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Abstract
Background: High-resolution microarray-based comparative genomic hybridization (CGH)
techniques have successfully been applied to study copy number imbalances in a number of settings
such as the analysis of cancer genomes. For normalization of array-CGH data, methods initially
developed for gene expression microarray analysis have, in general, been directly adopted and used.
However, these methods are designed to work under assumptions that may not be valid for array-
CGH data when copy number imbalances are present. We therefore sought to investigate the
effect on normalization imposed by copy number imbalances.

Results: Here we demonstrate that copy number imbalances correlate with intensity in array-
CGH data thereby causing problems for conventional normalization methods. We propose a
strategy to circumvent these problems by taking copy number imbalances into account during
normalization, and we test the proposed strategy using several data sets from the analysis of cancer
genomes. In addition, we show how the strategy can be applied to conveniently define adaptive
sample-specific boundaries between balanced copy number, losses, and gains to facilitate
management of variation in tissue heterogeneity when calling copy number changes.

Conclusion: We highlight the importance of considering copy number imbalances during
normalization of array-CGH data, and show how failure to do so can deleteriously affect data and
hamper interpretation.

Background
Microarray-based techniques for genome-wide investiga-
tion of copy number aberrations (CNAs) have recently
gained much attention. Initially employing arrays devel-
oped for gene expression analysis [1], or low-density
arrays produced from large-insert genomic clones such as
bacterial artificial chromosomes (BACs) [2], the applica-
tion has evolved rapidly. Currently, specialized high-den-

sity arrays with oligonucleotide probes or probes derived
from BAC clones are predominately used. Two-channel
array-based comparative genomic hybridization (aCGH)
is a direct successor to conventional metaphase CGH [3].
In both cases, DNA from two samples are differentially
labeled with fluorescent dyes and co-hybridized to immo-
bilized genomic capture probes. By use of aCGH, DNA
derived from tumor tissue can be compared with reference
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DNA, e.g., normal whole blood DNA, and genomic
imbalances can effectively be investigated. The main
advantage of aCGH over conventional CGH is the
increased resolution achieved by microarrays with a large
number of individual probes, routinely up to hundreds of
thousands, covering the entire genome [4]. The power of
aCGH has been demonstrated in tumor studies [5-8], as
well as in the field of clinical genetics [9], and the basis of
the technique is reviewed elsewhere [10]. In essence, rela-
tive ratios of copy number between two DNA samples are
obtained by comparing the two fluorescent signal intensi-
ties for each probe under the assumption that intensities
reflect the amount of corresponding genomic DNA in the
respective sample.

In much the same way as for gene expression microarray
analysis, relative ratios must be normalized to account for
systemic technical bias while retaining relevant biological
changes [11]. Although much effort has been invested in
developing methods for analysis of aCGH data, including
break-point identification and segmentation [12-14], less
attention has been devoted to normalization. For this lat-
ter purpose, methods originally developed for gene
expression microarray data, such as global-median
(Median) and intensity-based lowess (Lowess) normaliza-
tion, have been adopted [5,6]. Recent reports have evalu-
ated the performance of gene expression normalization
strategies when applied on aCGH data and have proposed
more specific approaches [15,16]. Although valid con-
cerns about directly adopting existing normalization tech-
niques are expressed, proposed strategies rely on available
conventional methods and the inherent properties of

aCGH data have, rather than being incorporated in the
strategies, mainly been used for calibration and valida-
tion. Microarray data is frequently visualized using M-A
plots in which the log ratio, referred to as M, is plotted as
a function of log mean intensity, referred to as A (Figure
1a) [17]. When normalizing data using Median, the
median M value is identified and subtracted from all M
values. This procedure centers data such that the median
M value becomes zero. Lowess normalization works in
much the same way but use a locally fitted regression
curve along the full range of A to identify M values to
center data at. This intensity-based strategy has the added
advantage over Median normalization of correcting for
intensity-based bias of M. Intensity-based bias can intro-
duce curvature in M across A (Figure 1a) which remains
uncorrected for after Median based normalization.

Using self-self comparisons, in which a sample is com-
pared with itself, it has been observed that other forms of
technical bias, e.g., spatial- or plate bias, exist that can
skew measured M values enough to revoke the validity of
the aforementioned normalization methods [17]. Both
methods have therefore been implemented in ways that
include stratification of M values in groups of data that are
individually subjected to the correction. Stratification can
be performed based on, e.g., spatial probe location, or
probe source [17]. The general thought is that stratifica-
tion will result in groups, i.e., populations, of data in
which the validity of the normalization method is upheld.
It has also been observed that the assumptions, required
for conventional normalization methods to work, can fail
as a result of a true biological distribution of M, e.g., in sit-

Genome plot and M-A plot representing two frequently used ways of visualizing aCGH dataFigure 1
Genome plot and M-A plot representing two frequently used ways of visualizing aCGH data. Plots show data from the L56Br-
C1 xenograft [19] analyzed using a tiling 32 K BAC array and illustrate how copy number imbalances readily observed in 
genome plots can be difficult to discern as copy number populations in M-A plots. (a) M-A plot of un-normalized data. (b) 
Genome plot of un-normalized data.
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uations where the majority of probes measure true differ-
ences between compared samples [18].

