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Abstract

Background: Currently, most tests of differential gene expression using Affymetrix expression
array data are performed using expression summary values representing each probe set on a
microarray. Recently testing methods have been proposed which incorporate probe level
information. We propose a new approach that uses Fisher's method of combining evidence from
multiple sources of information. Specifically, we combine p-values from probe level tests of
significance.

Results: The combined p method and other competing methods were compared using three
spike-in datasets (where probe sets corresponding differentially spiked transcripts are known) and
array data from a biological study validated with qRT-PCR. Based on power and false discovery
rates computed for the spike-in datasets, we demonstrate that the combined p method compares
favorably with other methods. We find that probe level testing methods select many of the same
genes as differentially expressed. We illustrate the use of the combined p method for diagnostic
purposes using examples.

Conclusion: Combined p is a promising alternative to existing methods of testing for differential
gene expression. In addition, the combined p method is particularly well suited as a diagnostic tool
for exploratory analysis of microarray data.

Background

Microarrays allow researchers to examine the expression
of thousands of genes simultaneously. Affymetrix arrays
use groups of oligonucleotide probes, called probe sets, to
represent genes of interest on an array. The primary goal
of many experiments using Affymetrix expression arrays is
to identify a group of genes that is differentially expressed
between two or more conditions.

When microarray experiments first started gaining popu-
larity, a simple 2 fold cutoff was used as a threshold to
identify differentially expressed genes. Currently, a com-

mon approach to identifying differentially expressed
genes is to calculate an expression index for each probe set
and array and use these expression indices as the basis for
statistical testing. In other words, the probe level informa-
tion is combined into a summary value by probe set and
array, then this summary information is used to test for
differential expression. The most popular methods for cal-
culating expression indices include Affymetrix Microarray
Suite 5 (MAS5) [1], model based expression index (MBEI)
[2] and robust multi-chip average (RMA) [3]. Examples of
statistical tests to identify differentially expressed genes
based on expression indices include the t-test, the non-
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parametric Wilcoxon rank sum test, Bayesian methods [4-
6] and permutation based methods [7].

Recently a number of authors have presented testing
methods based on probe values. Individual probes con-
tain information about the abundance of a particular tran-
script. A two-way ANOVA model of probe values can be
used to test for differential gene expression [8]. The Chip-
Stat algorithm tests for differential gene expression using
probe level comparisons [9]. The median t-statistic from
all probes in a probe set has been used as a test statistic for
differential expression of the whole probe set [10]. The S-
score was developed for detecting differentially expressed
genes based on PM-MM differences without replication
[11]. The PPLR (probability of positive log-ratio) method
uses information about probe level variability [12]

Clearly there are many methods available for analyzing
data resulting from microarray experiments. Furthermore,
different methods generally lead to different groups of
genes identified as differentially expressed. The availabil-
ity of spike-in datasets makes it possible to compare meth-
ods in a setting where the truth is known. A "good"
method will have high power to detect differentially
expressed genes but low false discovery rate (FDR). The
false discovery rate is defined as the ratio of the expected
number of falsely rejected hypotheses to the total number
of rejected hypotheses [13]. For microarrays, where thou-
sands of genes are being tested simultaneously, it is rea-
sonable to focus on FDR instead of false positive rate
(FPR). It has also been noted that when identifying differ-
entially expressed genes is the primary objective of the
experiment, the aim of the corresponding analysis should
be to rank the genes in order of evidence of differential
expression [4]. The focus on power, FDR and rank have
lead many investigators to rely on receiver operator char-
acteristic (ROC) curves [8,10,14,15] and FDR plots [4,8]
when comparing methods for detecting differentially
expressed genes. Diagnostics can be employed to identify
outlying probe sets or to understand why a gene of interest
was not identified as differentially expressed.

We propose using Fisher's combined p method [16] to
combine probe level tests of differential expression. Using
three spike-in datasets and array data from a biological
study, we compare the combined p method to the
ANOVA method [8], Cyber-T [6], median t method [10],
moderated t-test [4] and the original t-test. In addition to
a comparison of methods, some suggested diagnostics
based on probe level tests are also presented.

Results

In order to compare the performance of the methods, we
use three different spike-in datasets (where probe sets cor-
responding to spiked-in transcripts are known) and array
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data from a biological study validated with qRT-PCR. The
focus of this paper is on detecting differentially expressed
genes, so the background correction and normalization
methods are kept constant for each of the datasets consid-
ered. High power to detect differentially expressed genes
and low false discovery rate (FDR) are desirable. With
these measures in mind we consider ROC curves and FDR
plots for each of the methods and datasets. All rankings
are based on p-values. The rankings are calculated across
comparisons for each dataset. We also use selection curves
to examine what genes are selected in common between
combined p and other methods. All programming was
done in R [17] using Bioconductor [18].

