cell cycle associated regula-
tory motifs. Then experimental techniques or computa-
tional methods can be used to associate these motifs with
TFs. This may lead to systematic identification of the
CCRTFs in these species.
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Conclusion

In conclusion, we present a method to identify CCRTFs by
integrating microarray cell cycle data with systematic
ChIP-chip data or motif discovery data. For each TF, the
method infers its activity profile across the cell cycle and
then tests the significance of periodicity of the profile.
Application of this method to the yeast microarray cell
cycle data and the ChIP-chip data results in identification
of 42 CCRTFs, among which 23 have been experimentally
verified. Importantly, reliable results are also achieved by
integrating the microarray expression data with the in-sil-
ico motif discovery data. The method provides a useful
tool to investigate the cell cycle transcriptional regulation,
especially in those species where large-scale ChIP-chip
data are not available.

Methods

Microarray cell cycle data and ChIP-chip data

In this study, we utilize the microarray cell cycle data pub-
lished by Spellman et al., which contains expression pro-
files of 6178 yeast genes during the cell cycle [2]. RNA
samples were collected every 7 minutes after a-factor syn-
chronization and hybridized with ¢DNA microarray,
resulting in the microarray time series data with 18 time
points covering two cell cycles. During hybridization,
RNA from asynchronous cultures was used as control. We
represent the microarray cell cycle data by a matrix E
(referred to as expression matrix) with 6178 rows and 18
columns, each row corresponding to a gene and each col-
umn corresponding to a time point. The values in the
expression matrix E are log ratios. In the systematic ChIP-
chip experiment performed by Harbison et al., in vivo
binding sites across the whole genome for 203 yeast TFs
were identified under YPD condition [19]. Each TF-gene
pair was assigned an occupancy ratio which reflects bind-
ing affinity of the TF to the promoter region of the gene.
Roughly, larger occupancy ratios suggest strong binding
affinities. We also represent the ChIP-chip occupancy
ratio data by a matrix B (referred to as binding score
matrix) with 6229 rows and 203 columns, each row cor-
responding to a gene and each column corresponding to
a TF. Note that the occupancy ratios in the binding score
matrix B are in their original scale without log transforma-
tion.

Inferring TF activities based on the ChIP-chip data

We use the BASE method proposed by Cheng et al. to infer
the activities of transcription factors at each time point of
the cell cycle data [21]. Given an expression profile e = (e,
e,,...ey) (e.g. a column corresponding to a specific time
point in the expression matrix E) and a binding profile b
= (by, by...,by) (e.g. a column corresponding to a specfic
TF in the binding score matrix B), where N is the number
of common genes in E and B, we infer the activity of this
TF in this time point using the following method. First, we
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sort the expression vector e in the decreasing order to
obtain a sorted vector €' = (e(1), €(yy,---.€(n))- We also rear-
range the binding vector b into b' = (by) b(yy--b(n))
according to the gene orders in the sorted expression vec-
tor ¢'. Second, we combine the two vectors ¢' and b' into
an increasing function f(i) defined as following:

S |egg)|
fliy =LY
TTIN Jegp)]

where 1 <i < N. Meanwhile we calculate another increas-
ing function g(i) for ¢' itself as

(1)

e
()=t )
TSN e

Third, we find out the i,,, that achieves the maximum

deviation between f (i) and g(i), that is,

Ipax = AIg Max | @) - g(i)| . Then a pre-score is defined as
i=1,2,---,N

pS* = f(imax) - g(imax)' (3)

Fourth, we permute the reordered binding vector b' K
times (K = 10,000), and recalculate the pre-scores by
replacing b' in Formula (1) with each of the permutated
binding vectors, resulting in a permutated pre-score vector
psperm = (ps!, ps,...,psK). Finally, we define an activity
change score (AC score) as

AC— ps* ~MEAN(psPe™)
SD(|psP"™ )
where MEAN(pste™) is the mean of psperm and SD(|psper™|)
is the standard deviation of the absolute values of psperm,
The AC score reflects the relative activity of the considered
TF in the synchronized sample with respect to the non-
synchronized control at this time point.

(4)

We calculate the AC scores for all the 203 TFs available
from the ChIP-chip data in each of the 18 time points of
the cell cycle data. As a result, for each TF we obtain an
activity profile across the cell cycle, and we then perform
periodicity analysis for these activity profiles. The C++
program for AC score calculation is available for down-
load at [41].

Periodicity analysis

We use two criteria to determine whether a TF is cell cycle
regulated: (1) whether the TF activities fluctuate periodi-
cally across the cell cycle; (2) whether the period of its
activity fluctuation matches the cell cycle period. To
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implement these two criteria, we apply the periodicity
analysis techniques introduced by Wichert et al. to the
inferred AC score data containing activity profiles for 203
yeast TFs. [8].