We here highlight a well known and commonly displayed
property of tumor cells, namely the presence of biologi-
cally true CNAs. Figure 1b shows a genome plot of raw M
values obtained by aCGH of a female breast cancer tumor
xenograft [19] compared with male normal whole blood
DNA. In the genome plot, M is plotted as a function of the
genomic location of the probe sequence. In figure 1b, sev-
eral genomic regions with different and discrete M can
readily be observed. We sought to investigate the effect on
normalization imposed by this property of aCGH data.
We show that this property results in consequential draw-
backs when using conventional normalization methods
and propose a strategy that incorporates any populations
present in the data into the normalization.

The proposed strategy can be integrated with any of sev-
eral existing normalization methods and results in
improved data quality. Also, spatial effects resulting in
non-biological, but relevant, populations that can bias
normalization are handled when calculating corrections.
We also note that part of the procedure can be applied to
assign adaptive sample-specific thresholds for calling
copy number changes. The proposed normalization strat-
egy, as well as the adaptive sample-specific level scaling,
provides powerful and convenient means for improved
copy number analysis using aCGH.

Results and Discussion
This study is outlined as follows with results and discus-
sion presented accordingly. To investigate the influence of
copy number imbalances on normalization we first cre-
ated a set of mimicked data representing states of an
increasing fraction of genomic gain. Using the mimicked
data we demonstrate the effects of gain on normalization
using Median and Lowess. We then evaluated an alterna-
tive normalization strategy in which data is stratified into
separate populations representing gain and balanced copy
number respectively. Whereas mimicked data provide
prior knowledge facilitating stratification, most experi-
ments lack this information. Therefore, we developed a
method for stratification of data and evaluated the
method using previously characterized cases. By applying
our procedure for stratification and normalization to
tumor specimens on different aCGH platforms we com-
pare performance with standard methods. We investigate
the implication of technical spatial effects and propose a
strategy for improved normalization. In addition, we eval-
uate the possibility to apply our method to assess noise
levels in data and assign sample-specific thresholds for
detection of copy number imbalances.

Normalization of aCGH data using Median
We assumed that aCGH data from samples with a sub-
stantial amount of imbalances could be erroneously cor-
rected using Median normalization. This problem is not
unexpected and the effect is well known in corresponding
cases when gene expression microarray data is normalized
[18]. We investigated this issue using aCGH data derived
from tiling BAC arrays comparing copy number between
DNA from a normal female with karyotype 46, XX and a
cell line with 47, XXX [20]. In this case, autosomes are
expected to yield log ratio values of M = 0 and the X chro-
mosome is expected to yield log ratio values of M = 0.58
corresponding to XXX/XX. By first removing Y chromo-
some values and then randomly omitting a varying
number of values for autosomes, while retaining all X
chromosome values, we could mimic cases with different
percentage of gain. In this way we created mimicked data
sets with 5, 10, 15, 20, 25, 30, 35, and 40 percent gain,
respectively, where 5 percent gain corresponds to not
omitting any autosome values. Data sets were created
from raw data and then subjected to normalization using
Median. After normalization we investigated ratios for
autosomes and the X chromosome (Figure 2). As a result
of an increased fraction of gain, the median M for the X
chromosome is shifted from 0.42 to 0.30 (Figure 2a), con-
firming our belief that normalization strategies for aCGH
should account for the presence of different copy-number
populations. The observed shift is a direct result of the
composition of aCGH data with respect to copy number
populations and can also be observed when looking at
autosomes for which the median M is shifted from -0.01
to -0.13 (Figure 2b). When visualizing the normalized
data in genome plots the shift clearly appears: M = 0 is in
between the two populations (Figure 2c).

Genomic imbalances correlate with intensity in aCGH 
data
Importantly, when creating the mimicked data sets we did
not generate any simulated ratio values; rather, we formed
different selections of values using real experimental data.
We believe that this use of real experimental data is of sig-
nificance for aCGH data. This belief is founded on that, in
contrast to expression levels, copy number levels are
restricted to a, by comparison, moderate dynamic range.
Therefore, when a genomic region is subjected to gain or
amplification, the increase of genomic material is rela-
tively substantial. Thus, we reasoned that probes for
regions of gain would yield comparably higher average
intensities than those for regions of normal copy number
and that this, in turn, would result in a correlation
between M and A: probes measuring ratios of gain will
have higher average intensities. The opposite relationship
would apply for probes measuring ratios of loss. Conse-
quently, utilizing normalization strategies based on Low-
ess would possibly correct for correlations between M and
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A related to genomic imbalances, resulting in loss of bio-
logically relevant variation. To test this, we subjected the
mimicked XXX/XX data sets to Lowess normalization.
Once again, as a result of an increased fraction of gain the
median M for the X chromosome is shifted, this time from
0.42 to 0.22. The shift can also be observed when looking
at autosomes for which the median M is shifted from -

0.01 to -0.14 (Figures 2d and 2e). Notably, the variation
in M for the X chromosome increases with the fraction of
gain (Figure 2d). The interquartile range (IQR) for X chro-
mosome M values increases from 0.21 to 0.24, indicating
that Lowess normalization is less suitable when discrete
copy number populations exist. When visualizing the nor-
malized data in genome plots the shift, as well as the