Data used for Comparison

The "Golden Spike" data employs the Affymetrix
DrosGenomel GeneChip [14]. The DrosGenomel Gene-
Chip has a total of 14,010 probe sets, typically with 14
probe pairs. Three control arrays and three spike-in arrays
were used. A total of 1,331 probe sets have an increased
concentration between the control and spike-in samples,
2,535 probe sets have equal concentration and the
remaining 10,144 probe sets were empty on both the con-
trol and spike-in arrays. For the 1,331 true positives, the
log, fold changes range from 0.26 to 2. All methods were
applied to MAS background corrected and probe level
loess subset normalized data, since this combination per-
formed best in the original comparison. Tests based on
probe values (ANOVA, combined p and median t) were
carried out on the background corrected, normalized and
log, transformed PM-only values. Expression indices were
computed using Tukey biweight average (sum-
mary.method = "mas" using the expresso command in
Bioconductor) applied to background corrected and nor-
malized PM-only values. Tests based on expression indi-
ces (Cyber-T, moderated t and ordinary t) were carried out
on the log, transformed expression indices. All methods
except the two-way ANOVA method and Cyber-T used t-
tests assuming equal variance.

The Gene Logic spike-in tonsil data employs the Affyme-
trix HG-U95A GeneChip [10]. The HG-U95A GeneChip
has a total of 12,626 probe sets, typically with 16 probe
pairs. This data consists of 3 technical replicates of 12 dif-
ferent hybridization mixtures each with 11 spiked cRNA
transcripts. The spiked transcript concentrations range
from 0.5 pM to 100 pM. There are 66 pairwise compari-
sons with 11 true positives per comparison for a total of
726 true positives with log, fold changes between -7.64
and +7.64. Tests based on probe values were applied to
RMA background corrected, quantiles normalized data
and log, transformed PM-only values. Tests based on
expression indices were carried out on the RMA probe set
summary values. The RMA probe set summary algorithm
uses only PM values and employs RMA background cor-
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rection and quantiles normalization. RMA expression
indices are reported on the log, scale. All methods were
based on fitting an ANOVA model and then using con-
trasts to estimate and test pairwise "treatment" differ-
ences.

The Affymetrix Latin Square data is based on the Affyme-
trix HG-U133A GeneChip [19]. The HG-U133A Gene-
Chip has 22,300 probe sets, typically with 11 probe pairs.
This dataset consists of 3 technical replicates of 14 sepa-
rate hybridizations with 42 spiked transcripts in a com-
plex human background. The spiked transcript
concentrations range from 0.125 pM to 512 pM. There are
91 pairwise comparisons with 42 true positives per com-
parison for a total of 3822 true positives with log, fold
changes between -12 and +12. Due to concerns about
cross-hybridization, 145 probe sets suspected of cross
hybridizing with the spike-in transcripts were removed
from the analysis. The list of likely cross hybridizing probe
sets was obtained from the affycomp package from Biocon-
ductor [20]. According to the affycomp help file, "The
sequences of each spiked-in clone were collected and
blasted against all HG-U133A target sequences. Target
sequences are the 600 bp regions from which probes were
selected. Thresholds of 100, 150 and 200 bp were used."
We used a 200 bp threshold for removal. Tests based on
probe values were applied to RMA background corrected,
quantiles normalized data and log, transformed PM-only
values. Tests based on expression indices were carried out
on the RMA probe set summary values. All methods were
based on fitting an ANOVA model and then using con-
trasts to estimate and test pairwise "treatment" differ-
ences.

Finally, we consider the MCAT data from Qin et al. [21]
which includes data from Affymetrix expression arrays as
well as corresponding qRT-PCR results. RNA samples were
collected from heart tissue from 24 mice in an unbalanced
2 x 2 factorial design. The 24 mice were young or old,
wild-type or carried the MCAT transgene. There were 6
young wild-type (YWT) mice, 8 young MCAT (YMCAT)
mice, 5 old wild-type (OWT) mice and 5 old MCAT
(OMCAT) mice. Twenty four Affymetrix MG-U74av2
GeneChips were employed. The MG-U74av2 GeneChip
has 12,488 probe sets, typically with 16 probe pairs.
Quantitative RT-PCR measurements from 47 genes were
taken on the same 24 RNA samples. qRT-PCR is often con-
sidered a "gold-standard" method of measuring gene
expression. We note that the 47 genes assayed with qRT-
PCR were not randomly selected, but selected based on
"primer availability, initial evidence of differential expres-
sion, signal intensity, and biological interest" [21]. We
consider three comparisons: YMCAT versus YWT, OMCAT
versus OWT and YWT versus OWT. Tests based on probe
values were applied to RMA background corrected, quan-
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tiles normalized data and log, transformed PM-only val-
ues. Tests based on expression indices were carried out on
the RMA probe set summary values. All methods except
the two-way ANOVA method and Cyber-T used a t-test
assuming equal variance.

ROC curves

The ROC curves show the true positive rate, or power,
plotted against the false positive rate (FPR). The ROC
curves for the each of the spike-in datasets are shown in
Figure 1(a-c). The ideal situation with full power and no
false positives corresponds to the upper left corner of the
plot. We do not show the full range of false positive rates
as we feel that this would be misleading. For example, for
the Gene Logic Tonsil data, a false positive rate of 0.01 with
full power would correspond to a false discovery rate of
0.92!

The ROC curves show that the performance of each of the
methods is dependent upon the dataset. All methods per-
form best on the Affymetrix Latin Square data. However,
we are primarily concerned with the relative performance
of the methods.

