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Abstract

Background: The mosquito, Armigeres subalbatus, mounts a distinctively robust innate immune
response when infected with the nematode Brugia malayi, a causative agent of lymphatic filariasis.
In order to mine the transcriptome for new insight into the cascade of events that takes place in
response to infection in this mosquito, 6 cDNA libraries were generated from tissues of adult
female mosquitoes subjected to immune-response activation treatments that lead to well-
characterized responses, and from aging, naive mosquitoes. Expressed sequence tags (ESTs) from
each library were produced, annotated, and subjected to comparative analyses.

Results: Six libraries were constructed and used to generate 44,940 expressed sequence tags, of
which 38,079 passed quality filters to be included in the annotation project and subsequent
analyses. All of these sequences were collapsed into clusters resulting in 8,020 unique sequence
clusters or singletons. EST clusters were annotated and curated manually within ASAP (A
Systematic Annotation Package for Community Analysis of Genomes) web portal according to
BLAST results from comparisons to Genbank, and the Anopheles gambiae and Drosophila
melanogaster genome projects.

Conclusion: The resulting dataset is the first of its kind for this mosquito vector and provides a
basis for future studies of mosquito vectors regarding the cascade of events that occurs in response
to infection, and thereby providing insight into vector competence and innate immunity.
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Background

The perpetuation of mosquito-borne diseases is depend-
ent on the compatibility of the pathogen with its inverte-
brate and vertebrate hosts, as dictated by each respective
genome. The failure of traditional mosquito-borne dis-
ease control efforts to reduce the burden of these diseases
on public health has created an incentive to develop a
more comprehensive understanding of molecular interac-
tions between host and pathogen, in order to develop
novel means to control disease transmission. Innate
immune responsiveness in the mosquito host is of partic-
ular interest in such explorations because extensive
research efforts have shown that vector mosquito species
produce robust humoral and cellular immune responses
against invading pathogens [1-4].

A vector species that employs a unique, robust immune
response against an invading pathogen is the mosquito,
Armigeres subalbatus, a natural vector of the nematode par-
asites that cause lymphatic filariasis. This debilitating dis-
ease affects 120 million people annually, one third of who
suffer gross pathology (CDC 2006). Ar. subalbatus is ide-
ally suited for laboratory studies of immune responsive-
ness because it is a natural vector of the filarial worm,
Brugia pahangi, but it exhibits a refractory state to the
microfilariae of Brugia malayi by virtue of a strong melan-
otic encapsulation response; therefore, it is the ideal
organism for studying molecular mechanisms of the anti-
filarial worm response as a function of the broader innate
immune capacity of the mosquito. In fact, Ar. subalbatus is
one of the few species of mosquito to effectively use
melanotic encapsulation as a natural defense mechanism
against metazoan pathogens [5]. Ar. subalbatus also serves
as a competent laboratory vector of Plasmodium gall-
inaceum, the causative agent of avian malaria in Asia ([6]
and Christensen et al., unpublished data), and also has
been implicated in the transmission of Japanese encepha-
litis virus in Taiwan [7,8].

Experimental evidence has shown that humoral and cellu-
lar immune responses play a fundamental role in mos-
quito refractoriness to a particular pathogen; however,
very little is known about their genetic control. As a result,
our laboratory is using Expressed Sequence Tags (ESTs) as
a tool to elucidate the function of known genes and assist
in the discovery of previously unknown, "immunity"-
related genes. In addition, this high-throughput molecu-
lar approach to gene discovery provides the capacity to
tactically design oligonucleotide-based microarrays that
can be further used to gain insight into vector-pathogen
interactions. With no genome sequencing project on the
horizon for Ar. subalbatus, these EST libraries and microar-
rays constitute the only tools currently available to gauge
immune responsiveness in this medically important vec-
tor species.

http://www.biomedcentral.com/1471-2164/8/462

We previously reported a comprehensive analysis of ESTs
from complementary DNA (cDNA) libraries created from
adult, female Ar. subalbatus hemocytes [1]. Experimental
evidence has shown the importance of mosquito hemo-
cytes (blood cells) as both initiators and mediators of
mosquito immune responses [9-13]; therefore, material
was collected from the perfusate (which contains hemo-
cytes) of Micrococcus luteus and Escherichia coli inoculated
mosquitoes at 1, 3, 6, 12, & 24 hours post bacterial inoc-
ulation. These bacterial species have been extensively used
to examine immune peptide production in mosquitoes
[14,15], and each activates a different arm of the innate
immune response. The primary response of Ar. subalbatus
to E. coli is phagocytosis, whereas the primary response to
M. luteus is melanization, and it has been determined that
this is independent of Gram type [10,11].

In order to more completely represent the baseline physi-
ology and innate immune capabilities of this mosquito,
cDNA libraries were created from adult, female Ar. subal-
batus mRNA collected from whole body mosquitoes inoc-
ulated with the same mixture of bacteria. Material also
was collected from whole body Ar. subalbatus exposed to
filarial worm parasites. A blood meal containing B. malayi
induces the melanization response in Ar. subalbatus; there-
fore, whole body material was collected from female mos-
quitoes 24, 48, and 72 hours after an infective blood feed.
Intrathoracic injection of Dirofilaria immitis microfilariae
into the mosquito's hemocoel also induces a strong
melanotic encapsulation response in Ar. subalbatus and is
a model system by which the immune response is stimu-
lated without exposing the mosquito to both the parasite
and a blood meal [16]. This model system for infection
facilitates the uncoupling of two processes - namely
blood meal digestion and ovarian development - that
compete for biochemical resources [17]. Whole body
mosquitoes inoculated with D. immitis were collected at
24 and 48 hours post-inoculation. Libraries also were con-
structed from 5-7 and 14-21 day old naive whole body
females to ensure representation of transcripts from non-
immune activated, aging mosquitoes. An attempt to
sequence clones from a library from blood-fed naive
females was not successful.