Median and Lowess normalization of aCGH dataFigure 2
Median and Lowess normalization of aCGH data. Data is from a normal female with the karyotype 46, XX and a cell line with 
47, XXX. Data sets with mimicked fractions of probes with gain (5, 10, 15, 20, 25, 30, 35, or 40 percent) were constructed by 
randomly omitting varying number of probes for autosomes. Box-plots display M values after normalization for data sets with 
varying fraction of probes with gain. (a) M values for X-chromosome probes after median normalization. (b) M values for 
autosomal probes after median normalization. (c) Genome plot after median normalization for the data with 35 percent of 
probes with gain. (d) M values for X-chromosome probes after lowess normalization. (e) M values for autosomal probes after 
lowess normalization. (f) Genome plot after lowess normalization for the data with 35 percent of probes with gain.
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increase in variation of the X chromosome, is apparent
(Figure 2f). To illustrate the differences between how
Median and Lowess fail in normalizing the data, and to
explain the introduced variation, we created M-A plots for
the different data sets including correction lines for the
two methods (Figure 3). With an increased fraction of
gain the median M value is shifted as seen for the correc-
tion line for Median (Figures 3a to d, yellow lines). The
correction line for Lowess follows the same shift in the
lower range of intensities but diverge at higher intensities
(Figures 3a to d, green lines). This divergence indicates
that the X chromosome ratios yield higher average inten-
sities and that when the percentage of gain increases an
intensity bias is introduced for M. Importantly, this inten-
sity bias is not of a technical nature but represents biolog-
ically relevant changes and is a result of inherent
properties of aCGH data. In the low range of intensities
the Lowess correction line is fitted to local means of M
reflecting predominantly autosomes. However, at some
point as intensities increase, local means are affected by
the X chromosome and then reflect a mixed population of

autosome and X chromosome M values, i.e., balanced
copy number and gain respectively. As the intensities
increase further the locally fitted line will be affected by
increasing fractions of X chromosome M values and when
normalization is applied this will result in differences in
the corrections for X chromosome M values. Thus, this
normalization introduces variation. We concluded that
Lowess normalization erroneously corrects for biological
gain – as gain correlates with intensity in aCGH data –
resulting in suppressed ratios and increased variation
within copy number populations.

Normalization of aCGH data using population-based 
intensity-based lowess
We sought to develop a method that corrects for intensity
dependence of M due to technical bias while retaining
intensity dependence of biological relevance. We rea-
soned that if we could stratify aCGH ratios from an exper-
iment with respect to copy number populations, we could
use this information to circumvent the drawbacks with
Lowess. One way to do this would be to run Lowess on

Differences between Median and Lowess normalizationFigure 3
Differences between Median and Lowess normalization. M-A plots of un-normalized log ratios with correction lines for Median 
(orange) and Lowess (green) normalization. The plots show data from figure 2 for data sets with mimicked fraction of; 5 per-
cent (a), 15 percent (b), 25 percent (c), or 35 percent (d) of probes with gain.
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one selected population and then apply the resulting cor-
rection line on all M values. We refer to this general strat-
egy of considering copy number populations when using
Lowess as population-based intensity-based lowess
(popLowess). Applying popLowess would serve two pur-
poses. Firstly, data would be centered at a copy number
population rather than a mean or median of a mixture of
different and possibly diverse copy number levels. Sec-
ondly, correlations between M and A related to technical
bias would be identified and corrected for without affect-
ing the intensity dependence due to different copy num-
bers. To test this strategy, we subjected the mimicked XXX/
XX data sets to popLowess. Since we had prior knowledge
about this case we could stratify values into copy number
populations based on chromosome mapping. All values

for autosomes were considered to comprise one popula-
tion and all values from the X chromosome another.

After stratification, raw M and A values for the largest pop-
ulation were used to create a Lowess correction curve. The
correction curve was generalized to cover the entire range
of A and used to correct all values. Results are presented in
figure 4. As expected, no apparent shift in median M or in
variation for the X chromosome or autosomes can now be
seen between the different percentages of gain (Figures 4a
and 4b), demonstrating the effectiveness of popLowess.
Notably, the correction line for popLowess exhibits a
slight curvature (Figure 4c), indicating that certain inten-
sity dependence of M exists for autosomes, possibly of a
technical nature. Albeit small in the presented case, the
observed intensity dependence underlines the importance

PopLowess normalization of aCGH dataFigure 4
PopLowess normalization of aCGH data. Data from figure 2 is normalized using popLowess. For normalization data was strati-
fied into populations based on genomic mapping of probes. Box-plots display M values after normalization for data sets with 
varying fraction of probes with gain. (a) M values for X-chromosome probes after popLowess normalization. (b) M values for 
autosomal probes after popLowess normalization. (c) M-A plot of un-normalized log ratios for the data with 35 percent of 
probes with gain. Red line corresponds to the popLowess correction line. (d) Genome plot after popLowess normalization for 
the data with 35 percent of probes with gain.
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of being able to correct aCGH data for technical bias while
retaining biological variation. Based on the results in fig-
ure 4, we argue that the strategy behind popLowess offers
improved means for normalizing aCGH data. However,
we utilized prior knowledge about copy number popula-
tions, which guided us in data stratification. Equivalent
information for tumor samples can be obtained by karyo-
typing using, e.g., G-banding, multicolor FISH (M-FISH)
analysis, or SKY. This information can also be used to
relate a ratio level to an absolute copy number. Having
verified copy numbers can guide in centering of data,
assuring that gains and losses are presented as relative
changes in an appropriate fashion. Then again, these are
not trivial experimental procedures and, thus, do not pro-
vide a plausible solution in most cases.

