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Abstract

Background: Differential expression of genes can be regulated on many different levels. Most
global studies of gene regulation concentrate on transcript level regulation, and very few global
analyses of differential translational efficiencies exist. The studies have revealed that in
Saccharomyces cerevisiae, Arabidopsis thaliana, and human cell lines translational regulation plays a
significant role. Additional species have not been investigated yet. Particularly, until now no global
study of translational control with any prokaryotic species was available.

Results: A global analysis of translational control was performed with two haloarchaeal model
species, Halobacterium salinarum and Haloferax volcanii. To identify differentially regulated genes,
exponentially growing and stationary phase cells were compared.

More than 20% of H. salinarum transcripts are translated with non-average efficiencies. By far the
largest group is comprised of genes that are translated with above-average efficiency specifically in
exponential phase, including genes for many ribosomal proteins, RNA polymerase subunits,
enzymes, and chemotaxis proteins. Translation of 1% of all genes is specifically repressed in either
of the two growth phases. For comparison, DNA microarrays were also used to identify differential
transcriptional regulation in H. salinarum, and 7% of all genes were found to have non-average
transcript levels in exponential versus stationary phase.

In H. volcanii, 12% of all genes are translated with non-average efficiencies. The overlap with H.
salinarum is negligible. In contrast to H. salinarum, 4.6% of genes have non-average translational
efficiency in both growth phases, and thus they might be regulated by other stimuli than growth
phase.
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Conclusion: For the first time in any prokaryotic species it was shown that a significant fraction
of genes is under differential translational control. Groups of genes with different regulatory
patterns were discovered. However, neither the fractions nor the identity of regulated genes are
conserved between H. salinarum and H. volcanii, indicating that prokaryotes as well as eukaryotes
use differential translational control for the regulation of gene expression, but that the identity of

regulated genes is not conserved.

For 70 H. salinarum genes potentiation of regulation was observed, but for the majority of regulated
genes either transcriptional or translational regulation is employed.

Background

The accurate regulation of the expression of genes into
biological functions is essential for all living organisms.
Coordinate regulation is necessary for the adaptation to
different environmental conditions, for stress response,
for development, for cell cycle control, and for many addi-
tional processes. Regulation can operate at various levels,
from the initiation of transcription to posttranslational
control of protein activity and beyond. While selected
examples have been studied for decades, methods for the
global analysis of gene expression have been developed
more recently. Most widely used is the determination of
transcript level changes using DNA microarrays. However,
it has become more and more obvious that regulation of
gene expression happens at all levels, and thus the post-
transcriptional regulation should not be neglected in
genome-wide studies of differential gene expression [1-3].
2D gel electrophoresis is a well established global
approach to analyze the steady state level of proteins in
parallel. However, disadvantages are that only subpro-
teomes can be studied (e.g. the cytoplasmic, membrane,
or extracellular proteome), that the identity of every single
spot has subsequently to be identified by mass spectrom-
etry, and that proteins can be very stable and the presence
of a protein does not necessarily mean that it is synthe-
sized and needed under the conditions under investiga-
tion.

Therefore it would be better to determine translational
efficiency more directly. One global approach was to pre-
dict the translational efficiencies of all E. coli genes using
a neural network [4]. The bioinformatic analysis was
based on the experimental determination of the reporter
gene activities of 185 clones carrying randomized ribos-
ome binding sites [5]. However, transcript levels were not
determined but assumed to be identical in all cases.
Another approach to quantify the protein production rate
is the combination of pulse-labeling with 2D gel electro-
phoresis. Very few studies exist, but the protein produc-
tion levels have not been correlated to the transcript levels
[6,7] and thus translational efficiencies could not be cal-
culated.

Global methods for the determination of translational
efficiencies and identification of translationally regulated
genes typically are comprised of density gradient centrifu-
gation of a cytoplasmic extract, resulting in the separation
of mRNAs according to their ribosome association, fol-
lowed by the comparison of RNA fractions using DNA
microarrays [3,8-11]. In a method called "ribosome den-
sity profiling", many fractions are collected and used to
measure the exact ribosome density of each mRNA. The
transcript levels in all fractions are compared to a com-
mon reference with DNA microarrays [12]. This method is
extremely demanding in terms of costs, DNA microarrays,
and time. An alternative is the comparison of combined
fractions of a gradient containing either free, non-trans-
lated RNA or translated, polysome-bound RNAs [13]. For
both approaches, the experiment has to be performed
with two defined culture conditions to be able to discrim-
inate mRNAs that are subject to differential regulation of
translational efficiencies from mRNAs that have a consti-
tutive low translation initiation efficiency. Most often,
cultures are compared before and after the application of
a stress condition, the addition of an inhibitor, etc.

While genome-wide studies of differential transcription
and mRNA decay are already available for all three
domains of life, global analyses of translational regulation
have until now only been performed with three species of
eukaryotes (Saccharomyces cerevisiae: [2,12-16], Arabidopsis
thaliana: [17-20], human cell cultures: [11,21-23]). All
these studies identified translationally regulated genes,
their fractions varied from about 1% to 25%, in part
exceeding and in part falling below the number of tran-
scriptionally regulated genes. Some studies revealed that
translational regulation was responsible for more than
half of the detected protein synthesis rate changes [2],
while other analyses rather indicated a specific transla-
tional inhibition of a defined set of genes containing spe-
cific regulatory elements [24].

While it is now well-established that a considerable frac-
tion of eukaryotic genes is regulated on the translational
level, it is generally assumed that the fraction of transla-
tionally regulated genes is much smaller in prokaryotes,
which are thought to nearly exclusively use transcript level
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regulation. However, no global analysis of translational
regulation was available for any prokaryotic species. Some
specific genes have been characterized showing that trans-
lational regulation involving regulatory proteins or small
non-coding RNAs does occur at least in bacteria [25-28].

Almost nothing is known about translational regulation
in archaea. For some genes it has been found that the
changes of mRNA levels and protein levels do not fit, and
this had been taken as circumstantial evidence that trans-
lational regulation might exist also in the domain of
archaea [29]. To clarify the occurrence and importance of
translational regulation in archaea, genome-wide analyses
of translational efficiencies were performed by comparing
exponentially growing cells with stationary phase cells.
Two haloarchaeal model species, Halobacterium salinarum
and Haloferax volcanii [30], were used. This allowed to
evaluate the evolutionary conservation of translational
control in archaea. Furthermore, DNA microarrays were
used to analyse growth phase-dependent transcript level
regulation and determine whether the so-called potentia-
tion of regulation (regulation of genes on both levels)
exists in haloarchaea.