Results and Discussion

Sequencing and clustering

Non-normalized cDNA libraries were constructed from
newly emerged female mosquitoes inoculated with bacte-
ria, inoculated or blood fed with filarial worm parasites,
and from aging, naive adult females. ESTs were sequenced
from the 5' end by the University of Wisconsin Genome
Sequencing Center, and the National Yang-Ming Univer-
sity core facility, and were assembled to collapse the entire
dataset, reduce redundancy, and simplify downstream
annotation (Table 1). Of the 44,940 trace files generated
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Table I: Summary of Ar. subalbatus EST and EST cluster production from six cDNA libraries.

# ESTs # EST clusters
Bacteria (whole body) 5,654 2,372
Bacteria (hemocytes) 11,300 2,107
D. immitis (whole body) 7,014 2,510
B. malayi (whole body) 7,192 3,096
Naive 7 (whole body) 4,289 1,911
Naive 14 (whole body) 5,405 2,325
Combined 38,079 8,020

The condition of mosquitoes/inocula used to generate the material for each cDNA library is listed in the left-hand column. Bacteria = mixture of E.

coli and M. luteus.

by the two sequencing units, 38,079 traces passed quality
control (85% success rate) and were sent to assembly with
an average high quality (phred score 20+) length of 450
bases. The resulting collapsed data resulted in 8,020 clus-
ters, of which 4,949 are composed of one trace (single-
tons). The deepest cluster contains 870 ESTs, with an
average of 11 (+/- 37) ESTs per cluster.

Functional annotation of EST clusters and singletons
Consensus sequences from clustering were output in fasta
format and used in comparisons to the GenBank non-
redundant database, the D. melanogaster and An. gambiae
genomes, and to the other Ar. subalbatus EST sets created
during the project.

Each EST cluster/singleton and its corresponding
sequence similarity data were uploaded into ASAP.
Within the ASAP interface, annotators assessed sequence
alignments and followed intact hyperlinks to NCBI, the
Wellcome Trust Sanger Institute (Ensembl), FlyBase, and
orthologous sequences within ASAP and at National Yang
Ming University, in order to ascribe a predicted gene prod-
uct and/or function to each sequence. Supporting evi-
dence for each annotation is typically in the form of a
hyperlink to a database and can be viewed in ASAP. These
annotations then were reviewed and approved or rejected
by a curator. Annotation followed the controlled vocabu-
lary established in a previous study, such that each EST
cluster was attributed with some functional information,
and indication of quality of the BLAST hit used to
attribute that information [1]. Of the 8,020 EST clusters,
2,843 were annotated as "unknown" (having no signifi-
cant match to any of the databases searched), and 1896
were annotated as "conserved unknown" with varying
degrees of confidence. Sequences were submitted to NCBI
as annotated EST clusters into the Core Nucleotide data-
base and made available for public viewing through
ASAP.

Library to library comparison
An analysis of EST clusters from the complete project was
done by combining annotations and cluster composition

(in terms of source libraries) to provide insight into the
molecular effort put forth by the mosquito in the face of
different types of immunological challenge. Within
Microsoft Access, a table was built that contains EST clus-
ters according to ASAP ID number, contig number (cre-
ated during assembly in Seqman), project (cDNA library)
from which ESTs were contributed, and the number of
ESTs contributed per project. Queries were built to extract
the number of EST clusters unique to a particular library
(e.g., bacteria-inoculated whole body), or shared between
projects (e.g. bacteria-inoculated whole body and hemo-
cyte libraries) (Figure 1). Shared are 69 clusters unique to
a response to bacteria-inoculation, 98 unique to the
response against filarial nematodes, and 4,498 are repre-
sented in at least one of the 4 immune-activated projects.
Amongst those 4,498, 20 are represented in all 4 of those
projects, perhaps indicative of the importance of these
genes in immune responsiveness. Included amongst these
20 is a Clip domain serine protease (An. gambiae
[ENSANGP00000017225]), Serpin 27A (D. melanogaster
[FBgn0028990]), and Aslectin (AY426975) - a ficolin-like
pattern recognition molecule [18]. Unique to the
response against B. malayi infection is a protein-tyrosine
kinase, involved in the JAK-STAT cascade, which is repre-
sented by 107 ESTs.

To examine the statistical likelihood that the numbers of
ESTs in each cluster represent a true sampling of the bio-
logical variation between the six libraries, and to compare
the results of clustering with microarray results [19], clus-
ter data were submitted to the IDEG6 website for analysis
[20]. The number of ESTs in each cluster was normalized
based on the number of total ESTs collected and the total
number of ESTs in each library. Six statistics were com-
pared, including Audic and Claverie [21], Greller and
Tobin [22], Stekel [23], Chi Square 2 x 2, general Chi
Square, and Fisher's Exact Test, all corrected via a Bonfer-
roni method. The results of the entire test are included as
a supplementary table (see Additional file 1). Table 2
presents the 99 EST clusters that show the highest signifi-
cant difference between libraries (p > 0.00001, R > 4).
Although significant increases in ESTs encoding immune-
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Bacteria | Bacteria | D. immitis | B. malayi | Immune-
(body) activated
combined
Bacteria 922
(body) 4441
173CU
Bacteria
(hemo) 9u 220U
23CU 158CU
D. immitis 69 48
19U 17U
26CU 2CU
B. malayi
Immune-
activated
combined
Naive 7
12U 4U 19U 19U
10CU 6CU 16CU 36CU
Naive 14 62 64 62 134
18U 10U 16U 32U
28CU 21CU 17CU 38CU

Figure |

A comparison of EST clusters from 6 Ar. subalbatus cDNA libraries (8,020 clusters total). The type of immune
response activation for mosquitoes is listed in the primary row and column. At the intersection of each row and column, the
number of clusters unique to that combination of libraries is listed in bold, followed by the number of those clusters that are
designated as unknown (U) or conserved unknown (CU). Clusters from the 4 immune response activated libraries (Immune
activated combined) were queried against the naive libraries such that: a cluster is represented in at least | of the 4 libraries
(but not in naive) (top -1), or clusters are represented in all 4 of the libraries (but not in naive) (bottom — 2).

related products are observed (i.e. sequences expected to
be increasing according to infection status of the mosqui-
toes used to collect material for libraries), this is not
always the case. Several clusters that encode "house keep-
ing" products are demonstrably enriched for ESTs from
immune-challenged libraries (e.g. cytochromes and dehy-
drogenases) suggesting that these metabolic genes play
essential roles in the physiology of an immune and/or
stress response. In addition, many of the clusters that are
significantly different between libraries encode gene prod-
ucts of completely unknown function. A comparison with
microarray data from Aliota, et al.[19], shows some over-
lap between the two methods. Out of the 99 clusters that
are significantly different (Table 2), 19 share significant

changes when compared with microarray data from B.
malayi infected females (highlighted in Table 2). Com-
bined, these EST and microarray data provide several tar-
get sequences for further study in relation to mosquito
innate immunity.