Stratification of M values into copy number populations
We aimed at developing a method for stratifying data into
populations without prior knowledge regarding copy
number allowing us to perform popLowess, and sought to
identify populations in an automated fashion that
requires minimal manual input and that adapt to varying
noise levels. To accomplish this, we took advantage of the
naively simplistic form of aCGH data, with a predeter-
mined sequential genomic order of probes, and created a
procedure described schematically in figure 5, steps 1–5.
By removing outlier data based on ratio similarity
between adjacent probes, the proposed strategy enriches
populations from genomic regions with similar copy
number. That is, regions with high variation in M, e.g.,
breakpoints or high level amplifications or deletions, are
filtered out (Figure 5, steps 1–3). The enrichment of copy
number populations can be observed in M-A plots and
genome plots displaying data before and after the filter is
applied (Figures 6a to 6d). We use a sample adaptive cut
off for variation inferred from the data to account for a
varying noise level between samples. The filtered data is
subsequently segmented to further accentuate the under-
lying copy number populations and clustered into three
distinct groups of values by k-means clustering (k = 3)
(Figure 5, steps 4–5). The resulting clusters would roughly
correspond to dividing the data into three copy number
populations. To address situations where less than three
populations exist, a merge cluster criterion can be used to
merge clusters with insufficient centre-to-centre distance
in M.

To test the performance of our stratification procedure in
identifying copy number populations, we used a sample
set (data set 8) containing eight hyperdiploid childhood
acute lymphoblastic leukemia (ALL) cases previously
investigated with aCGH, G-banding and M-FISH [21]. All
cases show multiple whole chromosome gains and some
cases also minor chromosomal regions of gain. For each
case, a population of genomic regions affected by copy

Schematic overview of the proposed popLowess strategyFigure 5
Schematic overview of the proposed popLowess strategy.
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number gain was identified based on available karyotyp-
ing data. Remaining regions were identified as a diploid
population. We performed steps 1–5 of the popLowess
stratification procedure on each case using a merge cluster
criterion of M = 0.3. Effectively, two popLowess popula-

tions were obtained for each case, corresponding closely
to the karyotyping data of a normal diploid population
and a population of copy number gain. For both the gain
and diploid popLowess populations the total number of
called probes divided by expected total number of probes

Copy number population enrichment for the L56Br-C1 xenograft analyzed using a tiling 32 K BAC arrayFigure 6
Copy number population enrichment for the L56Br-C1 xenograft analyzed using a tiling 32 K BAC array. (a) Genome plot 
before enrichment. (b) Genome plot after enrichment using median of the standard deviation distribution as cut off. (c) M-A 
plot before copy number enrichment. (d) M-A plot after copy number enrichment using median of the standard deviation dis-
tribution as cut off. (e). M-A plot of all data values with popLowess correction curve superimposed in red.
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from karyotyping data was calculated. Furthermore, the
fraction of correctly called probes by popLowess for the
specific regions of gain defined by karyotyping was calcu-
lated. The results demonstrate that the procedure can
effectively stratify data into enriched populations that rep-
resents discrete copy number levels (Table 1).

A procedure for normalization of aCGH data using 
popLowess
Once data is stratified into sets of enriched copy number
populations we can select one, e.g., the largest, to perform
Lowess normalization on. The generated correction curve
must be generalized to cover the full range of A allowing
for correction of all M values (Figure 6e). This procedure
will ensure that the lowess derived correction line trails
one population and remains unaffected by adjacent ones.
We refer to this action as popLowess-o (where the letter o
is a mnemonic for one) as it makes use of one population
to derive a correction line for all data. The complete pro-
cedure of data stratification and popLowess normaliza-
tion is shown in figure 5, steps 1–8. Naturally, once data
is stratified alternative variants of calculating normaliza-
tion corrections are imaginable. For example, one could
fit lowess lines to each population and correct them indi-
vidually or one could individually center populations and
then use the combined data to create a lowess derived cor-
rection line. We refer to these alternatives as popLowess-i
(where the letter i is a mnemonic for individual) and
popLowess-c (where the letter c is a mnemonic for com-
mon) respectively. The latter alternative has the added
advantage of reducing the degree to which the correction
line needs to be extrapolated to cover the full range of A.
Both alternatives require an additional step to center a
selected copy number population at M = 0. The variants
popLowess-o and popLowess-c rely on that the intensity-
based curvature in M-A space is reasonably shared
between populations.

Selecting a population to represent intrinsic copy number
The normalization procedure presented herein will center
a population with unknown copy number at M = 0. The
rationale for selecting an appropriate population for this
purpose can differ depending on samples analyzed and
the aim of a project. For instance, in the field of cytogenet-
ics, gains and losses in tumors are by convention
described as net changes relative to intrinsic balanced
copy number, i.e., relative ploididy. As the number of cen-
tromeres determines ploidity, a parallel rationale would
be to relate imbalances relative to the largest identified
population and therefore center this population at M = 0.
However, in some applications it might be more appro-
priate to relate imbalances to a normal diploid state. Thus,
selecting a population to center data at can include using
prior knowledge about regions with known copy number
or selecting the middle population out of three, if present.
Irrespectively of preferences of how data best be centered,
the proposed popLowess procedure will alleviate the nor-
malization problems related to mixed copy number pop-
ulations. Importantly, when performing focused aCGH
with specialized arrays that do not cover the entire
genome, or comprise probes with a disproportioned focus
on specific genomic regions, even CNAs that affect a
minor part of the genome can introduce a significant cor-
relation between copy number and intensity, and can
result in misinterpretations of how a given ratio level
relate to copy number.