Results and Discussion

Experimental approach for the identification of
translationally regulated genes in two species of different
haloarchaeal genera

Translationally regulated genes are characterized by differ-
ential translational efficiencies of their transcripts under
different conditions. We chose to compare exponentially
growing and stationary phase cells to identify translation-
ally regulated genes. Exponentially growing cultures were
defined to have a cell density of 4 - 5 x 108 cells/ml, about
two to three cell divisions before they enter stationary
phase. Stationary phase cultures were grown to the maxi-
mal cell density and incubated for another 24 hours
before the cells were harvested. In both cases cytoplasmic
extracts were fractionated using sucrose density gradients
to separate free mRNA, which was not translated, from
polysome-bound mRNA, which was actively translated at
the time of cell disruption. Fig. 1A gives an overview of the
experimental approach. Fig. 1B shows the RNAs that were
present in the different fractions of a typical density gradi-
ent. The two top fractions and the bottom three fractions
were pooled, respectively, and were used for RNA isola-
tion, cDNA synthesis, labelling with different fluorescent
dyes, and comparison using DNA microarrays. To ensure
a high fidelity of results, at least three biological replicates
were performed. All transcripts with an at least twofold
deviation from the average value of all genes under only
one of the two growth conditions were assumed to be
translationally regulated. It should be noted that only
"free" and "ribosome-bound" transcripts have been quan-
tified, but that growth phase-dependent differences in the
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Global analysis of translational regulation. A. Sche-
matic overview of the experimental approach. B. An agarose
gel showing the RNAs contained in the fractions of a typical
density gradient. The numbers | — 8 denote the fractions
from top to bottom. Fractions | and 2 and fractions 6-8
were pooled to yield the fractions of "free transcripts” and
"ribosome-bound transcripts”, respectively.
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number of ribosomes on translated transcripts could not
be resolved. This would have required to divide the gradi-
ent into a higher number of fractions and the individual
analysis of all fractions with DNA microarrays ("ribosome
density mapping"). The translational efficiency is typically
determined by the translation initiation rate, but for tran-
scripts with rare codons at their 5'-end can also be deter-
mined by the elongation rate [31]. Changes of one of
these parameters without a concomitant alteration of the
fraction of free transcripts would not have been noted.
Therefore the results described below define the lower
limit of translational regulation in haloarchaea.

Two different species, H. salinarum and H. volcanii, were
used for the analysis, because we aimed to characterize the
evolutionary conservation of translational regulation. All
results have been deposited in the ArrayExpress database
(accession numbers see Methods). For both species, the
majority of protein-coding genes were found in the ribos-
ome-bound fraction and thus were actively translated in
the two growth phases, i.e. 70% of all H. salinarum genes
and 65% of all H. volcanii genes. These values are similar
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to the results obtained with Saccharomyces cerevisiae. Up to
80% of all yeast genes were reported to be translated [32].

Genes with differential translational repression in H.
salinarum

In H. salinarum, 21 genes were found to be at least twofold
undertranslated in one growth phase, but not in the other
(Table 1). 14 of these genes exhibit a translational repres-
sion in exponential phase, while the translation of seven
genes is repressed in stationary phase. The highest level of
translational regulation was detected for the transcript
encoding translation initiation factor alF-1A (OE3470F),
which has a 13-fold higher translational efficiency during
exponential phase than during stationary phase. The initi-
ation factor alF-1A is conserved in all three domains of life
and was shown to be essential both for E. coli and S. cere-
visiae [33]. The eukaryotic homologue, elF-14, is impor-
tant for ribosome-scanning and for initiation codon
selection [34]. If the archaeal factor had the same func-
tion, a decrease of the alF-1A concentration due to trans-
lational repression in stationary phase could be expected
to lead to a general decrease in initiation rate at many or
all transcripts. As the initiation step is rate limiting, this

Table I: H. salinarum genes with a differential translational repression in exponential phase or in stationary phase™!

Translational repression factor Transcript level

ORF Gene product Exp Stat Stat/exp

%) sD n %) sD n %) SD n
OE451 IR Hypothetical protein 9.0 38 4 1.2 0.2 3 0.1 0.0 3
OEIII9F dTDPglucose 4,6-dehydratase 4.7 2 1.2 0.0 2 0
OE3538R Hypothetical protein 3.5 2.0 4 0.9 0.1 2 0.5 0.1 2
OE3049R Hypothetical protein 2.7 1.8 3 1.2 0.4 3 1.3 0.2 2
OE4187R Probable DNA-binding protein 2.6 1.1 4 1.4 0.2 2 0.2 0.1 3
OE2082F Conserved hypothetical protein 2.5 0.2 2 1.1 0.2 2 0
OE2024F Conserved hypothetical protein 2.4 0.6 3 1.1 0.4 2 0.7 |
OEI I 14F Probable glucose- | -phosphate thymidylyltransferase GraD3 2.4 0.6 3 1.3 0.2 2 1.5 0.1 3
OEI982R Conserved hypothetical protein 2.2 0.3 2 1.0 0.0 2 1.5 |
OE3090R Conserved hypothetical protein 2.2 0.8 4 1.1 0.3 3 0
OEI222R tRNA adenylyltransferase, CCA-adding 2.2 0.2 2 1.1 0.1 3 23 0.7 2
OE2021F Conserved hypothetical protein 2.1 0.9 4 1.0 0.1 2 0.8 |
OEI1385F Conserved hypothetical protein 2.1 0.7 4 1.0 0.2 3 0.9 0.2 2
OEI 147R Protein-L-isoaspartate O-methyltransferase PimT | 2.0 1.2 4 1.0 0.1 2 1.1 0.2 3
OE3470F Translation initiation factor alF-1A 0.6 0.2 4 8.4 6.1 3 0.7 0.1 3
OEI405R Conserved hypothetical protein 2.4 0.9 4 5.1 0.2 3 0.3 0.0 3
OEI083R Probable transposase (ISH3/ISH27) 1.5 0.4 4 3.1 1.1 2 1.0 0.3 3
OES5071F Protein kinase weak homolog 0.6 0.3 4 2.7 0.1 3 0
OE7017R Probable transposase (ISH3/ISH27) 0.6 0.2 4 2.7 0.4 3 1.1 0.2 3
OE3100F Bacterioopsin-linked protein Blp 0.6 0.1 3 2.5 0.3 3 3.2 0.6 3
OE2433AIF Probable transposase (ISH3/ISH27) 1.0 0.5 4 23 0.5 3 1.5 0.4 3

*IAll genes are tabulated which have a "translational repression factor" of >2 differentially in exponential phase (upper part) or in stationary phase
(lower part). The translational repression factor is the quotient of free RNA to polysome-bound RNA (normalized to the average of all genes). If
available, also the relative transcript levels of these genes are listed (quotient stationary phase/exponential phase). ORF numbers and gene products
were taken from the genome website HaloLex [62]. The columns &J, SD and n list average value, standard deviation and number of repetitions.
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would lead to a general decrease in translational efficiency
and thus potentiate the regulatory effect.

The biological reason for translational regulation of the
other 20 genes is less clear. 10 of the genes are annotated
to encode "hypothetical proteins". The association of
their transcripts with polysomes in one growth phase
strongly indicates that the proteins are produced during
that phase and proves that the proteins are not "hypothet-
ical". Three genes encode transposases for one family of
insertion elements (ISH3/ISH27), indicating that transpo-
sition of members of this family is less efficient in station-
ary phase. The remaining seven genes belong to different
functional categories.