Gene ontology

To attribute more functional information to annotations
in ASAP, Gene Ontology (GO) classifications were
migrated from Flybase annotations to homologous Ar.
subalbatus clusters, because Flybase contains the most
complete dataset for a related species from which to draw.
GO annotations were attributed to 2,793 (35% of total)
EST clusters. From the perspective of the entire dataset,
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Table 2: Clusters showing significant differences as determined by Stekel R value and Chi square analysis.

GBID Product asuhem diroinf imacbac brumal naive7 naivel4 R Chi
EU204979 NADH dehydrogenase subunit 2 245 23 14 10 21 19 0 0
EU204980 NADH dehydrogenase subunit 6 172 18 8 | 10 I 0 0
EU204999 cytochrome c oxidase subunit | 245 67 24 I 59 54 0 0
EU205005 unknown 325 52 33 17 26 66 0 0
EU205016 cytosolic small ribosomal subunit S26 60 69 57 41 36 67 0.000001 0.000001
EU205017 NADH dehydrogenase 28 2 2 4 6 | 0.000002 0.000001
EU205057 ubiquitin 83 0 0 0 | 0 0 0
EU205058 cytochrome c oxidase subunit IlI 277 79 83 20 62 52 0 0
EU205059 cytochrome b 47 19 14 | 9 8 0 0
EU205061 mitochondrial adenosine triphosphatase 202 60 36 | 51 45 0 0
subunit 6
EU205096 ubiquinol-cytochrome c reductase subunit 62 9 4 12 9 I 0 0
EU205097 cytochrome c 74 15 8 12 I 12 0 0
EU205100 unknown 243 59 123 79 54 72 0 0
EU205101 putative: conserved unknown 32 18 7 3 20 6 0.000001 0.000002
EU205152 ubiquinol-cytochrome c reductase 56 14 5 I 14 9 0 0
EU205153 AT DNA binding 0 7 15 13 6 8 0.000002 0.00033
EU205154 questionable: Bombyx mori 26 | 3 3 | I 0.000001 0
prophenoloxidase activating factor 3
EU205155 questionable: conserved unknown | 6 7 21 8 10 0.000006 0.00008
EU205171 ubiquinol-cytochrome-c reductase 94 16 8 29 20 26 0 0
EU205182 cytosolic large ribosomal subunit L36 27 43 33 24 26 47 0 0
EU205185 NADH dehydrogenase 47 2 8 10 4 7 0 0
EU205197 gelsolin 129 20 38 33 13 57 0 0
EU205226 cytosolic large ribosomal subunit L40 21 5 0 0 5 | 0 0.000005
EU205248 cytochrome C oxidase subunit Il 52 15 12 6 9 27 0.000001 0.000002
EU205296 Myosin alkali light chain | 35 3 8 0 3 6 0 0
EU205304 questionable: receptor binding 0 0 0 2 6 0 0.000228 0.000002
EU205306 questionable: cytochrome c oxidase 63 13 6 6 13 3 0 0
EU205324 conserved unknown 17 0 4 0 0 4 0.000003 0.000054
EU205330 cytosolic small ribosomal subunit S9 39 73 43 68 32 54 0 0
EU205338 superoxide dismutase 20 2 | 0 | I 0.000002 0.000001
EU205349 ribosomal protein L41 276 100 170 94 126 104 0 0
EU205374 nucleoside diphosphate kinase 2 14 | I 0 5 0.000002 0.000002
EU205385 questionable: protein-tyrosine kinase 0 0 0 107 0 0 0 0
EU205393 hydrogen transporting two sector ATPase 53 I I 8 17 9 0.000003 0.000002
EU205409 cecropin 17 I I 0 0 5 0.000006 0.000023
EU205450 serine protease | 6 28 9 3 19 0 0
EU205451 cytosolic small ribosomal subunit S3A 78 26 27 16 20 29 0.000068 0.000132
EU205465 defensin 136 14 27 6 5 9 0 0
EU205470 putative: heat shock 0 0 | 56 2 3 0 0
EU205505 lysozyme Ié 17 32 10 I 35 0 0
EU205526 cytochrome c oxidase 130 15 I 10 16 5 0 0
EU205556 putative: conserved unknown 0 0 3 41 0 3 0 0
EU205557 putative: conserved unknown 0 0 0 9 0 | 0.000047 0.000003
EU205560 cecropin 32 35 17 3 14 I 0 0
EU205570 putative: conserved unknown 0 9 13 15 7 7 0.000003 0.000718
EU205592 conserved unknown 63 21 I 12 12 16 0.000007 0.000004
EU205632 putative: calcium ion binding protein 0 0 13 0 0 0 0 0
EU205658 serine protease 112 18 42 43 7 29 0 0
EU205659 unknown 35 0 3 0 2 0 0 0
EU205708 proton-transporting ATP synthase complex 70 8 4 14 16 0 0
subunit
EU205709 putative: conserved unknown 25 0 3 2 2 2 0.000001 0
EU205750 hydrogen-exporting ATPase 33 2 5 2 | 9 0 0
EU205751 putative: odorant-binding 0 0 0 9 0 0 0.000015 0
EU205764 questionable: odorant-binding protein 56e 0 0 0 9 0 0 0.000015 0
EU205767 trypsin 0 0 0 25 0 0 0 0
EU205782 trypsin 10 221 98 70 107 70 0 0
EU205800 unknown 5 4 9 7 Il 39 0 0
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Table 2: Clusters showing significant differences as determined by Stekel R value and Chi square analysis. (Continued)