Application to tumor specimens on different aCGH 
platforms
We next set out to test the proposed popLowess strategy
on tumor aCGH data that display a more complex pattern
of genomic imbalances and to test its performance on
data derived from different array platforms. Figures 7a
and 7c show genome- and M-A plots of a primary BRCA1
mutation positive breast cancer analyzed on a tiling 32 K
BAC array. The genomic profile (Figure 7a) shows clear
regions of aberration; however factors such as normal cell

Table 1: Comparison of popLowess enriched population assignment to karyotyping data for eight hyperdiploid cases [21]

Case Gain (called/karyotype)* Diploid (called/karyotype)** Gain (fraction of karyotype 
called)***

1 0.97 1.05 0.99
2 0.87 1.09 1.00
3 1.00 1.00 0.85
4 1.14 0.88 0.85
5 0.89 1.21 0.99
6 0.97 1.08 1.00
7 0.95 1.11 0.80
8 1.09 0.76 0.63

Two populations corresponding to a normal diploid population and a population of copy number gain were created using steps 1–5 of the 
procedure in figure 5. The ratio of probes called as belonging to the gain population and probes determined as gain according to karyotype data is 
shown*. The equivalent ratio for the diploid population is also shown**. In addition, the fraction of probes called correctly as gain within regions 
determined as gain by karyotype data is displayed***.
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BRCA1 mutation positive breast cancer sample analyzed using a tiling 32 K BAC array and an Agilent 244 K oligonucleotide CGH arrayFigure 7
BRCA1 mutation positive breast cancer sample analyzed using a tiling 32 K BAC array and an Agilent 244 K oligonucleotide 
CGH array. Correction lines for Median (orange), Lowess (green), and popLowess (red) normalization are superimposed in 
panels (e) and (f). Identified copy number populations are differentially colored in panels (g) and (h) according to size where 
yellow corresponds to the largest identified copy number population, red to the second largest, and green to the smallest. 
Data in panels (g) and (h) are centered on the middle population (a) Genome plot of un-normalized BAC data. (b) Genome 
plot of un-normalized Agilent data. (c) M-A plot of un-normalized BAC data. (d) M-A plot of un-normalized Agilent data. (e) 
Contour plot of copy number population enriched BAC data. (f) Contour plot of copy number population enriched Agilent 
data. (g) Genome plot of BAC data after popLowess. (h) Genome plot of Agilent data after popLowess.
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contamination and potential tumor heterogeneity have
decreased the range in M for the sample specific CNAs. In
the M-A plot (Figure 7c) the different copy number popu-
lations are not as distinct as for the sample in figure 6,
likely making it more difficult to identify the copy number
populations. We used the proposed popLowess strategy to
identify copy number populations and visualized the
result in a contour plot. Results are shown in figure 7e
together with correction lines for Median, Lowess and
popLowess. As observed in figure 7e neither the Lowess,
nor the Median correction curve, accurately track a single
copy number population. Figure 7g shows the normalized
genomic profile after popLowess with the identified pop-
ulations colored. The genomic profile has now been cen-
tered correctly and matches a previous report with
detailed investigations of this tumor [19]. Figure 7 (panels
b, d, f and h) show the same collection of plots for the
same tumor profiled using Agilent 244 K CGH oligonucle-
otide arrays (DLR-value 0.196). The vast number of
probes and a considerably higher level of technical noise
for raw data, renders it virtually impossible to visually dis-
tinguish the populations, clearly seen in the genomic pro-
file (Figure 7b), using the 2D M-A plot (Figure 7d).
Employment of the popLowess strategy enriches copy
number populations of data as observed in the contour
plot (Figure 7f). Similarly to the BAC array case, neither
the Median, nor the Lowess correction curve, accurately
track a single copy number population. Figure 7h shows
the genomic profile after popLowess with identified pop-
ulations colored. To assess the effect of normalization on
variation for data in Figure 7 we calculated IQR for M val-
ues of identified populations. In the BAC case the average
change in IQR for the three identified populations was an
increase by 0.0012 when Lowess normalization was
applied. Contrary, after popLowess the average change in
IQR was a decrease by -0.00029. For the Agilent case the
corresponding changes were an average increase by 0.059
after Lowess compared to an average decrease by -0.0011
after popLowess. Again, we conclude that Lowess, by not
tracking a single population, erroneously corrects for
CNAs resulting in an increased variation within copy
number populations.

In order to illustrate the differences between alternative
popLowess strategies we used variants to derive correction
lines (Figure 8). In figure 8a correction lines for individual
populations are presented. The popLowess strategy
(popLowess-o) used to produce the results in figure 7 cor-
responds to normalizing data by selecting one of the cor-
rection lines in figure 8a. For the results in figure 7, the
correction line for the largest population was selected
(colored yellow in Figures 7 and 8). In figure 8b the cor-
rection line derived from popLowess-c is shown together
with individually median centered populations. As men-
tioned, popLowess rely on that the intensity-based curva-

ture in M-A space is reasonably shared between
populations. When inspecting the individual correction
lines in figure 8a, populations appear to display similar
intensity-based curvature although small differences
appear. Differences may partly be a result of extrapolating
correction curves at the ends. A thorough investigation of
these differences, although outside the scope of this study,
would be of interest.