FDR plots

Curves depicting the false discovery rates for the different
gene selection statistics for the each of the spike-in data-
sets are shown in Figure 1(d-f). These curves indicate the
number of false discoveries when a given number of top
ranked genes is selected as differentially expressed. This
graph is a useful comparison representing the scenario
where the investigator is primarily interested in ranking
genes and choosing a number of the top ranked genes for
further follow up and verification, typically using RT-PCR.

The FDR plots focus on the performance of the methods
when the FDR is reasonably small. This is the range of
practical interest. All methods perform best for the
Affymetrix Latin Square data, but the relative performance
is of primary concern.

Ranks of Differentially Spiked Transcripts

The interquartile range (IQR) of ranks by method for
known differentially spiked transcripts are shown in Table
1. The ideal ranking where all true positives are ranked
above any false positives is also shown for each of the
datasets. The rankings are based on the calculated p-values
for each of the methods. We expect differentially spiked
transcripts to have small p-values and be ranked high. For
the Gene Logic Tonsil and Affymetrix Latin Square data,
for which we consider multiple pairwise comparisons, we
rank the p-values from all comparisons together.
Although it is possible to rank the p-values from each
comparison separately, we feel that ranking the compari-
sons together reflects realistic experimental protocol. The

Page 3 of 13

(page number not for citation purposes)



BMC Genomics 2007, 8:96

(a) Golden Spike ROC curves

(b) Gene Logic Tonsil ROC curves
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(c) Affymetrix Latin Square ROC curves
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ROC and FDR plots for each of the spike-in datasets. (a) ROC curves for the Golden Spike data. (b) ROC curves for
the Gene Logic Tonsil data. (c) ROC curves for the Affymetrix Latin Square data. (d) FDR plot for the Golden Spike data. (e)

FDR plot for the Gene Logic Tonsil data. (f) FDR plot for the

Affymetrix Latin Square data.

combined p method comes closest to the ideal ranking for
all three spike-in datasets.

Power over the Range of Intensity

In order to examine the power of each of the methods
over the range of intensity values, the intensity of each of
the true positives was calculated as the average of the
log,(PM) values. The power was calculated as the propor-
tion of the true positives that was detected while main-
taining an overall false discovery rate less than or equal to
0.05. The power for each of the four intensity quartiles as
well as overall power for each of the datasets and methods
is shown in Table 2.

For the Golden Spike and Gene Logic datasets, combined
p yields the highest power overall and for each of the
intensity quartiles. For the Affymetrix Latin Square data,
Cyber-T yields the highest power overall and for each of
the intensity quartiles. We note that the power is calcu-
lated at a specified false discovery rate and that relative

performance of the methods might vary based on the cho-
sen value of the false discovery rate.

Observed False Positive Rates

The observed false positive rates for each of the methods
when a raw p-value cutoff of 0.01 is used to identify dif-
ferentially spiked transcripts are shown in Table 3.
Because the combined p method uses the minimum of
the two one-sided p-values, we use a p-value cutoff of
0.005 for the combined p method only. If we are inter-
ested in determining whether a specific gene is differen-
tially expressed, the raw p-values instead of multiple
testing adjusted values are appropriate and the compari-
sonwise error rate is of interest.

In order to better control the false positive rate and to
adjust for variability between methods, we propose cali-
brating the p-values. Specifically, our calibration set is
comprised of those probe sets called "Absent" on all
arrays according to the MAS Absent/Present call algorithm
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Table I: IQR of Ranks for True Positives.

Data Method Ql Median Q3
Golden Spike ANOVA 345.00 1624.00 3986.50
Combined P 337.50 1173.00 3527.50
Cyber-T 356.50 1490.00 4640.00
Median t 339.50 1320.00 3719.00
Moderated t 366.50 1543.00 5403.00
Orriginal t 445.50 1652.00 5545.50
Ideal 333.50 666.00 998.50
Gene Logic Tonsil ANOVA 182.25 363.50 1455.50
Combined P 182.25 363.50 1031.00
Cyber-T 182.25 363.50 3749.00
Median t 182.25 363.50 2638.50
Moderated t 182.25 365.50 27707.00
Orriginal t 182.25 390.50 39284.00
Ideal 182.25 363.50 544.75
Affymetrix Latin Square ANOVA 956.25 1951.50 3023.75
Combined P 956.25 1946.50 2984.50
Cyber-T 956.25 1957.50 2995.75
Median t 956.25 1949.50 2998.75
Moderated t 965.25 1961.50 3002.75
Orriginal t 965.25 1961.50 3002.75
Ideal 956.25 1911.50 2866.75

This table shows the interquartile range (IQR) of ranks by method for true positives for each of the datasets. For the Golden Spike data there are a
total of 1331 true positives. For the Gene Logic Tonsil data there are 66 comparisons on | | differentially spiked transcripts for a total of 726 true
positives. For the Affymetrix Latin Square data there are 91 comparisons on 42 differentially spiked transcripts for a total of 3822 true positives.

Table 2: Power by Intensity Range.