EU205806 questionable: odorant-binding 0
EU205807 questionable: odorant-binding 0
EU205828 trypsin 3
EU205832 questionable: apolipophorin 129
EU205858 Vvitellogenin C 0
EU205893 unknown 130
EU205915 hydrogen transporting two sector ATPase 41
EU205924 putative: serine protease 5
EU205925 putative: serine protease |
EU205991 unknown 0
EU205996 ATPase synthase 16
EU206001 NADH dehydrogenase 36
EU206048 conserved unknown 45
EU206083 putative: serine protease 0
EU206123 putative: serine protease 0
EU206138 questionable: conserved unknown 0
EU206244 cytosolic large ribosomal subunit L34a |
EU206248 zinc-metalloproteinase precursor 2
EU206376 putative: cathepsin 0
EU206422 infection responsive short peptide 17
(gambicin)
EU206504 unknown 0
EU206507 ATP/ADP antiporter (transporter) 21
EU206546 beta-globin 0
EU206601 cathepsin 0
EU206635 trypsin 0
EU206733 putative: conserved unknown 0
EU206824 putative: arrestin 2 0
EU206866 questionable: conserved unknown 0
EU206900 rhodopsin 0
EU206907 questionable: chitin binding 0
EU206986 unprocessed |8S ribosomal RNA 40
EU207626 unknown 90
EU207634 unknown 107
EU207658 NADH dehydrogenase subunit 26
EU207722 questionable: triacylglycerol lipase 0
EU207765 putative: odorant-binding protein G.lA.F 0
EU207810 putative: trypsin 0
EU207816 hydrogen transporting two sector ATPase 48
EU207921 vitellogenin 0
EU207965 defensin 17
EU208023 questionable: threonine-rich salivary mucin 0
EU212979 NADH dehydrogenase 36

0 0 123 0 0 0 0
0 0 28 0 0 0 0
85 10 I 33 2 0 0
0 5 32 2 6 0 0
0 0 18 0 0 0 0
0 0 0 0 | 0 0
6 5 2 2 4 0 0
13 28 2 14 6 0 0
15 10 4 12 5 0.000001 0.000002
3 | 39 2 4 0 0
4 | 0 0 0 0.000003 0.000012
6 3 8 7 | 0.000001 0.000001
8 I 10 4 6 0.000021 0.000005
0 0 6l 0 0 0 0
5 I 28 7 8 0 0
0 0 32 0 0 0 0
38 10 9 7 3 0 0
14 | 0 12 3 0 0
0 0 30 0 0 0 0
23 40 47 17 24 0.000001 0.000002
0 0 12 0 0 0 0
3 | 0 | 0 0 0
0 0 34 0 0 0 0
0 0 19 0 0 0 0
4 0 16 3 2 0 0
0 0 9 0 0 0.000015 0
13 6 8 9 9 0.000004 0.000307
0 0 32 0 0 0 0
2 13 I 5 11 0.000001 0.000066
0 0 12 0 0 0 0
| 0 | 0 0 0 0
0 0 | 0 2 0 0
56 65 38 22 89 0 0
2 2 | 8 5 0.000003 0.000006
0 0 8 0 0 0.000066 0.000002
0 0 22 0 0 0 0
0 0 21 | 0 0 0
8 8 6 8 13 0.000004 0.000001
0 0 19 0 0 0 0
2 5 0 0 0 0.000002 0.00002
0 0 0 6 4 0.000031 0.000003
5 10 0 4 3 0 0

Clusters and their constituent ESTs were analysed using IDEG6 [20] to find clusters where the number of ESTs were statistically different between
the libraries. Of 8,020 clusters analysed, 99 showed a significantly differential number of ESTs collected from one or more of the libraries. Each row
represents the Genbank Accession number for cluster, and the columns are the number of ESTs from each of the six libraries that are a member
of it. The libraries are: asuhem (bacteria-inoculated, hemocyte), diroinf (whole body, Dirofilaria immitis injected), imacbac (bacteria-inoculated whole
body), brumal (blood-fed Brugia malayi), n7 and nl4 (naive, 5-7 and 12—14 days of age). The R value is the inverse log of the Stekel R Score [23],

and the Chi value is a general Chi square analysis.

851 (11%) clusters have annotations but lack a GO anno-
tation. Data from GO analyses are presented graphically,
according to second tier categories within the top-level
categories of Biological Process, Cellular Compartment,
and Molecular Function. Of particular interest for this
dataset are those clusters related to innate immunity, so a
more in-depth (4th and 6t tier) view is presented (Figure
2).

Because of the unique immune response capabilities of
Ar. subalbatus, EST clusters were interrogated beyond the
GO analysis for clusters encoding immunity-related pro-
teins. Those clusters encoding proteins that have a docu-
mented role in Ar. subalbatus immunity were sorted
according to representation in different libraries (Table 3).
In addition, immunity related genes and proteins were
subdivided into categories including: CASPs: Caspases,
CATs: Catalases, CLIPs: CLIP-Domain Serine Proteases,
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CTLs: C-Type Lectins, FREPs: Fibrinogen-Related Proteins,
GALEs: Galactoside-Binding Lectins, IAPs: Inhibitors of
Apoptosis, IMDPATHs: IMD Pathway Members, JAK-
STATs: Signal Transduction, LYSs: Lysozymes, MLs: MD2-
Like Receptors, PGRPs: Peptidoglycan Recognition Pro-
teins, PPOs: Prophenoloxidases, PRDXs: Peroxidases,
REL: Relish-like Proteins, SCRs: Scavenger Receptors,
SODs: Superoxide Dismutatses, SPZs: Spaetzle-like Pro-
teins, SRPNs: Serine Protease Inhibitors, TEPs: Thio-Ester
Containing Proteins, TOLLs: Toll-Receptors, and TOLL-
PATHs: Toll Pathway Members. Representatives of each of
these subcategories can be found amongst the ESTs in
these libraries (Tables 3 and 4). Clusters identified as
immunity-related according to homology to genes in
ImmunoDB [24] were broken down into the number of
ESTs represented per cluster from each library (Table 4).