Comparison of popLowess strategy to standard 
normalization methods
We set out to test if the popLowess strategy could system-
atically reduce variation in M within copy number popu-
lations in different aCGH data sets. We hypothesized that
when correction curves cross, or not accurately track, copy
number populations; or when intensity-based curvature is
not properly addressed, a larger variation in M is obtained
after normalization. To this aim, we compared the per-
formance of the popLowess strategy versus Median and
Lowess using seven different aCGH data sets (data sets
1–6, 8). The data sets cover three different types of aCGH
platforms hybridized with a variety of cell line and tumor
samples displaying a large variation of CNAs.

M-A plots of popLowess normalization variants for BAC dataFigure 8
M-A plots of popLowess normalization variants for BAC 
data. Data from figure 7 is used. (a) M-A plot with lowess 
correction lines for each identified population superimposed. 
(b) M-A plot of median centered populations (popLowess-c) 
with lowess correction line based on all populations.
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We used the strategy in figure 5 to identify copy number
populations in each of the data sets. We then normalized
each data set in parallel using popLowess, Lowess, and
Median. After normalization, we calculated standard devi-
ations of M for each identified population for each
method and compared results.

Results from the comparison are displayed in table 2,
showing that the popLowess strategy generated normal-
ized copy number data with smaller standard deviations
in M within identified populations for all comparisons
and data sets. We repeated the test using the inter-quartile
range (IQR) of M for each population instead of the
standard deviation and obtained similar results (data not
shown).

Since we do not have prior knowledge of CNAs in most of
the cases we cannot evaluate variation within confirmed
genomic regions of similar copy number. Therefore, one
could argue that the better performance of popLowess,
resulting in lower variation within populations when
compared with conventional normalization, is biased by
the fact that populations are inferred from the data. How-
ever, from looking at the data in table 1, and at the
genome plots in figure 7 (panel g and h) we note that the
identified populations reflect regions with discrete copy
number levels. Therefore, we argue that decreased intra
population variation is beneficial to both interpretation
and downstream analysis and provides improved data
quality.

Spatial effects
Presence of technical artifacts in array data resulting in
correlation between M and spatial probe location on the
array is a well-known and previously described phenome-

non. We focused on two plausible consequences of such
spatial effects in aCGH data. Firstly, affected values can
introduce populations that compromise normalization in
the same way as copy number populations. Secondly,
affected values will be incorrectly scaled compared to
non-affected.

We reasoned that ratios biased by spatial artifacts are con-
trolled for by our proposed popLowess strategy as it filters
outlier data guided by genomic mapping. Thus, when cal-
culating an intensity dependent correction for normaliza-
tion, our strategy would not be compromised by spatial
bias as affected values are disregarded together with values
from break points, high-level amplifications, and
homozygous deletions. On the other hand, popLowess
does not correct for spatial effects and affected values
would remain incorrectly scaled after normalization even
if the intensity bias is removed.

As the proposed popLowess strategy does not correct for
spatial effects, we reasoned that a pre-normalization step
might be appropriate for data displaying spatially related
bias in order to properly scale affected values. This could
be accomplished by applying one of many available spa-
tial correction methods [15-17], or variations thereof,
prior to popLowess. However, since we have shown that
genomic imbalances correlate with intensity, we are cau-
tious about addressing spatial effects using pre-normaliza-
tion algorithms that are intensity-based.

To test our reasoning we applied popLowess to data set 7.
Samples in this set have little to no genomic alterations
but the data display variation in M-A curvature and spatial
effects. Data set 7 was normalized using popLowess,
block-based Median followed by popLowess, or block-

Table 2: Comparison of effect on population variance between different normalization strategies

P-values for data sets

Data set 1 [23] 2 [25] 3 [20] 4 [8] 5 6 8 [21]

Nbr of samples 7 28 10 52 8 8 8
Platform BAC 32 K BAC 32 K BAC 32 K BAC 1 Mb Agilent 244 K Agilent 44 K BAC 32 K

popLowess vs Lowess All populations 1.1e-4 7.0e-12 5.6e-8 3.4e-28 2.5e-05 1.6e-4 7.2e-5
Population 1 7.8e-3 1.4e-5 9.8e-4 9.9e-32 2.0e-3 2.0e-3 3.9e-3
Population 2 7.8e-3 1.5e-6 9.8e-4 7.4e-4 2.0e-3 0.09 3.5e-2
Population 3 0.23 6.3e-3 2.0e-2 2.5e-7 0.25 0.09 0.25

popLowess vs Median All populations < 1e-32 < 1e-32 < 1e-32 < 1e-32 < 1e-32 < 1e-32 < 1e-32
Population 1 7.8e-3 3.7e-9 9.8e-4 9.9e-32 2.0e-3 2.0e-3 3.9e-3
Population 2 6.3e-2 1.4e-5 0.17 3.8e-2 0.50 0.09 0.14
Population 3 0.23 9.0e-5 0.25 0.28 0.25 0.50 0.75

P-values for different populations for data sets are shown. The test corresponds to the null hypothesis that lower standard deviations for 
popLowess are obtained by chance. Population 1 always relates to the largest identified population (# probes), population 2 to the second largest 
and population 3 to the smallest.
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based Lowess followed by popLowess. For popLowess, by
itself or in combination with a pre-normalization step, a
merge cluster criteria of 0.3 in M was employed to account
for the presence of only two copy number populations.

As a measurement of spatial effects we calculated the
standard deviation of medians of M from pin-tip blocks
before and after normalization. We found that spatial bias
may be corrected for by a pre-normalization step, preced-
ing popLowess (Table 3).