Power by Intensity Quartile

Data Method Ql Q2 Q3 Q4 Overall Power
Golden Spike ANOVA 0.096 0.192 0.295 0.465 0.262
Combined P 0.144 0315 0413 0.568 0.360
Cyber-T 0.042 0.141 0.259 0.477 0.230
Median t 0.141 0.306 0.404 0.556 0.352
Moderated t 0.060 0.159 0.265 0.396 0.220
Original t 0.006 0.009 0.021 0.033 0.017
Gene Logic Tonsil  ANOVA 0.341 0619 0.829 0.577 0.591
Combined P 0.390 0.646 0.867 0.615 0.629
Cyber-T 0.374 0.624 0.790 0.566 0.588
Median t 0.368 0.630 0.851 0.599 0.612
Moderated t 0.258 0.597 0.746 0.549 0.537
Orriginal t 0.203 0.547 0.713 0.473 0.483
Affymetrix Latin ANOVA 0.418 0.819 0915 0.8I13 0.741
Square
Combined P 0518 0.887 0.945 0.895 08Il
Cyber-T 0.646 0.925 0.986 0.972 0.882
Median t 0.591 0916 0.982 0.967 0.864
Moderated t 0.584 0.888 0.968 0.927 0.841
Original t 0518 0.847 0.941 0.872 0.795

This table shows the power for each of the four intensity quartiles as well as the overall power for each of the datasets and methods. The power is
calculated as the proportion of true positives that were detected while maintaining an overall false discovery rate of 0.05 or less.
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Table 3: False Positive Rates.
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Method Golden Spike Gene Logic Tonsil Affymetrix Latin Square
ANOVA 0.286 (0.135) 0.146 (0.007) 0.096 (0.018)
Combined P 0.374 (0.110) 0.146 (0.003) 0.155 (0.007)
Cyber-T 0.190 (0.096) 0.037 (0.005) 0.047 (0.017)
Median t 0.004 (0.131) 2.8 x 10-4(0.008) 2.8 x 10-4(0.023)
Moderated t 0.160 (0.079) 0.027 (0.006) 0.034 (0.014)
Original t 0.123 (0.051) 0.024 (0.007) 0.035 (0.016)

This table shows the observed false positive rate calculated using a p-value cutoff of 0.01. The false positive rate based on a calibrated p-value of
0.01 is shown in parentheses. The calibrated p-value was calculated using probe sets called Absent on all arrays for a given experiment. For the
combined p method, a p-value cutoff of 0.005 was used because we use the minimum of the two one-sided combined p-values.

(computed in Bioconductor). Since transcripts for these
probe sets do not appear to be present above background,
it seems reasonable to assume that they are not differen-
tially expressed. A calibrated p-value of 0.01 corresponds
to the first percentile of the p-values from the calibration
set. For the Golden Spike data, 66% of probe sets were
called Absent on all six arrays. For the Gene Logic Tonsil
data, 25% of probe sets were called Absent on all 36
arrays. For the Affymetrix Latin Square data, 39% of probe
sets were called Absent on all 42 arrays. The observed false
positive rates for each of the methods when a calibrated p-
value cutoff of 0.01 is used to identify differentially
expressed genes are shown in Table 3. A p-value cutoff of
0.005 was again used for the combined p method.

None of the methods maintain a false positive rate close
to the stated o level of 0.01 when using raw p-values.
Using a calibrated p-value reduces the false positive rates
for all methods except median t.

Selection Curves

Figure 2 depicts the level of agreement between combined
p and each of the other methods. Specifically, for a given
number of top ranked genes by combined p we calculate
the proportion that appear in the group of top ranked
genes by each of the other methods. We examine this pro-
portion over a range of values and call the resulting graphs
selection curves. The selection curves for each of the three
spike-in datasets and the three comparisons from the
MCAT data are shown in Figure 2.

The selection curves show that the ANOVA and median t
methods seem to agree well with combined p in most
cases. This agreement is most likely due to the fact that
these three testing methods are based on probe values
instead of expression indices. The Affymetrix Latin Square
data provides an exception - the median t method does
not agree well with combined p for the initial group of
genes selected. From the FDR and ROC plots we see that
all methods are accurately detecting differentially spiked
transcripts. Also, from the selection curves we see that the
agreement between methods is good when the top 3000

genes are compared. This indicates that while the differen-
tially spiked transcripts are being ranked high by all meth-
ods, the ranking within the group of differentially spiked
transcripts varies by method. This is not surprising when
we consider that the p-values for the top ranked probe sets
are very small - less than 10-20 for the 1000 top ranked
genes from any method.

Comparison of Methods using the MCAT qRT-PCR
validated genes

A total of 47 genes from the MCAT study were validated
using qRT-PCR. In Table 4 we show the proportion of
qRT-PCR assayed genes ranked in the top 100, 150 and
200 genes for each method and each comparison. Note
that we do not expect all 47 genes to be selected for any
one comparison. The combined p method is consistent
with the other accepted methods.