This analysis underscores the degree to which immunity
related ESTs are enriched in libraries from bacteria-inocu-
lated mosquitoes. Particularly from the hemocyte library,
ESTs from all subcategories are represented in abundance
(Table 4). We expected to see some evidence of increased
abundance of ESTs related to melanization, because pub-
lished reports on the melanization response indicate that
phenoloxidase is up-regulated as a result of immune-
response activation [5]. However, few ESTs representing
the biochemical pathway of melanogenesis were evident
amongst the clusters (see Table 3). This limited represen-
tation could be a result of cloning bias inherent in library
production, or introduced due to inoculation methodol-
ogy, or even wound healing. Or, up-regulation may not be
necessary to affect the response that we know to be occur-

http://www.biomedcentral.com/1471-2164/8/462

ring in the mosquito at the time points chosen for library
construction [19].

Comparisons with Ae. aegypti, An. gambiae, and D.
melanogaster

The family Culicidae contains approximately 2,500 spe-
cies of mosquitoes, of which only a handful are capable of
vectoring disease. Much of the current effort to under-
stand the molecular components of vector competence
has focused on An. gambiae and Ae. aegypti [25,26],
because these species transmit disease agents that have a
tremendous impact on global public health (malaria, and
dengue fever and yellow fever viruses, respectively). Com-
parative genomics analysis between these mosquitoes and
the ongoing genome project on Culex pipiens quinquefas-
ciatus, as compared to the fruit fly, have provided and will
provide resources to bolster studies to systematically
investigate common and mosquito species-specific gene
function [25-28]. This includes gaining new insight into
the molecular basis of insecticide resistance, host-seeking
behaviour, blood feeding, and vector-parasite interactions
that are unique to blood-feeding (hematophagous) vec-
tors. The last of these is perhaps the most dramatic sepa-
ration between the mosquitoes and fruit flies -
hematophagy is intimately tied to a variety of physiolo-
gies including oogenesis and immunity, and therefore
imposes unique demands on mosquitoes as compared to
Drosophila. In a microarray analysis of An. gambiae, 25% of
the genes on the array changed transcript levels in
response to blood-feeding [29].

Table 3: Armigeres subalbatus EST clusters that represent characterized, published sequences from this mosquito.

GB Accession Description ASAPID asuhem diroinf imacbac brumal n7 nl4

AF318200.1 ABC membrane transporter (white) n/a

AY426976.1 (AY426975.1) aslectin AL-I ACN-0180799 3 | | | 0 0
ACN-0183776 | 0 0 0 0 0

AY603183.1 beta |,3-glucan recognition protein (GRP) ACN-0184624 0 0 | 0 0 0

AY662686.1 dopa decarboxylase ACN-0182608 0 2 | 0 | 0

AY960762.1 dopachrome conversion enzyme ACN-0181349 0 | 0 0 0 |

AF317822.1 glucose-6-phosphate dehydrogenase (Gépd) n/a

AY571966.1 phenylalanine hydroxylase ACN-0184263 | 0 0 | | |

AF260567.1 prophenoloxidase | n/a

AF286468. 1 prophenoloxidase Il n/a

AY487171.1 prophenoloxidase llI n/a

AY487172.1 prophenoloxidase IV ACN-0186737 0 0 0 | 0 0

DQ862064. 1 prophenoloxidase V ACN-0182951 0 0 | 0 0 0

DQ862065.1 prophenoloxidase VI ACN-0186767 0 | 0 0 0 0
ACN-0182961 | 0 0 0 0 0

AY487170.1 serine protease ACN-0181859 0 0 0 | 0 0

Because of the unique, robust melanization response that is elicited when Ar. subalbatus is infected with certain nematode parasites, several
molecules related to melanogenesis have been the subject of comprehensive characterization. EST clusters encoding these gene products are
presented according to the number of ESTs in the following libraries: asuhem (bacteria-inoculated, hemocyte), diroinf (whole body, Dirofilaria immitis
injected), imacbac (bacteria-inoculated whole body), brumal (blood-fed Brugia malayi), n7 and n14 (naive, 7 and 14 days of age).
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Table 4: Searching Ar. subalbatus EST clusters for immunity-related sequences based on homology to other flies.

Family Subfamily asuhem diroinf imacbac brumal naive7 naivel4 Total Reads R Value
AMP Cecropin 98 65 70 56 41 47 377 0.070988
AMP Defensin 238 41 78 16 15 28 416 0
AMP Diptericin 0 2 0 0 0 | 3 0.160764
CASP CASP | | 0 | | 0 4 0.673041
CAT CAT 0 | 0 0 0 0 | 0.561495
CLIP CLIP-CLIP-CLIP-SPH | | | 0 0 | 4 0.670142
CLIP CLIP-SP 136 33 37 24 22 27 279 0
CLIP CLIP-SP-CLIP-SP | 0 0 | 0 0 2 0.668311
CLIP CLIP-SPH 153 33 55 58 14 47 360 0
CLIP SP-CLIP 4 0 0 0 0 0 4 0.060745
CLIP SP-CLIP-SPH 2 0 0 | 0 0 3 0.440816
CLIP SPH-CLIP | 0 0 0 0 0 | 0.754901
CLIP SPH-CLIP-SPH | | 0 2 0 | 5 0.576541
CLIP SP-SPH-CLIP 0 | 0 0 0 0 | 0.561495
CTL CTL 80 19 27 17 25 17 185 0.000002
FREP FREP 17 9 22 4 4 8 64 0.000764
GALE GALE 0 0 2 | | 2 6 0.206431
GNBP GNBP 0 | | 0 0 0 2 0.420516
IAP IAP | | 0 3 0 2 7 0.260929
IMDPATH IKKg | 0 0 | 0 0 2 0.66831 |
LYS LYSC 122 21 37 19 15 42 256 0
ML ML 14 10 5 8 9 3 49 0.223609
PGRP PGRP 9 | 4 2 2 5 23 0.312906
PPO PPO | | 0 | 0 0 3 0.653363
PRDX GPX 8 2 | | 0 3 15 0.100553
PRDX HPX | 2 | 3 | 0 8 0.446023
PRDX TPX 7 3 5 14 4 8 41 0.136651
SCR SCRA 0 7 3 | 2 2 15 0.004735
SCR SCRB | 0 0 | 2 0 4 0.26927
SCR SCRC | 0 0 0 0 0 | 0.754901
SOD SOD-Cu-Zn 5 3 3 7 2 2 22 0.798952
SOD SOD-Mn-Fe 30 5 4 2 4 6 51 0.000052
SPZ SPZ 0 0 | 0 0 0 | 0.575875
SRPN SRPN-INHIB 26 8 8 2 8 4 56 0.001248
SRPN SRPN-nonINHIB 4 2 2 0 3 2 13 0.281764
TEP TEP | | 2 | | 4 10 0.376665
TOLLPATH TUBE 0 0 0 0 0 | | 0.562898
Totals 965 275 369 247 176 263 2295