Confirmation of microarray-based results of 14 genes using
qRT-PCR

To confirm the results with an independent method,
quantitative Realtime Reverse Transcription PCR (qRT-
PCR) was applied. Eight of the 21 differentially regulated
genes were chosen, five with a translational repression in
the exponential phase and three that were undertranslated
during stationary phase. As a control group, six genes were
chosen arbitrarily which had average translational effi-
ciencies in both growth phases. Three biological replicates
were performed. All qRT-PCR curves were analyzed using

http://www.biomedcentral.com/1471-2164/8/415

the 27**“T method [35] and normalized to the average of
the control group. In Table 2 the qRT-PCR results of all 14
genes are summarized and compared with the DNA-
microarray results. In 13 of the 14 cases, the results
obtained with both methods were in agreement. In three
cases, the values obtained with DNA microarrays were
higher than those obtained with qRT-PCR (Table 2). In
one case, qRT-PCR and DNA microarray analysis yielded
deviating results (OE5071F). One theoretical explanation,
i.e. cross-hybridization of other genes on the microarray,
could be excluded because there are no similar sequences
in the genome. The reason for the conflicting results with
gene OE5071F could not be clarified.

The possibility of cross-hybridization was also an issue for
the gene encoding the translation initiation factor dis-
cussed above (OE3470F), because the H. salinarum
genome contains a second, orthologous gene (OE4136R),
and both share a high sequence identity of 66%. However,
the DNA microarray analysis as well as qRT-PCR both
revealed that only one of the two transcripts is translation-
ally regulated (OE3470F), while the other one
(OE4136R) is translated with average efficiency in both
growth phases (data not shown). In summary, the DNA
microarray results could be confirmed with qRT-PCR in

Table 2: Verification of DNA microarray-derived results with qRT-PCR*!

Translational repression factor exp

Translational repression factor stat

ORF Realtime PCR Microarray Realtime PCR Microarray

%] SD n %] SD n %] SD n %] SD n
OE2010R 1.2 0.1 3 1.0 0.0 4 1.2 0.4 3 1.0 0.1 3
OE2055F 1.0 0.1 3 1.0 0.2 4 1.3 0.1 3 1.0 0.1 3
OE2563R 0.8 0.1 3 1.0 0.1 4 0.7 0.1 3 1.0 0.1 3
OE2595F 1.2 0.1 3 1.0 0.2 4 1.0 0.1 3 1.0 0.1 3
OE3637R 0.7 0.1 3 1.0 0.2 4 0.9 0.4 3 1.0 0.1 3
OE4674F 1.1 0.1 2 0.9 0.1 4 0.8 0.2 3 0.9 0.0 3
OE4511R 45.4 16.3 3 9.0 3.8 4 12.7 5.3 3 1.2 0.2 3
OE3538R 19.6 29 3 3.5 2.0 4 4.3 1.4 3 0.9 0.1 2
OE4187R 8.7 1.0 3 2.6 I.1 4 6.4 0.7 3 1.4 0.2 2
OEIII9F 3.0 1.0 3 4.7 2 1.4 0.2 3 1.2 0.0 2
OE3049R 2.2 0.6 3 2.7 1.8 3 1.6 0.2 3 1.2 0.4 3
OEI405R 9.2 1.2 3 2.4 0.9 4 13.5 4.9 3 5.1 0.2 3
OE3470F 1.9 1.0 3 0.6 0.2 4 7.4 4.1 3 8.4 6.1 3
OE5071F 2.7 0.6 3 0.6 0.3 4 1.5 0.3 3 2.7 0.1 3

*IThe relative levels of free mMRNA and polysome-bound mRNA of selected genes were quantified by qRT-PCR in exponential phase ("exp") and
stationary phase ("stat") cultures. The results for the 14 genes were normalized to the average values of six genes (upper part, OE2010R —
OE4674R) which were presumed to be not translationally regulated based on the DNA microarray results. For comparison, the DNA microarray
results are also listed. ORF numbers were taken from the genome website HaloLex [62]. The columns &, SD and n list average value, standard

deviation and number of repetitions.
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13 out of 14 cases, and even very similar genes could be
differentiated.

H. salinarum genes with growth phase-dependent above-
average translational efficiency

The microarray data were also analyzed with respect to
genes with an above-average ribosome association. Genes
were classified as growth phase dependent overtranslated
if they showed an at least twofold below average level of
free mRNA in one growth phase, but not in the other. This
group is comprised of 394 different genes, equivalent to
20% of all genes analyzed (Table S1 - Additional file 1).
393 of these genes have a differential above average trans-
lational efficiency in exponential phase, while only a sin-
gle gene encoding a hypothetical protein is better
translated in stationary phase (OE3542R). The genomic
organization of this group of genes is striking. 69% of
these genes (271) are located on the megaplasmids of H.
salinarum, while only 21% of all analyzed genes are meg-
aplasmid encoded. In total, 68% of all megaplasmid-
encoded genes are translated at least twofold better and
90% are translated at least 1.5 fold better than average.
This is in contrast to the genes localized on the chromo-
some. Only 8% of chromosomal genes are differentially
translated with above-average efficiency.

171 of the 394 differentially translated genes are anno-
tated as "hypothetical proteins", "conserved hypothetical
proteins”, or "genes with no known function" (Table S1).
The differential translation of their transcripts proves that
they are real genes and suggests that the encoded proteins
are especially needed in exponential phase (OE3542R in
stationary phase). Among the remaining 223 genes some
functional categories are obviously enriched. Examples
are 1) 33 genes involved in translation, including 27
ribosomal protein genes, 2) 13 genes for elements of the
basal transcription machinery, including nine genes for
TBP and TFB paralogs, 3) 21 genes for the chemotaxis
machinery, including CheA, CheB, histidine kinases and
haloarchaeal transducers, 4) 15 genes of the two gas vesi-
cle gene clusters, and 5) 22 genes for transposases (Table
S1). This non-random distribution prompted us to ana-
lyze the differential translational efficiencies of all H. sali-
narum genes as well as of the chromosomally encoded and
of the megaplasmid encoded subfractions (Table 3).
Exponential phase overtranslation was found for all func-
tional categories of genes localized on megaplasmids. In
contrast, among the chromosomally localized genes dif-
ferential overtranslation is confined to very few functional
categories. All genes of the functional classes "basal tran-
scription apparatus” (TC) and "translation" (TL) are on
average at least twofold better translated in exponential
than in stationary phase. A somewhat lower average expo-
nential phase overtranslation was also detected for the
functional classes "chaperones" (CHP), "cellular proc-

http://www.biomedcentral.com/1471-2164/8/415

esses" (CP), "signal transduction" (SIG), and "trans-
posases and insertion elements" (ISH). These genes
encode fundamental cellular processes like transcription,
translation, protein folding, cell cycle and cell division, all
of which have a higher activity in exponentially growing
than in stationary phase cells.

The high number of genes with coordinate differential
regulation indicates that a common regulatory mecha-
nism exists. It seems well possible that they bind a com-
mon positive or negative translational regulator and thus
form a "RNA regulon", as has recently been proposed to
exist in eukaryotes [36,37]. An alternative explanation
might be that the transcripts of this group of genes interact
differently with elements of the basal translation initia-
tion apparatus compared with the rest of genes. This
would be analogous to the situation in Arabidopsis thal-
iana, where the translation initiation factor elF3 is
involved in the translational regulation of genes with spe-
cific 5'-leader sequences [38].