We also examined the Spearman correlation between p-
values calculated using the Affymetrix array data with each
of the six testing methods and qRT-PCR data for the 47
qRT-PCR assayed genes. We note that because the testing
methods are based on information from the same sub-
jects, we expect dependence among p-values and consist-
ency in ranking for the most significant p-values. The 47
genes were not selected randomly and tend to have
smaller p-values and higher rankings when compared to
the full distribution. Spearman correlation captures the
level of agreement of the rankings by the different meth-
ods. For the YMCAT vs YWT comparison, the correlation
between p-values from the six testing methods applied to
the array data is greater than 0.70 for any pair of methods,
while the correlation between p-values from the array and
qRT-PCR data is less than 0.45 for any of the testing meth-
ods. For the OMCAT vs OWT comparison, the correlation
between p-values from the six testing methods applied to
the array data is greater than 0.85 for any pair of methods,
while the correlation between p-values from the array and
gRT-PCR data is less than 0.30 for any of the testing meth-
ods. For the YWT vs OWT comparison, the correlation
between p-values from the six testing methods applied to
the array data is greater than 0.85 for any pair of methods,
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(a) Golden Spike (b) Gene Logic Tonsil (c) Affymetrix Latin Square
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Figure 2

Selection Curves. The selection curves show the proportion of genes selected in common with each of the other methods
when a given number of top ranked genes is selected as differentially expressed by combined p. (a) Selection curves for the
Golden Spike data. (b) Selection curves for the Gene Logic Tonsil data. (c) Selection curves for the Affymetrix Latin Square
data. (d) Selection curves for the YMCAT versus YWT comparison for the MCAT data. (e) Selection curves for the OMCAT
versus OWT comparison for the MCAT data. (f) Selection curves for the YWT versus OWT comparison for the MCAT data.

while the correlation between p-values from the array and
qRT-PCR data is less than 0.20 for any of the testing meth-
ods. This shows that the testing methods (applied to the
Affymetrix array data) are ranking the 47 qRT-PCR vali-
dated genes similarly. However, the correlation between

p-values based on qRT-PCR data and Affymetrix array data
are only weakly correlated.

Combined P and Probe Level Tests as Diagnostics
Combined p-values and probe level p-values can be used
as diagnostics. It is appropriate to apply the combined p

Table 4: Proportion of the MCAT qRT-PCR assayed genes selected by method.

YMCAT vs YWT OMCAT vs OWT OWT vs YWT
Method Top 100 Top 150 Top 200 Top 100 Top 150 Top 200 Top 100 Top 150 Top 200
ANOVA 0.277 0.362 0.489 0.085 0.106 0.106 0.128 0.128 0.128
Combined P 0.277 0.340 0.426 0.064 0.106 0.106 0.085 0.128 0.128
Cyber-T 0.213 0.255 0.362 0.064 0.106 0.149 0.149 0.149 0.149
Median t 0.255 0.362 0.426 0.043 0.064 0.085 0.106 0.128 0.128
Moderated t 0.085 0.106 0.128 0.021 0.043 0.043 0.128 0.128 0.128
Original t 0.021 0.043 0.064 0.000 0.000 0.000 0.064 0.085 0.106

This table shows the proportion of the 47 qRT-PCR assayed genes ranked in the top 100, 150 and 200 by each of the testing methods applied to

the corresponding array data.
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method for both of the one-sided tests. For diagnostic
purposes it is interesting to compare the two one-sided
combined p-values for each probe set. If all probes con-
sistently indicate a change in one direction (up- or down-
regulation), then we would expect one of the combined p-
values to be close to zero and the other to be close to one.
However, if some probes indicate differential expression
in opposing directions, it is possible to obtain small com-
bined p-values in both directions. These probe sets can be
easily identified by plotting the combined p-values
against each other.

Probe level tests can also be used as a diagnostic. Specifi-
cally, we can examine the t-statistics for each probe of a
probe set. The number of probes indicating up-regulation
and down-regulation can be tabulated. For some probe
sets, we might find probes indicating differential expres-
sion in opposing directions. For a given probe set, let n,,
be the number of probes exhibiting statistically significant
evidence of up-regulation and n,,, be the number of
probes exhibiting statistically significant evidence of
down-regulation at a specified false positive rate. Then the
level of discordance for the probe set can be summarized
by d= min("up' ndown)'

We illustrate the use of the combined p-value and probe
level tests as diagnostics using the Golden Spike data.
Recall that for the Golden Spike data there are 1331 probe
sets that correspond to differentially spiked transcripts. All
of the log,(FC) values for the differentially spiked tran-
scripts are positive. The combined p-values (testing for
both up- and down-regulation) for each probe set were
calculated. Probe set 154940-at has small combined p-
values in both directions (1.81 x 10-¢and 1.24 x 10-11.)

We performed a t-test for each of the probes. Using a p-
value cutoff of 0.05, the number of probes indicating up-
regulation (n,,) and down-regulation (ny,,,) were tallied
by probe set. The majority of probe sets have discordance
values of zero (57%) or one (33%). Only 18 probe sets
have discordance values of four or greater; three of these
correspond to differentially spiked transcripts. Probe set
154940-at has a discordance value of five - the largest
observed for this dataset.