Peptide sequences were harvested from ImmunoDB [24] for An. gambiae, Ae. aegypti, and D. melanogaster for each of the following gene families: All
8,020 EST clusters were blasted against a database of these peptides using blastx (e-value cutoff of le-5). BLAST hits were parsed from output files
using tcl_blast_parser_123_V017.tcl [55] with a cut-off of 40% match, |e-20 normalized e-value, and a minimum match length of 30 residues. Top hits
were taken for each significant match and verified manually. Matches then were categorized by family and subfamily according to Waterhouse et al.
(2007) (Left column) and the composition (# of compiled sequences) of EST clusters were collated from the assembly according to the library(s)
from which ESTs came: asuhem (bacteria-inoculated, hemocyte), diroinf (whole body, Dirofilaria immitis injected), imacbac (bacteria-inoculated
whole body), brumal (blood-fed Brugia malayi), n7 and nl4 (naive, 5-7 and 12—14 days of age). Stekel R values [23] were determined for the
groupings using IDEG6 [20] and those having a score of 0.001 or better were considered significantly differential, and are flagged with bolded and

underlined text for the row.

Among the Diptera, there is an evolutionary divergence of
approximately 250 million years separating mosquitoes
from D. melanogaster. The mosquitoes An. gambiae and Ae.
aegypti are separated by 150 million years [26]. An. gam-
biae is a member of the subfamily Anophelinae, which
contains the primary vectors of human malaria. In con-
trast, Ae. aegypti is a member of the subfamily Culicinae,
which contains the majority of mosquito species that are

of medical or veterinary importance, e.g., Aedes, Culex,
Armigeres, and Mansonia. These two mosquito subfamilies
differ significantly in genomic structure [30-32], and in
vector competence. Broadly, Anopheles species are most
often incriminated as vectors of parasitic disease agents
(e.g., malaria and filarial worm parasites), and Aedes and
Culex species are critically important in the transmission
of arthropod-borne viruses as well as filarial worms.
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Figure 3
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Homologous sequences for Ar. subalbatus found in fly databases. A) Comparative analysis of Ar. subalbatus EST clusters
with predicted peptides from 3 other mosquito species with completed genomes: Ae. aegypti, An. gambiae, and C.p. quinquefas-
ciatus. Overlapping regions indicate homologous sequences from blastx searches against the peptide databases. A homolog is
defined as having an e-value cutoff of |e-20, a percent match of 40% (true matches, not conserved), and a minimum match
length of 30 for the high-scoring segment pair (HSP). This comparison includes 8,020 possible cluster sequences from Ar. subal-
batus (brackets), of which 3,013 had no homolog. Boxes directly adjacent to circles indicate |) the species being compared to
Ar. subalbatus, and 2) the total # of homologous sequences between that species and Ar. subalbatus. B) A gene list of the total of
overlapping and non-overlapping Ar. subalbatus homologs to Ae. aegypti, An. gambiae, and C. p. quinquefasciatus was compared to
a gene list of homologs found to D. melanogaster. A significant number of genes (2,074) from Ar. subalbatus have no homolog in
the fruit fly, but qualify as homologs to genes in other mosquito species.
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Frequency distribution of the quality of blastx matches (according to e-value) for genes considered to be
homologs in Ae. aegypti (AEAE), An. gambiae (ANOPH), C.p. quinquefasciatus (CPIP), and D. melanogaster
(DMEL). The number of e-values within a range is presented as a percentage of the total number of homologs per species.
The graph shows an increasing trend of higher quality matches in more closely related species, while a majority of matches in

distant species are lower quality.

Ar. subalbatus is a competent vector of viruses and para-
sites, and is more closely related to Ae. aegypti than to An
gambiae; Ae. aegypti and Ar. subalbatus are phylogenetically
linked at the level of tribe (Culicini). Therefore, compari-
sons between these two species of mosquito may provide
unique insights into vector competence and innate immu-
nity.

Based on the evolutionary distance, vector status, and vec-
tor competence of the fly species for which we have
genome data, we asked: of the 8,020 EST clusters or single-
tons, how many have homologs in the available databases
for 4 fly genomes/transcriptomes? The output from blastx
analysis of predicted peptide sequences was filtered to
search for homologous sequences using an e-value cutoff
of 1e-20, a percent match of 40% (true matches, not con-
served), and a minimum match length of 30 for the high-

scoring segment pair. A large number of clusters (3,013
(38%)) did not have a homolog in any database as
defined by this screen.

Those clusters that were homologous were subjected to
Venn analysis (Figure 3A) to discover overlapping pre-
dicted peptides in 3 other mosquito species: Ae. aegypti,
(Ae Vectorbase Aaegl.1.1), An. gambiae (Anoph Vectorbase
AgamP3), and C.p. quinquefasciatus (Cpip Vectorbase
CpipJ1.0_5), and the fruit fly, D. melanogaster. The mos-
quito with the largest number of gene products that are
uniquely homologous to Ar. subalbatus is Ae. aegypti, as
would be predicted by the degree of relatedness of these
two mosquitoes. In comparing Ar. subalbatus to all availa-
ble mosquito and Drosophila homologous predicted pep-
tides, 2908 sequences are represented in all fly species. A
significant number (2,074) of clusters from Ar. subalbatus
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qualify as homologs to genes in other mosquito species,
but have no homolog in the fruit fly (Figure 3B).