H. salinarum genes with constitutive non-average
translational efficiency

No genes were found with at least twofold lower transla-
tional efficiency and no growth phase-dependent transla-
tional regulation. In contrast, 17 genes showed at least
twofold higher translational efficiency both in exponen-
tial and in stationary phase (Table S2 - Additional file 2).
Examples are cctA and cctB encoding the thermosome and
genes for a superoxide dismutase, a heat shock protein,
and three subunits of an AAA-type ATPase. There are two
possible explanations for this pattern of translation. 1)
The genes could have a constitutive above-average transla-
tional efficiency. This possibility is reinforced by the fact
that some of them belong to the group of predicted highly
expressed (PHX) genes suggested by Karlin et al. [39],
which are characterized by an optimal codon usage. 2)
The genes could be differentially regulated, but not in
response to growth phase, but to an as yet unidentified
stimulus.

Growth phase dependent transcript level regulation in H.
salinarum

To enable a comparison of translational control and tran-
script level regulation in H. salinarum, the transcriptomes
of exponentially growing and stationary phase cultures
have been analyzed. Again, the data were normalized to
the average of all genes, easing the identification of genes
with non-standard transcriptional patterns. 353 genes had
an at least twofold different transcript level in exponential
versus stationary phase, compared to the average tran-
script level. The results for these genes are listed in Table
S3 (Additional file 3), which also includes gene names,
functional categories, and the degree of translational con-
trol. The 353 genes correspond to 17% of the 2120 genes
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Table 3: Growth phase-dependent translational regulation in different functional categories of the H. salinarum genome™!

Whole genome

Main chromosome

Megaplasmids

Functional class %] SD n %] SD n %] SD n
AA 1.0 0.5 72 1.0 0.4 68 1.7 0.7 4
CE 0.8 0.3 2 0.8 0.3 2

CHM 0.7 0.3 10 0.7 0.3 10
CHP 1.6 0.8 3 1.6 0.8 3
CHY 1.4 0.9 430 0.9 0.5 295 2.3 0.7 135
CIM 1.2 0.7 40 1.2 0.7 40
COM 1.0 0.5 57 1.0 0.5 57
CP 1.7 0.8 26 1.5 0.8 20 2.2 0.3 6
EM 1.3 0.7 39 1.2 0.7 37 2.3 0.5 2
HY 1.2 0.8 349 0.8 0.3 255 2.3 0.7 94
ISH 1.9 0.8 71 I.1 0.6 22 2.3 0.6 49
LIP 1.1 0.6 33 1.1 0.4 32 3.6 |
MIS 1.3 0.8 207 1.1 0.7 166 2.1 0.8 4|
MOT 0.9 0.2 6 0.9 0.2 6
NOF 1.1 0.6 312 0.9 0.4 274 2.4 0.7 38
NUM 1.2 0.9 39 1.0 0.7 37 3.9 0.2 2
REG 1.1 0.6 Il 0.9 0.3 8 1.8 0.8 3
RMT 0.8 0.2 6 0.8 0.2 6
RRR 1.3 0.8 33 1.0 0.6 26 2.2 0.7 7
SEC 1.2 0.9 9 1.2 0.9 9
SIG 1.8 1.0 53 1.8 1.1 49 2.1 0.4 4
TC 2.0 0.9 26 1.6 1.0 14 2.4 0.6 12
TL 2.1 1.8 76 2.1 1.9 75 2.5 |
TP 1.3 0.8 103 1.0 0.5 8l 2.3 0.7 22

*IThe average "exponential phase induction factors" for all genes of the different functional categories are listed for the whole genome, the main
chromosome, and the megaplasmids. Functional categories and corresponding genes were taken from the genome website HaloLex [62]. The
exponential phase induction factors were calculated by dividing the translational repression factors in stationary phase with the translational
repression factors in exponential phase. In addition to the average values (&), the standard deviations (SD) and the number of genes in the
respective functional classes (n) are listed. If no value is given, the megaplasmids do not contain genes of the respective functional class. The
functional classes are: AA-amino acid metabolism, CE-cell envelope, CHM-carbohydrate metabolism, CHP-chaperones, CHY-conserved
hypothetical protein, CIM-central intermediary metabolism, COM-coenzyme metabolism, CP-cellular processes, EM-energy metabolism, HY-
hypothetical protein, ISH-transposases and ISH-encoded proteins, LIP-lipid metabolism, MIS-miscellaneous, MOT-motility, NOF-no function
assigned to experimentally identified protein, NUM-nucleotide metabolism, REG-gene regulation, RMT-RNA maturation, RRR-replication, repair,
recombination, SEC-protein secretion, SIG-signal transduction, TC-transcription, TL-translation, TP-small molecule transport.

with good hybridization signals in at least two out of three
biological replicates. This fraction of differentially regu-
lated genes is slightly smaller than that in E. coli. 27% of
all E. coli genes have at least twofold different transcript
levels in exponential versus stationary phase [40].

The majority of regulated genes have elevated transcript
levels in exponential phase (243 of 353, Table S3). There
is no enrichment of plasmid genes in this group in con-
trast to the group of overtranslated genes discussed above.
76% of the genes with above-average transcript levels have
a known function, a considerably higher value than the
average value of 60%. This indicates that these genes are
involved in biological functions that have been exten-
sively studied in the past. The largest group belongs to the
functional group of "translation" and is comprised of
genes encoding 40 ribosomal proteins, three translation
factors and one aminoacyl-tRNA-synthetase. Only five
ribosomal proteins were not found to have a more than

twofold higher transcript level in exponential phase. Also
the basal transcription machinery is differentially regu-
lated (eight subunits of the RNA polymerase). This group
also contains many genes encoding enzymes of the central
metabolism, e.g. glucose degradation (6 genes), TCA cycle
(5 genes), NADH dehydrogenase and electron transport
(12 genes), and ATP-synthase (7 genes).

The genes with differentially induced transcript levels are
enriched in genes that are also regulated on the transla-
tional level and thus show potentiation of the regulatory
effects. 30% of the 243 genes with induced transcript lev-
els in exponential phase are also overtranslated in expo-
nential phase (average value 21%). The fraction of genes
regulated on both levels is even more pronounced for
highly regulated genes. Of the 61 genes with an at least
fourfold transcript level induction in exponential phase,
39 are also translated with enhanced efficiency in expo-
nential phase (Table S3). In some cases, interesting differ-
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ences in regulatory strategies are obvious, e.g. the subunits
of the RNA polymerase are regulated on the transcript
level (and do not have differential translational control),
while - as mentioned above - nine TBP and TFB paralogs
were found to be translationally regulated (and are not
regulated on the transcript level).

A smaller fraction of the genes have a differentially
induced transcript level in stationary phase cells (110 of
353, Table S3). In contrast to the group of genes discussed
above, this group of genes is not enriched in translation-
ally induced genes. Among the genes with highest induc-
tion level are the subunits of the DMSO reductase, which
is an alternative terminal oxidase under anaerobic condi-
tions, and three subunits of an ABC transporter (sugar/
glycerolphosphate-specific). Notably, this group of sta-
tionary phase-induced genes also includes several DNA
repair proteins, two paralogs of the origin-binding Cdc6
protein, and two members of the "structural maintenance
of chromosomes" (SMC) protein family. Induction of
these genes underscores the importance to guarantee the
integrity of chromosomal DNA in stationary phase. The
remaining genes encode either proteins without a known
function, or are scattered over various functional classes.