Probe set 154940-at corresponds to a differentially spiked
transcript with known log,(FC) = 1.32. The probe level t-
statistics and rankings for this probe set are shown in
Table 5. Five consecutive probes have significant t-statis-
tics ranging from -2.30 to -17.72. Eight of the probes have
significant positive t-statistics ranging from +2.15 to
+15.11. The probe sequences for this probe set were
obtained from Affymetrix and a nucleotide-nucleotide
BLAST search against NCBI transcript reference sequences
was performed. The eight probes with positive t-statistics
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mapped only to CG6876 (represented by probe set
154940-at). The five probes with significant negative t-sta-
tistics mapped to CG6876 and CG7011 (represented by
probe set 152984-at). Probe set 152984-at was differen-
tially spiked with log,(FC) = 1.81, so it is not clear why
these probes would be exhibiting evidence of down regu-
lation.

Probe level t-statistics can also be used to screen for outly-
ing probes. A probe that is acting differently than other
probes within the same probe set could be indicative of
cross hybridization or alternative splicing. As an example,
we consider probe set 146788-at for which the majority of
the probes have t-statistics between -3.58 and +2.67, but
one probe has a t-statistic of +48.25. The probe level t-sta-
tistics and rankings for this probe set are shown in Table
5. This probe set does not correspond to a differentially
spiked transcript and the majority of probes seem to
reflect this. However, a single probe seems to be showing
strong evidence of differential expression. The sequence
for this probe was obtained from Affymetrix and a nucle-
otide-nucleotide BLAST search was performed. A 15 bp
match to the probe sequence was found. The matching
sequence corresponds to CG5003 which is represented by
probe set 154310-at on the DrosGenomel array. Further-
more, for the Golden Spike experiment, this transcript was
differentially spiked with known log,(FC) = 2. So, in this
case, there is a plausible explanation for the behavior of
the outlying probe.

lllustration of differences between Median t and
Combined P methods

The combined p and median t methods are both based on
probe level tests of significance and seem to rank genes
similarly in many cases. To examine the instances when
the combined p and median t methods diverge, we con-
sider probe sets 151862-at and 153401-at from the
Golden Spike data. The t-statistics and rankings for these
probe sets are shown in Table 5. For probe set 151862-at,
the median t method ranks this probe set as 698 while the
combined p method ranks it as 1173. Eight of the probe
level tests have t-statistics ranging between 3.47 and
10.61. Hence more than half the probes indicate up-regu-
lation of the corresponding gene. In contrast, for probe set
153041-at, the combined p method ranks this probe set as
603 while the median t method ranks it as 1822. Seven of
the probe level test have t-statistics ranging from 3.08 to
29.19. Here half of the probes indicate up-regulation,
some with very large t-statistics. This demonstrates that
although the combined p and median t methods perform
similarly, they weight evidence in different ways. Large t-
statistics which are greater than the median have no effect
on the median t, while the combined p method gives
them higher weight.
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Table 5: Golden Spike Probe Set Examples.
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Rank by Method

Probe Set Ordered t-statistics ANOVA  Combined P Cyber-T Mediant  Moderatedt  Original t
154940-at -17.72 -1375 -11.15  -534 -230 3513 1292 8596 1172 8515 7815
log,(FC) = 1.32 -0.38 2.15 414 468 72
8.34 9.16 1257 15.11
146788-at -3.58 -244 243 222 -13l 8410 6012 8172 8337 8679 7217
log,(FC) =0 -1.06 -082  -0.11 0.14 0.44
1.14 |.44 2,67 4825
151862-at -0.79  -0.21 -020 -0.12 0.03 2680 1173 2556 698 4030 5631
log,(FC) = 1.58 0.15 347 4.63 5.74 7.02
7.89 7.98 9.08 106l
153041 -at -0.48  -0.32 0.66 0.76 0.87 1664 603 1155 1822 1815 2968
log,(FC) = 1.81 1.37 1.69 3.08 342 1025
1885 1924 1957 29.19

This table shows the ordered probe level t-statistics and rankings by method for selected probe sets from the Golden Spike data.

Discussion

There are two possible objectives of testing for differential
gene expression using microarray data. One goal is to
determine whether or not a particular gene is differentially
expressed. Another goal is to rank the genes in order of
evidence of differential expression. All methods consid-
ered here produce p-values which can be used for testing
and ranking.

If we are interested in determining whether a particular
gene is differentially expressed, then it is important to
control the false positive rate. In practice, this is difficult.
The observed false positive rates for each of the methods
when a raw p-value cutoff of 0.01 is used to identify dif-
ferentially expressed genes are shown in Table 3. None of
the methods maintain a false positive rate close to the
stated o level of 0.01. In addition to calculating the error
rates based on raw p-values, we also examine the error
rates based on a calibrated p-value. Specifically, our cali-
bration set is comprised of those probe sets called Absent
on all arrays according to the MAS Absent/Present call
algorithm. Using a calibrated p-value reduces the false
positive rates for all methods except median t. However,
the only way to precisely control the false positive rate
would be to calibrate using all or a randomly selected set
of equally expressed genes. Of course, if we knew which
genes were differentially expressed, we would not have to
test for differential expression.