Taking this one step further, from quantity of hits to qual-
ity of hits, we looked at the frequency distribution of e-
value hits for the homologous sequences (Figure 4). There
is an obvious shift toward more significant e-values for
homologs in Ae. aegypti, a shift away from more signifi-
cant e-values for homologs in Drosophila and Anopheles,
and homologs in Cx. pipiens display an intermediate shift,
closer to that seen in Ae. aegypti.

Conclusion

Following recognition of any pathogen in a mosquito, a
cascade of innate immune responses ensues that can
include humoral responses (e.g. production of antimicro-
bial peptides), cellular (e.g. phagocytosis) and cell-medi-
ated events (e.g. melanotic encapsulation). Because
immunity-related genes function in concert to clear a
pathogen [33,34], it is informative to use a holistic
approach when evaluating expression and/or regulation
i.e. it is likely that most of these genes are not activated
independent of other immune-response genes. For exam-
ple, in Ar. subalbatus, the biochemical pathway required
for melanin biosynthesis is well characterized, but there is
much to learn about the anti-filarial worm response as a
whole in this mosquito species. What is readily apparent
from the limited number of functional genomics studies
that have investigated insect immunity, is that we really
do not know very much about the mechanisms required
to successfully eliminate an invading pathogen from a
refractory mosquito (Aliota et al. [19]), and the subse-
quent changes necessary for a successful return to home-
ostasis.

There are a large number of unknown genes found in this
and many other EST and microarray projects. We hypoth-
esize that a large proportion of these unknowns are func-
tionally linked to the unique and specific immune
response of Ar. subalbatus, because of the material used to
construct the libraries from which ESTs were produced.
The rapidly expanding bank of large EST datasets and
whole genome sequences for mosquitoes [1,26,28,35-39]
provide the capability to critically evaluate the unknowns
in the context of the many characterized facets of innate
immunity, simultaneously. A microarray platform based
on this Ar. subalbatus EST dataset has been designed for
this purpose, and was screened with material from
immune-response activated mosquitoes (Aliota et al.

[19]).

For comparative purposes at the species level, this large
dataset provides an important addition to the available
sequence databases. Dipterans exhibit extraordinary vari-
ation in morphology, behaviour and physiology, so these
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ESTs add to the ongoing and increasingly powerful com-
parisons of fly species [29,40-42]. By virtue of hemat-
ophagy, mosquitoes are presented with unique
physiologic challenges as compared to fruit files; at a min-
imum, blood-feeding requires host-seeking, triggers oog-
enesis, and exposes mosquitoes to a variety of blood-
borne pathogens. Some of these challenges are shared
with other vectors of disease agents. Vector-borne diseases
such as malaria, leishmaniasis, African and American
trypanosomiasis, Lyme disease and epidemic typhus, are
caused by disease agents that are transmitted by mosqui-
toes, sandflies, tsetse, kissing bugs, ticks and body lice,
respectively. There is a great deal of promise for enhancing
our understanding of vector biology through genome
sequencing and functional genomics analysis that will be
increasingly available for a number of these species [43].

Methods

Mosquito maintenance

Ar. subalbatus was obtained from the University of Notre
Dame in 1986. Larvae were hatched in distilled water and
fed a ground slurry of Tetramin® fish food. Pupae were
separated by sex, and females transferred in lots of 80 to
cartons. Adult females were fed on 0.3 M sucrose-soaked
cotton balls. All mosquitoes were maintained at 26.5° +
1°C, 75% + 10% relative humidity with a 16 hr/8 hrlight/
dark cycle beginning and ending with a 90 min crepuscu-
lar period [1].

Immune response activation and tissue collection

To construct libraries from immune response activated
mosquitoes, 2-3 day old adult female Ar. subalbatus either
were inoculated or infected with the pathogen or parasite
known to elicit the response of interest.

Bacteria inoculation. A mixture of E. coli K12 and M. luteus
was used as an inoculum as previously described [44].
Cold-immobilized mosquitoes were held in place with a
vacuum saddle, and a 0.15 mm stainless steel probe was
dipped into a bacterial pellet and inserted into the cervical
membrane. Mosquitoes were returned to the insectary for
24, 48, or 72 h prior to harvesting.

Dirofilaria immitis inoculation. Cold-immobilized mosqui-
toes were secured in a vacuum saddle as previously
described [45] and injected in the cervical membrane with
approximately 20 D. immitis microfilarae (mf) in physio-
logic saline [46], and returned to the insectary for 24 or 48
hours prior to harvesting.

Brugia malayi infection. Sucrose was removed from the car-
tons 14-16 h prior to presenting mosquitoes to gerbils
infected with B. malayi (microfilaraemia of approximately
44 mf/20 ml) for a blood meal. Gerbils were anesthetized
with a ketamine/xylazine mixture. Microfilaremia was
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measured using 20 ul of blood collected by retro-orbital
bleeding; formalin was added to lyse red blood cells and
microfilariae were counted using phase microscopy as
done previously [47]. Replete females were returned to
the insectary for 24, 48, or 72 hours prior to harvesting.

Naive blood fed mosquitoes: Sucrose was removed from the
cartons 14-16 h prior to presenting mosquitoes to unin-
fected gerbils for a blood meal. Gerbils were anesthetized
as described previously. Replete females were returned to
the insectary for 24, 48, or 72 hours prior to harvesting.
The library developed from this source did not produce
quality sequences, so sequence data are unavailable.

Naive mosquitoes. Females were randomly collected by
aspiration from cartons of undisturbed, non-infected
naive adult females at 5-7 and 14-21 days post-eclosion.