Translational regulation in Haloferax volcanii

As one important aim was to address the evolutionary
conservation of translational regulation, the analysis of
non-average translational efficiencies in exponential and
stationary phase was also performed with Haloferax volca-
nii. The genome of H. wvolcanii has been sequenced by
TIGR, but the annotation has not been completed. There-
fore a shotgun DNA microarray with a onefold coverage of
the genome was used [41]. It is comprised of 2880 PCR
products of an average length of 1.5 kbp. They have been
sequenced from both ends and the encoded proteins have
been deduced from BLAST searches against public data-
bases. The clones contain full or partial sequences of one
or two (in rare cases up to three) genes. The hybridization
signals are thought to be dominated from the longest gene
sequence of each clone. If the sequences of two genes have
similar lengths in a specific clone, both are included in the
results.

Genes with growth phase-dependent differential
translational regulation

A more than twofold differential repression was deter-
mined for 26 cloned genomic fragments and the results
are summarized in Table 4. This represents 1.4% of the
1866 clones that generated significant hybridization sig-
nals in at least two of the biological replicates. Three pairs
of cloned sequences overlap, reducing the number of
identified translationally repressed genes to 23. Nine tran-
scripts are translationally repressed in exponential phase,
including those of genes for transcriptional regulators and
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one paralog of the basal transcription initiation factor
TFB, which could potentiate the regulatory effect. 14 tran-
scripts were translationally repressed in stationary phase,
including the ¢sg transcript encoding the cell surface glyc-
oprotein.

4.2% of H. volcanii genes were translated with at least two-
fold elevated translational efficiency in one of the two
growth phases (79 clones, Table S4 — Additional file 4). In
contrast to H. salinarum, the H. volcanii genes of this group
are evenly distributed on the chromosome and the mega-
plasmids (21% of the regulated genes and 25% of all pre-
dicted ORFs are megaplasmid encoded) and no
functional category is over-represented. If overlapping
clones are taken into account, the 79 clones represent 71
different genes. Of these, 65 are overtranslated in expo-
nential phase and 6 in stationary phase. Exponential
phase overtranslated genes include genes for a paralog of
a basal transcription initiation factor, several transcription
regulators, and one translation initiation factor, which
could potentiate the regulatory effect.

H. volcanii genes with constitutive non-average
translational efficiency

87 clones contain genes with an at least twofold elevated
translational efficiency in both growth phases (Table S5 -
Additional file 5). If overlapping clones are taken into
account, the clones represent 58 different genes. Several of
these genes belong to the "predicted highly expressed"
genes [39], and examples of the encoded products are
ribosomal proteins, RNA polymerase subunits, stress pro-
teins, and a Cdc48 homologue. The biological function of
the high translational efficiencies of the remaining genes,
which represent different functional categories, is less
clear.

28 clones contain genes with a constitutive more than
twofold below-average translational efficiency, a category
that is totally absent in H. salinarum. Virtually all of these
genes encode hypothetical proteins or transposases. It
might well be that the translational efficiency of these
genes is not regulated in response to growth phase, but
that another stimulus is needed for the induction of trans-
lation, e.g. specific stress conditions.

Evolutionary conservation of translational regulation

Characterization of translational control in H. salinarum
and H. volcanii has revealed that the fraction of regulated
genes in both haloarchaeal species is much higher than
anticipated for prokaryotes until now. In total, more than
400 genes and more than 100 genes are translated with
differential efficiency in exponential phase compared to
stationary phase cells in H. salinarum and H. volcanii,
respectively. Therefore the fact that translational control
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Table 4: H. volcanii genes with a differential translational repression in exponential phase or in stationary phase*!

Translational repression factor

Identifier Putative function length (bp) exp stat

9] SD n ] SD n

451B11 Inosine monophosphate dehydrogenase 365 49.7 56.0 3 8.8 29 3

431C4 Phage integrase-site-specific recombinase Xer 644 17.5 19.8 2 1.9 1.2 2
Conserved hypothetical protein 528

432A4 NAD dependent epimerase-dehydratase 770 12.8 5.6 4 5.4 29 3

439E12 Tfb2 — transcription initiation factor 1B 590 10.4 9.0 3 1.6 0.3 2

435D7 Nitrate transporter NarK 606 7.6 38 4 3.0 I.1 3

431H5 Alpha amylase AglA 613 5.4 0.5 2 2.4 1.3 3
Nitrate transporter NarK 455

435A4 4.7 2.7 3 1.4 0.8 2

437B8 HoxA-like transcriptional regulator (Hrg) 578 4.5 0.1 2 1.5 0.3 3
Transcription regulator 413

453CI | Tfb2 — transcription initiation factor 1B 335 3.6 0.3 2 1.9 0.9 3

451G12 Hypothetical protein 58I 2.5 0.3 2 0.9 0.9 2
Conserved hypothetical protein 44|

433F2 Glycosyltransferase 953 2.3 1.4 3 0.5 0.1 3
Stage V sporulation protein R-like (SpoVR) 593

435F2 CRISPR-associated protein, TM1814 family (Cas6) 222 8.6 35 4 21.9 12.7 3

432H1 Methyltransferase type || 415 5.0 4.2 2 13.1 2.7

Hypothetical protein 362
Domain of unknown function (DUF309) family 232

443B4 Transposase (Tnp) 518 4.5 0.8 4 7.9 35 3

441F8 Tat pathway signal sequence domain protein 1008 2.2 0.1 3 4.8 2.6 3

459C3 Cell surface glycoprotein (Csg) 1167 1.1 0.3 4 3.9 2.0 3

445E9 0.6 0.4 2 3.3 0.2 2

433A10 Helicase family protein 1307 1.1 0.2 2 33 2.1 3
Hypothetical protein 431

441El DSBA-like thioredoxin domain protein 683 1.3 0.1 2 2.8 1.7 3
Ferredoxin like protein 377
Mut-nudix family protein 363

443CI Ubiquinol oxidase subunit |, cyanide insensitive (CydA) 1391 0.9 0.1 3 24 1.1 3

431DI0 Solute-binding periplasmic ABC transporter 1148 1.0 0.1 3 23 04 2
ABC transporter, permease protein 475

452E| Ferrichrome-binding protein 848 1.2 0.3 4 2.3 0.6 3

451E8 Ribonuclease HII (RnhB) 579 1.1 0.5 4 2.2 0.7 3
Preprotein-export translocase chain SecD 408

460F5 Preprotein-export translocase chain SecD 988 1.2 0.6 3 2.2 0.2 3

440D Conserved hypothetical protein 992 1.0 0.1 3 2.0 0.0 2

444G9 Conserved hypothetical protein 1120 0.5 0.1 3 2.0 0.4 3
Fibronectin type Ill domain protein 408

*IAll genes are tabulated which have a "translational repression factor" of >2 differentially in exponential phase (upper part) or in stationary phase
(lower part). The translational repression factor is the quotient of free RNA to polysome-bound RNA (normalized to the average of all genes). The
identifier is the clone designation in the onefold coverage genome library used to generate the shotgun DNA microarray [41]. The "putative
functions” are derived from blast searches against public databases. The "length" is the partial or total length of the gene which is present in the
respective clone. The columns &, SD and n list average value, standard deviation and number of biological replicates included in the analysis.

constitutes a non-negligible part of the regulation of gene
expression is shared by both species.