In practice, investigators are often more concerned with
ranking genes in order of evidence of differential expres-
sion. For this objective, the correctness of the ranking is
more important than maintaining the stated false positive

rate. The ROC curves, FDR plots and rankings of the true
positives illustrate the relative abilities of each of the
methods to rank the true positives. While ROC curves
allow us to examine the power over a range of false posi-
tive rates, they do not tell us what p-value cutoff to choose
to achieve a desired false positive rate.

When reviewing the results from Tables 1 and 3, it is clear
that methods do better at ranking genes rather than main-
taining stated false positive rates. In addition, method per-
formance based on false positive rate is highly dependent
on the dataset. To remedy this, we believe that some type
of data specific calibration is necessary. We have proposed
one such calibration approach, but this is an area for fur-
ther research. In contrast, ranking appears to be more con-
sistent across methods and datasets. This explains why
many authors look at ROC curves. We note that calibra-
tion of p-values using monotonic transformations will
not affect rankings. So, while we may not know the correct
threshold value for declaring significant differential
expression, we are better able to identify top candidates
for differential expression. We can see from Tables 1 and
3 that the relative performance based on false positive rate
is distinct from relative performance based on ranking.
Considering all of these factors, we place more emphasis
on ranking genes in order of differential expression.

With the goal of ranking genes in order of differential
expression in mind, the combined p and median t meth-
ods perform well for all three datasets considered. Based
on the rankings of known true positives and power by
intensity we see that the combined p method offers
slightly improved power as compared to the median t
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method for the Golden Spike and Gene Logic Tonsil data-
sets. For the Affymetrix Latin Square data, Cyber-T offers
improved power when a false discovery rate of 0.05 is
desired.

The selection curves shown in Figure 2 show that gene
rankings based on combined p are highly correlated with
the rankings by ANOVA and median t. The one exception
is seen in the selection curves for the Affymetrix Latin
Square data, where combined p and ANOVA methods
seem to be ranking very similarly to each other, but differ-
ent from the other methods. However, all of the methods
yield high rankings and very small p-values for the differ-
entially spiked transcripts for this dataset. This implies
that the ranking within the group of differentially spiked
transcripts varies by method.

Our comparison employs spike-in datasets for which the
truth is assumed to be known. We include results based
on the Golden Spike data. Recently deficiencies of the
Golden Spike data have been noted [22,23]. The most rel-
evant issue for this study is that the null distribution of p-
values (for transcripts known to be equally expressed) is
not uniform. This problem is not unique to the Golden
Spike Data. We have observed a non-uniform null distri-
bution in the other spike-in datasets. In our experience,
even "real" biological datasets can exhibit evidence of a
non-uniform null distribution. Since we are only inter-
ested in the relative performance of the methods we feel it
is appropriate to include the Golden Spike data in our
comparison. We note that in the original Golden Spike
comparison, a probe set level normalization was per-
formed (in addition to a probe level normalization)
because "many of the expression summary data sets that
were produced still show a dependence of fold change on
the signal intensity" [14]. We acknowledge that, in all like-
lihood, testing methods based on probe set summary val-
ues would have exceeded the performance of the methods
based on probe level tests had a probe set level normaliza-
tion been performed for the Golden Spike data. However
the dependence of fold change on signal intensity seems
to be an artifact of the Golden Spike data and not typical
of other datasets [23]. The probe set normalization
improved the performance of the methods based on ROC
curves, but not necessarily estimated fold change. It would
seem that if the combination of probe and probe set level
normalizations really offered improved performance for a
variety datasets, then both types of normalization would
be implemented in commonly used algorithms. Instead,
algorithms include either a probe level normalization
[2,3] or probe set level normalization [1]. It should be
clear that a probe set level normalization does not apply
to methods based on probe level tests of significance.
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We note that the median t method is a special case of the
ChipStat algorithm. The ChipStat algorithm uses probe
level comparisons to detect differential gene expression
[9]. Specifically, PM-MM differences are used to perform
individual probe level significance tests using the t-test.
The number of probe pairs changing in a given direction,
with p-values less than a fixed value (denoted p,,), is tab-
ulated and used as a measure of the significance of change
in gene expression. It is up to the user to choose both the
value of p,; and the number of probe pairs required in
order to declare a probe set differentially expressed. If the
PM values, instead of the PM-MM differences, are used
and at least half of the probes within a probe set must be
statistically significant to declare the probe set differen-
tially expressed, then this method reduces to the median t
method.

The combined p method is particularly well suited as a
diagnostic tool for exploratory analysis of microarray
data. In particular, the two one-sided combined p-values
can be used to screen for outlying probe sets. In addition,
probe level t-statistics, upon which the combined p
method is based, can be used to identify outlying probes
within a probe set. Unusual probe sets can be flagged for
further examination. In some cases, this type of behavior
may be an indication of alternative splicing or cross
hybridization. A discussion of methods for detecting alter-
native splicing using microarray technology is given by
[24].