We conclude that the proposed popLowess strategy is
robust in the sense that it can handle the presence of oth-
erwise deleterious populations without relying on them.
We also conclude that, whereas popLowess is inert to spa-
tial effects, in the sense that it does not compromise calcu-
lation of an intensity dependent correction, a pre-
normalization step that correct for spatial bias is war-
ranted.

Adaptive sample-specific thresholds for calling copy 
number change
During development of the popLowess strategy, we recog-
nized that the sample-specific cut-off value (Figure 5, step
3) could be used to assess noise level in data and to assign
thresholds for copy number imbalances on a sample-spe-
cific basis. Several reports [5,8,22,23] have utilized global
thresholds in M for calling CNA as gains or losses. These
thresholds are assigned by adding/subtracting a value in
M from a base line typically at M = 0. Determining suita-
ble thresholds may be problematic in large sample sets
with samples of varying quality and heterogeneity, often
the case for tumor studies [10], and may result in setting
too conservative thresholds for certain samples in order to
avoid erroneous CNA calls. Deriving sample-specific
threshold values scalable for desired stringency in an
automated fashion is then of relevance.

A parallel can be made to the derivative log ratio spread
(DLR) value calculated by the Agilent CGH Analytics soft-
ware. The DLR-value can be used to assess hybridization
quality and provide a sample scalable threshold for call-
ing CNAs using, e.g., the Z-scoring algorithm in the CGH
Analytics software.

We used sample specific level thresholds derived from
popLowess on aCGH data for a BRCA1 mutation positive
tumor analyzed on two array platforms (Figure 9). Figure
9a shows thresholds after popLowess normalization for
the BAC array data and figure 9b after application of a 250
kBp smoothing window. Figure 9c shows the same tumor
analyzed on the Agilent platform after popLowess and fig-
ure 9d after application of a 50 kBp smoothing window.
As shown in figure 9, thresholds are automatically
adapted to specifically match data. We believe that the use
of sample-specific adaptive thresholds will greatly facili-
tate the analysis of larger aCGH data sets that include sam-
ples of varying heterogeneity and quality.

Normalization affects downstream analysis
To exemplify how normalization can affect downstream
analysis and interpretation we used data generated from
the Agilent array presented in Figure 7. We normalized the
raw data shown in Figure 7 (panels b and d) with either
Lowess or popLowess. Correction lines for both normali-
zation methods are shown in Figure 7f. We then
smoothed data (50 kBp window) and performed segmen-
tation using the CGHplotter algorithm [14]. Results for
chromosome 4 are shown in Figure 10. In the given exam-
ple, segmentation after Lowess and popLowess (Figures
10a and 10b respectively) broadly identifies the same
break points. However, after Lowess the data is not cen-
tered on any of the identified segments as a result of the
correction line not tracking a specific population in the
raw data (Figure 10a). Contrary, after popLowess the data
is centered on a specific segment level (Figure 10b; e.g.
blue arrow). Shifting data to center it on a specific popu-

Table 3: Effect of pre-normalization to correct spatial bias prior to applying popLowess

un-normalized* popLowess** pre-normalization by 
block-based Median***

pre-normalization by 
block-based Lowess****

XY vs XY 0.062 0.062 0.009 0.003
XY vs XY 0.067 0.067 0.003 0.003
XX vs XX 0.097 0.069 0.035 0.003
XX vs XX 0.125 0.127 0.031 0.004
XXX vs XX 0.051 0.049 0.003 0.004
XX vs XY 0.046 0.045 0.003 0.003
XXXX vs XX 0.060 0.033 0.004 0.004
XXX vs XY 0.058 0.058 0.007 0.005
XXXX vs XY 0.060 0.058 0.008 0.004

Standard deviation of medians of M from pin-tip blocks. Standard deviation is calculated before normalization* and after normalization using 
popLowess alone** or together with a pre-normalization step. Applied pre-normalization steps include either block-based Median*** or block-
based Lowess****.
Page 13 of 18
(page number not for citation purposes)



BMC Genomics 2007, 8:382 http://www.biomedcentral.com/1471-2164/8/382
lation can be done after any conventional normalization
method. An example is shown in Figure 10c where data
have been centered after Lowess. Determining the point at
which data is centered can for example be achieved by
stratifying data into populations using the method pre-
sented herein or by the method proposed by Lipson et al.
[24]. Importantly, to center data after Lowess does not
alleviate the aforementioned problem of introduction of
variation and the inappropriate correction of biological
gain and loss. As a result, in the example given the
dynamic range between segments of gain (Figure 10, red
arrows) and loss (Figure 10, green arrows) is reduced after
Lowess compared with popLowess, 1.38 versus 1.58. For
Lowess a smaller dynamic range between levels is present
in both directions relative to the baseline level (Figure
10). Reduced dynamic range or inappropriate centraliza-
tion of aCGH data can result in misinterpretations when
investigating genomic copy number profiles.