However, all other aspects are remarkably dissimilar: 1)
the different groups of co-regulated genes have very differ-
ent sizes. The fractions of all translationally-regulated

groups of genes are compared in Figure 2, which illus-
trates the differences in both species, 2) the above-average
translational efficiency of plasmid-encoded genes is only
found in H. salinarum, 3) the group of genes with under-
average translational efficiency in both growth phases is
only found in H. volcanii, 4) most importantly, there is no
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Halobacterium safinarum

Onotranslational regulation
Bexponential overtranslation
B stationary overtranslation
Bexponential undertransi ation
D stationary undertransiation
Balways overtranslated

Dalways undertranslated

Halfoferax volcanii

Figure 2

Comparison of groups of translationally regulated genes in Halobacterium salinarum and Haloferax volcanii. The
relative fractions of regulated genes, compared to the total number of expressed genes, were calculated for six groups of genes
with different patterns of translational efficiencies in exponential phase and stationary phase, as indicated in the inset. The six
groups with non-average translational efficiencies and the group of averagely-translated genes are graphically represented for

H. salinarum and H. volcanii.

overlap of genes that are regulated identically in both spe-
cies.

These differences cannot easily be rationalized. Two very
different types of DNA microarrays were used, but this
could not have been the reason. The shotgun DNA micro-
array of H. volcanii was used in several studies and has gen-
erated very specific and biologically meaningful results,
e.g. comparison of glucose-dependent versus amino acid-
dependent metabolism [41], identification of genes
involved in xylose catabolism (unpublished data), charac-
terization of a regulon (Dambeck M, Soppa J: Characteri-
zation of the biological role of IftA (important for
transition), a Haloferax volcanii member of the enolase
superfamily, in preparation), and identification of a tryp-
tophane-regulated promoter [42]. Characterization of
translational regulation in eukaryotes revealed that -
depending on the experimental conditions - very differ-
ent sets of genes can be regulated even in the same species,
e.g. in S. cerevisiae during amino acid starvation and after
fusel alcohol addition (see below) [16]. However, in the
present study the conditions were kept as identical as pos-
sible. Both species grew under aerobic conditions in com-
plex medium with nearly identical growth rates with
doubling times of about four hours. In both species mid-
exponential cultures (4 x 108 cells/ml) were compared to
cultures that had been cultivated in stationary phase (3 x
109 cells/ml) for 24 hours. Therefore, the only explanation
seems to be that there is no evolutionary conservation of
the identity of translationally regulated genes in these two

haloarchaeal species of different genera. The different sets
of growth phase-regulated genes add to the previously
known differences of H. salinarum and H. volcanii. In
short, H. salinarum is a rod-shaped flagellated archaeon
with an optimal salt concentration of over 4 M NaCl. It
can grow by aerobic respiration, arginine fermentation
and phototrophically using bacteriorhodopsin. It can ori-
ent its swimming motility by chemotaxis, phototaxis and
aerotaxis and, in addition, it can produce gas vesicles. In
contrast, H. volcanii is a pleiomorphic archaeon with an
optimal salt concentration of about 2.2 M NaCl. It can
grow by aerobic and by nitrate respiration. It does not
contain retinal proteins and does not produce flagella or
gas vesicles.

A comparison whether translational control is conserved
in other prokaryotic species is not possible, because no
data are available for any other archaeal or for any bacte-
rial species. However, several studies have been per-
formed with three different species of eukaryotes, i.e. S.
cerevisiae, Arabidopsis thaliana, and human cell lines [2,11-
23]. The reported extent of translational regulation varies
widely, from about 1% to about 25% of all expressed
genes. Low fractions of translationally regulated genes
were reported e.g. for S. cerevisae transferred from a fer-
mentable to a nonfermentable carbon source [14] or A.
thaliana starved for sucrose [20]. High fractions of transla-
tionally regulated genes were reported e.g. for S. cerevisiae
treated with rapamycin [12] or A. thaliana during dehydra-
tion stress [19]. Quantitative comparisons between the
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different studies are not easy, because species, stimuli,
experimental methods and data handling vary. However,
it is clear that the applied stimulus can have tremendous
influence on differential translational control. One exam-
ple is the comparison of the effects of amino acid starva-
tion and the addition of fusel alcohol to S. cerevisiae [16].
Although both treatments are thought to target transla-
tion initiation factor eIF-2B, 615 genes changed transla-
tional efficiencies after the former treatment, while only
167 genes were effected after the latter. Moreover, the two
groups of genes were nearly mutually exclusive.

Even if comparisons of the results obtained with eukaryo-
tes is hampered by the small number of species and the
variability of conditions and experimental approaches,
the available data do not indicate evolutionary conserva-
tion of translationally regulated genes among eukaryotes.
This is in congruence with the lack of conservation of
growth phase-regulated genes in two haloarchaeal species
revealed in this study. Taken together, the results indicate
that either translational regulation was added to the
inventory for regulating gene expression late in evolution,
or that the mechanism evolved early, but that the identity
of translationally regulated genes and the level at which
each gene is regulated are readily exchanged.

Extent of transcriptional control, translational control,
and potentiation

In total 17% of all expressed genes of H. salinarum have
different transcript levels in exponential phase compared
to stationary phase. The fraction of translationally regu-
lated genes is even higher with a value of nearly 22%. If
the large group of plasmid genes is subtracted as possibly
exceptional, a value of 8% remains. But even this value is
much higher than anticipated and it indicates that tran-
scriptional and translational control are of similar impor-
tance for H. salinarum.

A comparison with bacteria is not possible, but several
studies with eukaryotes have been performed. Similar
fractions of transcriptionally and translationally regulated
genes were found during stress response of yeast [16] and
sucrose starvation of Arabidopsis thaliana [20]. Two further
studies detected even more translationally than transcrip-
tionally regulated genes, i.e. in oxygen-deprived A. thal-
iana seedlings [17] and in irradiated human cell lines [22].
Taken together, comparison of our new results with previ-
ous studies challenges the current view that the relative
importance of transcriptional and translational regulation
is very different in eukaryotes and prokaryotes.

The fraction of genes that is simultaneously regulated on
the transcriptional and the translational level, which was
called "potentiation" of regulation, seems to be specific
for the species as well as for the stimulus used. A very good
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correlation with up to about 50% co-ordinately regulated
genes occurred after heat shock, rapamycin treatment, and
amino acid starvation of S. cerevisiae [12,14]. In contrast,
a low level or no potentiation was detected after butanol-
treatment of S. cereviside, rapamycin treatment and irradi-
ation of human cells [16,21,22]. The results of H. sali-
narum are between these extremes. Coordinate changes of
transcription and translation were detected for about 70
genes characterized by above-average transcript levels and
translational efficiencies during exponential phase.