Conclusion

The combined p method is a promising alternative to
existing methods of testing for differential gene expres-
sion. The combined p and median t methods are both
based on probe level tests of significance and perform well
based on ranking genes in order of evidence of differential
expression. One exception is the Affymetrix Latin Square
data where the combined p and median t do not agree
well for the rankings of the top 1000 genes. However, the
main difference between the combined p and median t
methods lies in how they weight evidence. Large t-statis-
tics which are greater than the median have no effect on
the median t, while the combined p gives them higher
weight. The combined p method also leads to useful diag-
nostics. In particular, it allows us to examine conflicting
information provided by probes within a probe set. A fur-
ther examination of such conflicting information may
point to outlying probes or lead to interesting discoveries.
The median t on the other hand, makes its decision
regarding differential expression based on the "median
probe" and does not pay attention to any discordance that
may be present among probes. This presumably makes
the median t more robust at the expense of missing inter-
esting phenomena, such as alternative splicing or cross
hybridization.
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Methods

For all methods considered, the hypotheses may be stated
as Hy: pr= pcversus H, : up# - where g is the expected
log, expression for some control group and gy is the
expected log, expression for the treatment group. Depend-
ing on the method, the expression may be estimated using
probe level expression or some computed probe set level
expression index. Since log, fold change is calculated as
log,(FC) = ur- p this is equivalent to testing H,, : log,(FC)
= 0 versus H, : log,(FC) # 0.

Fisher's Combined P Method

Each PM probe in a given probe set can be used to esti-
mate the relative transcript abundance for the gene corre-
sponding to that probe set. One can also test for
differential expression using each single probe separately.
P-values from these individual probe level tests can be
combined to provide an overall measure of evidence of
differential expression.

Fisher (1932) proposed a method for combining p-values
from independent tests of significance. For a fixed probe
set, let p; be the p-value for the test using information from

probe i, i =1, ..., m and s; = -2In(p;). Then under H, p; ~

unif (0, 1). Hence, s; ~ ;(% and ziSi ~ ;(%m . We reject H,,

at the « level of significance if zisi > ?Clz—a,zm . A com-

bined p method has previously been used to detect simul-
taneous matches to multiple patterns in sequence
homology searches [25]. Here, we use the combined p
method to detect differentially expressed genes using
Affymetrix expression array data.

The combined p method can be used with any two-sam-
ple test, including the t-test and non-parametric tests such
as the Wilcoxon rank sum test. For this paper, we use
probe level t-tests. The probe level tests which form the
basis of the combined p method should be one-sided
tests. It doesn't make sense to combined significant p-val-
ues that indicate change in opposing directions. Of
course, we are interested in a change in either direction
(up- or down-regulation), so the combined p-value is cal-
culated each of the one-sided tests. The minimum of the
two one-sided combined p-values is used for all compari-
sons in this paper.

In the unusual situation where both p-values are below an
established threshold value an explanation for the behav-
ior should be sought. Hence the combined p method can
be used as a diagnostic as well as a test. The individual
probe level tests can also be used as a diagnostic. Some
probe sets will contain probes that are providing conflict-
ing information about the direction of the fold change.
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These probes can be flagged for further examination. In
other cases, a probe set that represents a gene suspected of
being differentially expressed may not be selected. In this
case, the investigator can look at the probe level tests to
understand why the probe set was not selected.

We considered using an adaptation of Fisher's combined
p method that would allow for correlation between
probes of the same probe set. An estimate of the correla-
tion between probe level p-values for a probe set is
required. If we assume an exchangeable correlation struc-
ture such that corr(s; s;) = ¢ for i #i', then the correlation
can be estimated using a method of moments approach
[26]. We considered the quadratic form

4= i (si—5)°

= (m-1)’
which is the sample variance of the s; values. It can be
shown that E(q) = 4(1 - ¢). Hence a method of moments
estimate for cis = 1 - /4. This leads to an approximate 2
distribution for X.s;. In practice, neither the estimated cor-
relation nor the j?2 approximation performed well. We
found that the estimated correlation was extremely varia-
ble and that the performance of the method was weak-
ened due to this variability. We note that it may not be
appropriate to use the combined p method for tiling
arrays in which there is typically considerable overlap
between probes.

Two-way ANOVA Method

A two-way ANOVA model can be fit to probe level inten-
sity values for a given probe set [8]. For each probe set, the
following model is imposed

Yip= i+ Pi+ T+ PTy; + &,

where Yy, is the log,(PM) value corresponding to the kth
replicate of treatment j for probe i, u is the overall mean,
P;is the effect of probe i, T} is the effect of treatment j, PT};
is the effect of the interaction between probe i and treat-
ment j, and &, is the error. To test for differential gene
expression, a test of a treatment main effect is used.

Cyber-T

Cyber-T is a regularized t-test based on expression indices
[6]. This method was implemented using the BayesReg
and bayesAnova R functions available from the Cyber-T
website [27].

Median t Method

The median t-statistic of the probes in a probe set can be
used as a test statistic for differential expression of the
whole probe set [10]. Specifically, t-statistics are calcu-
lated for each PM probe and the median t-statistic found
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among all PM probes in the probe set is found. When
combined with a suggested normalization method
involving the logit transformation, Lemon et al. called the
resulting method the Logit-t. We focus only on the testing
method, which we will refer to as median t.

Original t Method
Here we use the Student's t-test applied to expression indi-
ces as a test of differential gene expression.

Moderated t Method

This method is an empirical Bayes modification of the t-
test [4]. This method is implemented through the limma
package from Bioconductor [28].
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