Tissue collection

RNA was isolated from 5-10 whole bodies for the follow-
ing libraries: E. coli and M. luteus inoculated, D. immitis
inoculated, B. malayi infected, naive 7-day, naive 14-day,
and naive bloodfed. For whole body collection, infected
or inoculated female mosquitoes were collected at the
aforementioned time points, frozen on dry ice, and stored
at -80°C until ready for extraction. Frozen bodies were
homogenized in a 1.5 ml tube using a Kontes® tissue
grinder in the presence of guanidinium thiocyanate-phe-
nol-chloroform solution [48]. For hemocyte-derived bac-
teria inoculated libraries, a volume displacement method
was used, as previously described [1]. One drop of per-
fusate was collected from each mosquito, kept on dry ice,
and stored at -80° C until ready for extraction.

Library construction

RNA was extracted from mosquito whole bodies or hemo-
cytes by single-step guanidinium thiocyanate-phenol-
chloroform extraction [48]. RNA was visualized on ethid-
ium bromide-stained agarose gels to confirm quality, and
then material from all time points were pooled. Compli-
mentary DNA libraries were constructed using the SMART
cDNA Library Construction kit (Clontech, Palo Alto, CA).
Purified RNA was poly(A) selected for the long range PCR
templates for whole body libraries, while total RNA was
used for the hemocyte libraries.

Sequence collection

For all libraries, sequence data were collected as previ-
ously described [1]. Briefly, plaques were blue/white
screened, isolated by robotic picker, and used directly as a
template in PCR reactions at the University of Wisconsin.
At Yang-Ming the library was subjected to a mass excision
protocol to produce plasmid templates for sequencing, as
described in the manufacturer's protocol. The number of
ESTs produced from either method is described in Table 1.
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EST clustering

A total of 44,940 trace files from both the UW and Yang-
Ming collections were base-called and vector-trimmed
using phred version 0.020425.c [49,50]. A "trim_cutoff"
value of 0.025 was used to remove poor quality bases
from the ends of reads, and SCF3 trace files were output
for downstream clustering. Verified duplicate files from
replicate sequencing were removed from the pool to
reduce perceived cluster depth and improve data analysis.
Poly-A tails and any remaining vector sequences were
then removed with TIGR's seqclean [51], traces identified
as contaminants from E. coli or any of the pathogens used
for stimulus were removed, and finally, all traces with less
than 51 bases of quality sequence were discarded, result-
ing in 38,079 traces proceeding into the assembler.

Quality trace data were clustered using LaserGene Seq-
man, Genome Edition (DNASTAR, Inc.) [52] on a Win-
dowsXP workstation. A rapid, high stringency clustering
was performed first, using the "Fast Assembler" module,
with the following parameters: minimum match 90%,
match size 25, match spacing 150, gap penalty 0, gap
length penalty 0.7, end position mismatch 0, and mini-
mum sequence length 50. These parameters are very con-
servative within the context of this program (i.e.
minimizes false joins), so further automated merging
with the "Classic Assembler" module was performed at a
match size of 12, and a minimum match percentage of
90%. All other parameters were set to default. This had the
effect of merging clusters that were very closely related
with minimal gap sizes.

Similarity searches

To predict gene products and assign gene ontology classi-
fications, EST clusters were compared to sequences from
the GenPept database (Genbank version 156) and gene
products from the whole genome annotations of D. mela-
nogaster (Flybase version 5.1), An. gambiae (ENSEMBL
genebuild 41), and Ae. aeygpti (Vectorbase version L1.1).
A FASTA-formatted file was collected from the assembly
software, and subjected to BLASTX searches using the
aforementioned databases. An E-value cut-off of 103 was
used to reduce non-informative hits, and filtering was not
used. Search results were uploaded to A Systematic Anno-
tation Package for Community Analysis of Genomes
(ASAP) annotation workbench for manual annotation
[53].

Sequence annotation

The annotations of EST clusters in ASAP were conducted
in a similar fashion as outlined previously [1], excluding
protein domain searches due to the large data set size.
Homolog information was collected for both An. gambiae
(Ensembl) and Ae. aeygpti (Vectorbase), with links pro-
vided to those databases. Special attention was paid to
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Gene Ontology descriptors on the matches to D. mela-
nogaster in Flybase. Where an annotation to Flybase was of
"putative" or better, Gene Ontology information was
transferred onto the cluster annotation.

Data sharing

All data for this project are publicly accessible in ASAP via
the web as annotated collapsed EST clusters [54]. Individ-
ual ESTs have been deposited with the National Center for
Biotechnology Information (NCBI) dbEST: database of
Expressed Sequence Tags, under the following accession
number range: EU204979 - EU212998.
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Additional material

Additional file 1

Cluster analysis using six different statistical methods to determine differ-
ential copy numbers of ESTs broken down by library. Clusters and their
constituent ESTs were analysed using IDEG6 [20] to find clusters where
the number of ESTs were statistically different between the libraries. Each
row represents the Genbank Accession number for cluster, which is linked
to the corresponding record at NCBI for ease of access, and the columns
are the number of ESTs from each of the six libraries that are a member
of it. The libraries are: asuhem (bacteria-inoculated, hemocyte), diroinf
(whole body, Dirofilaria immitis injected), imacbac (bacteria-inocu-
lated whole body), brumal (blood-fed Brugia malayi), n7 and n14
(naive, 5-7 and 12-14 days of age). Columns with (norm) in the header
are the number of ESTs in that library normalized by the number of ESTs
total in that library and the number of ESTS total. The "bluer" the shad-
ing, the more "up" the relative abundance of ESTs are compared the the
rest of the libraries in that row. "AC" columns are Audic and Claverie 2
x 2 comparisons [21]; "Fisher" columns are Fishers Exact Test 2 x 2 com-
parisons; "Chi2 x 2" columns are Chi Square 2 x 2 comparison, and "GT"
is Geller and Tobin scores [22]. The R value is the inverse log of the Stekel
R Score [23], and the Chi value is a general Chi square analysis. Yellow
shaded cells are filtered in the 95% or higher significance range. The other
tab, "Flagged Differential" contains the same data as in Table 4, but
include the "AC", "Fishers", "Chi2 x 2", and "GT" columns, and the
Genbank accession numbers are linked to NCBI. The yellow cell shading
in the product column indicates clusters that are considered differential in
Brugia malayi blood-fed females in Aliota, et. al. [19]

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-462-S1.xls]
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