Possible mechanisms of translational control

The different groups of translationally regulated genes are
of very different size, e.g. 393 genes are differentially over-
translated and five are differentially undertranslated in
exponential phase in H. salinarum. This indicates that sev-
eral mechanisms — more general and more gene-specific —
might operate in haloarchaea. In eukaryotes both types of
mechanisms have been characterized. Many general initi-
ation factors are involved in translation initiation, and
their concentration or posttranslational modification can
influence translational efficiencies of many genes [43,44].
In contrast, translational efficiencies of small groups of
genes can be regulated by gene-specific regulatory pro-
teins, which have specific binding sites in the 3'-UTRs or
the 5'-UTRs of the respective transcripts [45-47]. In bacte-
ria evidence is accumulating that small non-coding RNAs
are involved in translational regulation [28,48].

Archaea share some of the translation initiation factors
with eukaryotes [33] and harbor small non-coding RNAs
[49], but molecular mechanisms of translational regula-
tion have not been investigated. It has been proposed that
archaea have two different classes of transcripts, i.e. tran-
scripts with 5'-UTRs and leaderless transcripts, and that
two different mechanisms of translation initiation exist
[50]. Determination of the 5'-ends and 3'-ends of 40
haloarchaeal transcripts revealed that most of them are
leaderless and that leadered transcripts with and without
a Shine-Dalgarno sequence exist [51]. Several of the trans-
lationally regulated transcripts were found to lack a 5'-
UTR, indicating that the 3'-UTR might be involved in reg-
ulation. A reporter gene system was established that per-
mits to study the in vivo function of 5'-UTRs and 3'-UTRs
[51], an in vitro translation system was established [52],
and the generation of in frame deletion mutants is easily
possible [53,54]. These methods will be applied to
unravel the molecular mechanisms of translational regu-
lation of the different groups of co-regulated genes
described above, and to reveal whether principles known
from eukaryotes or bacteria operate, or whether archaea-
specific mechanisms have evolved.
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Conclusion

Global analysis of growth phase-dependent translational
regulation in two haloarchaeal species revealed that the
fraction of differentially regulated genes is much higher
than anticipated for prokaryotes and is as high as had
been detected in eukaryotes. There is only a small overlap
between the translationally regulated genes of the two
species, indicating a lack of phylogenetic conservation,
again in congruence with the results obtained with three
eukaryotic species. The large number of co-regulated
genes indicates that "translational regulons" of transcripts
exist which bind a common regulatory protein. The frac-
tion of genes with growth phase-dependent differential
regulation of the transcript level is in the same range as the
translationally regulated genes. About 70 genes are regu-
lated on both levels (potentiation of regulation), but the
most genes are regulated by either of the two mechanisms.

Methods

Strains, media and culture conditions

H. salinarum (German culture collection strains DSMZ670
and DSMZ671) was grown in complex medium as
described previously [55]. Growth phase-dependent
translational and transcriptional regulation was studied
with DSMZ670. DSMZ671 is a gas vesicle-negative deriv-
ative of DSMZ670. It had been used for genome sequenc-
ing (Pfeiffer F, Schuster SC, Broicher A, Falb M, Palm P,
Rodewald K, Ruepp A, Soppa J, Tittor J, Oesterhelt D: Evo-
lution in the laboratory: the genome of Halobacterium sal-
inarum strain R1 as compared to strain NRC-1, Genomics,
in press) and was therefore used for construction of the
DNA microarray. H. volcanii WR340 [56] was kindly pro-
vided by Moshe Mevarech (Tel Aviv University, Israel) and
was grown in complex medium according to Cline et al.
[57]. Both species were cultivated aerobically at 42°C and
250 rpm, resulting in doubling times of 4 h.

Isolation of free and polysome-bound RNAs

"Exponential phase" cultures were grown to a cell density
of 5 x 108 cells/ml, and "stationary phase" cultures were
incubated further 24 hours after onset of stationary phase.
200 ml of H. salinarum culture or 400 ml of H. volcanii cul-
ture were collected by centrifugation (15 min, 8000 g) and
resuspended in buffer A (100 mM magnesium acetate, 10
mM HEPES pH 7.6, 3.4 M KCl for H. salinarum and 2.5 M
KCl for H. volcanii). Cells were disrupted by sonication (3
x 30 s, output control 3, duty cycle 50%, Branson Sonifier
250), and the DNA was degraded by addition of 20 pl
RNase-free DNase (RQ1 DNase, Promega, Mannheim,
Germany) for 15 min at room temperature. 0.5 ml alig-
uots were laid on top of sucrose gradients consisting of 2
ml 50% (wt/vol) nuclease-free D-sucrose (Roth, Karl-
sruhe, Germany) at the bottom and a 9.5 ml gradient of
15% (w/v) to 40% (w/v) in buffer A. Centrifugation was
for 16 h at 82000 g using a SW 40 Ti rotor (Beckman Coul-
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ter, Fullerton, USA). The gradients were divided into eight
fractions of 1.5 ml. Initial small scale RNA isolation and
analytical agarose gel electrophoreses were used to iden-
tify the positions of free RNA, small and large ribosomal
subunits, and polysomes. The two fractions from the top
were used to isolate free RNA, and the three bottom frac-
tions to isolate polysome-bound RNAs.

RNA isolation

For RNA isolation from sucrose gradients, corresponding
fractions from four tubes were combinded and filled up to
9 ml with RNase-free water. RNA isolation was performed
essentially as described [58,59]. Phenol chloroform
extraction and ethanol precipitation were performed
according to Gauthier et al. [59] except for different cen-
trifugation conditions (15 min 3000 g and 30 min 48000
g)- The RNA was suspended in 150 pl RNase free water. It
was further purified with the RNeasy Midi kit (Qiagen,
Hilden, Germany) following the manufacturer's instruc-
tions for RNA clean-up including DNase on column treat-
ment. RNA concentration was determined
photometrically, and its integrity was checked using dena-
turing formaldehyde gels [60].

For transcriptome analysis, RNA was isolated using the
Qiagen RNeasy system (Qiagen, Hilden, Germany) with
DNase on column treatment according to the manufac-
turer's instructions. For exponential phase cells, the Mini
kit was used to isolate RNA from 1 x 107 cells, and for sta-
tionary phase cells, the Midi kit was used to isolate RNA
from 1 x 1010 cells.

Isolation of genomic DNA from H. salinarum

Genomic DNA of H. salinarum was needed as template for
PCR reactions to produce the DNA microarray. It was iso-
lated essentially as described [61]. 10 ml of an exponen-
tially growing culture was centrifuged (15 min, 4000 g)
and the cells were resuspended in 300 upl basal salts
(medium without carbon source). They were lysed by the
addition of 2.5 ml lysis buffer (100 mM NaCl, 10 mM Tris
pH 8.0, 1 mM EDTA, 0.05% (wt/vol) SDS). The lysate was
overlaid with 3 ml ethanol and the precipitated DNA at
the interphase was spooled onto a bended Pasteur pipette.
The DNA was washed twice with ethanol and once with
ether, dried and dissolved in TE (10 mM Tris pH 7.2, 1
mM EDTA).