First, we use the average periodogram to assess the pres-
ence of TFs that are periodically expressed in the original
microarray expression data or periodically fluctuate in
activities in the inferred TF AC score data. The average per-
iodogram is a simple extension of the standard periodog-
ram. The standard periodogram is a tool to analyze a
single time series: if a time series (e.g. a TF expression pro-
file or an activity profile across the cell cycle) contains sig-
nificant sinusoidal component, then the periodogram
would exhibit a peak at a specific frequency. Average per-
iodogram is the average of multiple time series with a
common block size, e.g. the average of periodograms for
all genes in a microarray time series data (each gene corre-
sponds to a time series). We use average periodogram to
assess the existence of periodically expressed genes in the
microarray cell cycle data. If there are a few genes exhibit-
ing strong periodicity, the periodograms of them would
dominate the average periodogram and exhibit a visible
peak. Since all the periodically expressed genes should
have the same frequency, i.e. the cell cycle frequency, we
would expect to see a single peak in the average periodog-
ram for microarray cell cycle data. In practice, however, we
may observe one or more small peaks other than the main
peak, which are caused by the noise in the data. Therefore,
the pattern of peaks in average periodogram can reflects
the quality of microarray cell cycle data.

Second, we use the Fisher's G-test to examine whether the
expression or activity of a TF behaves like a pure random
process or whether it shows a periodical pattern. The sig-
nificance of periodicity was tested for all the 203 inferred
TF activity profiles and a p-value is assigned to each TF.
Third, we calculate the g-values for those p-values using a
method of FDR to correct for multiple testings. Finally, for
each significant TF, we use the standard periodogram to
estimate its period and compare the estimated period with
the known cell cycle period. With the above described
procedure, we identify 42 CCRTFs at the 0.01 significance
level (FDR < 0.04) based on the above inferred AC score
data. To implement these techniques, the R package
GeneTs is used.

Phase estimation

Let us model the periodic activity profile of a TF as follow-
ing:

Y, = Bcos(2n %) +&, (5)
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where fis a positive constant, T represents the period, and
k represents the phase. Since the microarray data covers
exactly two cell cycles by 18 time points, T = 9 and the
phase k takes an integral value from 0 to 8. The phase for
a TF can be estimated using the following formula:

17
- . t—k

= E— 6
k = arg min I_EO (Y, cos(2r T ). (6)

We estimate the phase for each of the 42 identified
CCRTFs, which basically categorized them into 9 groups.
For example, according to our results, the cell cycle TF,
Fkh2, belongs to the group with phase k = 7, which
achieves the maximum activity at M phase in the cell

cycle.

Motif discovery data

In a systematic analysis performed by Beer et al. [20], 666
potential regulatory motifs that are significantly enriched
in the promoter regions (the DNA sequences from trans-
lation initiation site up to 800 bp upstream) of all yeast
genes using the AlignACE software [42,43]. The occur-
rences of each motif in the promoter region of each gene
are then determined as those with matching-scores larger
than 0.5. We download this motif discovery data from
[44]. After removing redundancy, we select 539 motifs
from these 666 putative motifs, in which 46 are associated
with known transcriptional factors according to litera-
tures. Based on this data, we define a matching-score
matrix M, which contains 6328 rows each corresponding
to a yeast gene, and 539 columns each corresponding to a
putative motif. The element of M is the aggregated match-
ing-score of a motif in the up-stream region of a gene, that
is, the matching-scores of all the occurrences for the same
motif are aggregated in case of multiple occurrences.
When no occurrence is found in the upstream region of a
gene, the score is set to 0. The aggregated matching-score,
to some extent, reflects the binding affinity of a motif to
the promoter of a gene.

Identification of cell cycle associated motifs

For each putative motif we assume there is a TF that binds
it to regulate gene expression. By integrating the microar-
ray gene expression matrix E with the matching-score
matrix M, we can infer the activity profile of the TF corre-
sponding to a putative motif in the cell cycle. The method
is similar to the one used to infer TF activity profile by
integrating microarray cell cycle data with ChIP-chip data,
except that the binding score matrix B obtained from
ChIP-chip experiment is replaced by the matching-score
matrix M obtained from in-silico sequence analysis.

We then perform the above described periodicity analysis
and estimate the active phase for each imaginary TF of the
putative motifs. According to the results from this analy-

http://www.biomedcentral.com/1471-2164/9/116

sis, we identify the cell cycle associated motifs which are
potential regulatory sites for some CCRTFs.
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