Production of DNA microarrays

The genome sequence of H. volcanii ist still not published,
therefore production of a gene-specific DNA microarray
was not possible. Production of a shotgun onefold-cover-
age DNA microarray for H. volcanii has been described
previously [41]. It is comprised of 2880 cloned genome
fragments of an average size of about 1.5 kbp. In the
course of this project all clones were sequenced from both
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ends using standard methods, and the encoded proteins
were identified by BLAST searches against public data-
bases.

Some time ago the genome sequence of H. salinarum was
completed [62] (Pfeiffer F, Schuster SC, Broicher A, Falb
M, Palm P, Rodewald K, Ruepp A, Soppa J, Tittor J, Oester-
helt D: Evolution in the laboratory: the genome of Halo-
bacterium salinarum strain R1 as compared to strain NRC-
1, Genomics, in press) and enabled the generation of a
gene-specific DNA microarray. For each gene, primers for
PCR amplifications were designed with the software
PrimeArray [63], using the following criteria: all primers
had annealing temperatures of 70°C - 72°C, the PCR
products were 300 bp to 500 bp in length, and sequence
similarities to other parts of the genome apart of the target
gene were minimized. The primers were obtained from
Metabion (Munich, Germany). The PCR amplifications
were performed in 96 well plates with 100 ul volume
using HotStarTaqg, buffer, and "Q solution" according to
the manufacturer's instructions (Qiagen, Hilden, Ger-
many). 200 ng genomic DNA of H. salinarum were
included as template, the concentration for each primer
was 0.5 uM, the ANTP concentrations were adjusted to the
GC content of the genome (160 uM for dATP and dTTP
and 240 uM for dCTP and dGTP). The PCR was conducted
with 15 min initial denaturation at 95°C followed by 25
cycles of 1 min at 96°C, 30 secat 55°Cand 50 secat 72°C
followed by a final extension of 7 min at 72°C. The PCR
products were checked by analytical agarose gel electro-
phoresis. The efficiency of PCR product generation of the
2530 genes was >95%. The PCR products were transferred
to V-shaped 96 well plates and precipitated as described
[41]. The DNA microarray was produced with a Microgri-
dII spotter (Genomic Solutions, Ann Arbor, MI, USA) as
described for H. volcanii [41].

DNA microarray analysis

RNA was isolated as described above and reverse tran-
scribed into Cy3- or Cy5-labelled cDNA using random
hexamer primers and M-MLYV reverse transcriptase RNase
H minus (Promega, Mannheim, Germany). cDNA gener-
ation and its preparation for hybridization were per-
formed as described before [41] For the analyses of
translational regulation, equal amounts of "free" and
"ribosome-bound" RNA (10-20 pg each) were labelled.
Dye-swap experiments were included to exclude effects of
disproportionate incorporation of Cy3- or Cy5-dUTP.

For the analysis of transcript levels, initial experiments
showed that the use of equal amounts of "exponential
phase" RNA and "stationary phase" RNA samples led to a
general under-representation of the stationary phase sig-
nals. Obviously the mRNA content of the total RNA used
for cDNA generation is lower in stationary phase RNA.
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Therefore, 45 ng stationary phase RNA and 15 pg expo-
nential phase RNA were used for reverse transcription and
labelling.

Prehybridization of the microarrays, hybridization of the
combined Cy3- and Cy5-labelled cDNA, and posthybrid-
ization processing was performed as described previously
[41]. The hybridization temperatures were 68°C for H.
salinarum and 64°C for H. volcanii, respectively.

Data acquisition, data normalization and data analysis
Cy3- and Cy5-fluorescence intensities were acquired using
a GenePix 4000A laser scanner (Axon Inc., Union City,
USA) basically as described before [41]. The raw fluores-
cence data were processed with the software GenePixPro
3.0 (Axon Inc.). The further data analyses were performed
using the spreadsheet software MS Excel (Microsoft, Red-
mond, USA). First, all spots were removed that did not
meet the following criteria: 1) signal to noise ratio of at
least 3 for the red or green fluorescence, 2) a fluorescence
intensity of at least 100 (translational control) or 500
(transcriptional control) for at least one colour, and 3)
flagged "good" by the spot finding software. If only fluo-
rescence for the free RNA fraction could be detected, the
quotient free to ribosomal was set to o and this result was
taken as a strong hint at a translational repression. As no
internal standardization is possible in an experiment
using density gradient fractions, these data were then nor-
malized to the average of all evaluable data points. Then
average values were calculated from the biological repli-
cates. Only genes with results from at least two replicates
were further analyzed. Genes were considered undertrans-
lated or overtranslated if they deviated from the average
by >2 or 0.5 in at least one growth phase (on average and
in at least two single measurements).

Database submission

All DNA microarray results have been submitted to the
ArrayExpress database and obtained the following acces-
sion numbers: determination of differential translational
efficiencies and transcript levels of H. salinarum - E-
MEXP-1180; determination of differential translational
efficiencies of H. volcanii — E-MEXP-1191.

Quantitative Realtime RT PCR

RNA was isolated as described above. Reverse transcrip-
tion of 2 pg RNA was carried out with 400 U M-MLV
reverse transcriptase RNase H minus (Promega, Man-
nheim, Germany) and 0.6 ng random hexamer primers
(Sigma, Steinheim, Germany) in 40 pl 1x reaction buffer
(Promega) in the presence of 0.2 mM dATP and dTTP as
well as 0.3 mM dCTP and dGTP. Prior to enzyme addi-
tion, the reaction mix was heated for 10 min to 65°C and
cooled on ice for 2 min. After reverse transcriptase addi-
tion, the reaction was performed for 1 h at 42°C. Then,
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additional 200 U reverse transcriptase were added and the
incubation was continued for 1 h. Finally the reaction was
heat inactivated for 5 min at 80°C.

The quantitative Realtime PCR was performed in a Rotor-
Gene 3000 (Corbett Research, Melbourne, Australia) in a
volume of 25 pul with DyNAmo SYBR Green qPCR Master-
mix (Finnzymes Oy, Espoo, Finland), 0.4 pM each for-
ward and reverse primer (biomers.net, Ulm, Germany;
sequences see Table S6 — Additional file 6) and cDNA in
an appropriate dilution (usually 0.5 pl) as template. Con-
trols without template and controls without RT reactions
were included. Average data for the genes OE2010R,
OE2055F, OE2563R, OE2595F, OE3637R and OE4674F,
which had been found to be unregulated using the micro-
arrays, were used for normalization of the results. The
PCR consisted of 10 min initial denaturation at 94°C, at
least 50 cycles of 30 sec 94°C, 45 sec 60°C (OE1405R,
OE3470F, OE4136R: 68°C), 30 sec 72°C and a final
extension for 5 min at 72°C. A subsequent melting point
analysis was performed to check the uniformity of the
product. Data analysis was conducted with the RotorGene
6.0 software (Corbett Research). Relative levels of "free"
mRNA to "polysome-bound" mRNA were calculated

according to the 274¢1 method [35], first normalizing
the C; of each RNA fraction to the average C; of the pre-

sumed unregulated genes (see above), and then setting
the amount of "polysome-bound" RNA to 1. Three bio-
logical replicates were performed for each gene.
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