Conclusion
We show that the presence of copy number populations
in aCGH data deleteriously affects normalization using
curve-generating algorithms such as intensity-based low-
ess and may cause erroneous centering of data. We dem-
onstrate that genomic imbalances correlate with intensity
in aCGH data and therefore must be accounted for during
normalization in order to correct for intensity dependence
of M due to technical bias while retaining intensity
dependence of biological relevance. Here we propose a
population-based normalization strategy that accounts
for the presence of copy number populations. We show
that benefits of a population-based normalization
approach are clearly recognized for data displaying
numerous CNAs. We also demonstrate that the proposed
procedure can be applied to assign adaptive sample-spe-
cific thresholds for calling copy number changes. We
appreciate that the suggested strategy represents only one
conceivable way of implementing population-based nor-

Use of sample adaptive gain/loss thresholdsFigure 9
Use of sample adaptive gain/loss thresholds. Thresholds are applied to data from figure 7. (a) Copy number profile derived 
from BAC data for chromosome 4 after popLowess normalization with adaptive thresholds superimposed (± 0.372). (b) Copy 
number profile for chromosome 4 for data from panel (a) after smoothing (250 kBp) and new threshold estimate (± 0.176). (c) 
Copy number profile of Agilent data for chromosome 4 after popLowess normalization with adaptive thresholds superimposed 
(± 0.453). (d) Copy number profile for chromosome 4 for data from panel (c) after smoothing (50 kBp) and new threshold 
estimate (± 0.171).
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malization and that any implementation that effectively
discerns copy number populations in aCGH data,
whether utilizing prior knowledge regarding samples or
inference from the data itself, could be used. In addition,
once copy number populations are identified, this infor-
mation can be used in a variety of ways to circumvent
highlighted problems related to conventional normaliza-
tion of aCGH data. Taken together, we demonstrate that
copy number populations in aCGH data should be
accounted for during normalization and that the pro-
posed normalization strategy, as well as the adaptive sam-
ple-specific level scaling, provides powerful and
convenient means for improved copy number analysis
using aCGH.

Methods
Data sets
We used eight data sets derived from BAC arrays and from
Agilent 244 K oligonucleotide CGH arrays to evaluate

normalization methods. Data set 1 consists of seven
breast cancer cell lines analyzed using tiling 32 K BAC
arrays [23]. Data set 2 consists of 28 lung cancer cell lines
analyzed using tiling 32 K BAC arrays [25]. Data set 3 con-
sists of ten breast cancer cell lines analyzed using tiling 32
K BAC arrays [20]. Data set 4 consists of 52 breast cancer
tumors analyzed in dye-swaps on 1 Mb BAC arrays [8].
Data set 5 consists of 8 breast cancer tumors and one dye-
swap analyzed using Agilent 244 K oligonucleotide CGH
arrays [26]. These tumors displayed DLR values between
0.196 and 0.364 when analyzed with Agilent CGHAnalyt-
ics software ver 3.4.27 [26]. Data set 6 was created from
data set 5 by matching the oligonucleotide probe IDs
from the 244 K arrays to the Agilent 44B probe IDs avail-
able through Agilent eArray [27], thus creating a virtual 44
K oligonucleotide CGH array. Of 42,447 genome-mapped
probe IDs on the 44B array, 41,599 were found on the 244
K arrays (98%). Data set 7 consists of nine hybridizations
of chromosome X aberrant cell lines with karyotype 47,

Example of segmentation of data after alternative normalization methodsFigure 10
Example of segmentation of data after alternative normalization methods. Segmented copy number profile of chromosome 4 
from smoothed (50 kBp) Agilent data for the sample from figure 7 with superimposed adaptive thresholds (± 0.171). Three dif-
ferent segments are highlighted with colored arrows in each panel to exemplify regions with different copy number level (a) 
Segmentation applied after Lowess. M values for selected segments; blue arrow 0.16, red arrow 1.02, and green arrow -0.36. 
(b) Segmentation applied after popLowess. M values for selected segments; blue arrow -0.07, red arrow 0.94, and green arrow 
-0.64.(c) Segmentation applied after Lowess normalization subsequently followed by centralization of data on median M of an 
individual population. M values for selected segments; blue arrow -0.05, red arrow 0.81, and green arrow -0.57.
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XXX and 48, XXXX, and male 46, XY and female 46, XX
samples in various combinations [20]. Samples in data set
7 are expected to display a normal karyotype for chromo-
somes 1–22. Data set 8 consists of eight hyperdiploid
childhood ALL cases analyzed using tiling 32 K BAC arrays
[21].

Pre-filtering and conventional normalization of aCGH 
data
All data sets were loaded into BioArray Software Environ-
ment (BASE) [28] for analysis. Positive and non-saturated
spots were background corrected using the median fore-
ground minus the median background signal intensity for
each channel and log ratios (M) were calculated from the
background corrected intensities. In all analysis we used
M = log2(int1/int2) and A = log10(sqrt(int1*int2)), where
int1 and int2 are background corrected intensities from
the investigated sample and reference, respectively. Data
sets 1–4 and 7–8 were filtered for signal-to-noise ratio for
each spot in both channels according to published reports
and the remaining data sets for signal-to-noise ratio > 5 in
both channels before BASE implemented software plug-
ins of the different normalization strategies were
employed. A lowess smooth factor of 0.33, delta of 0.1,
and four iterations were used for standard Lowess,
popLowess and block-based lowess normalization. Block
group size was set to 1 for all block-based normalizations.

Population-based intensity-based lowess
A schematic overview of the proposed popLowess normal-
ization strategy is shown in figure 5. The approach is
applied on a per sample basis starting with genomic map-
ping and raw intensities (int1 and int2) for N probe IDs
(step 1, Figure 5). The probes are sorted according to
genomic position and M and A are calculated for each
probe (step 2, Figure 5). Next, a standard deviation in M
is calculated for each probe in sliding windows of user-
defined size along the genome. The resulting distribution
of N standard deviations is subjected to a cut-off criterion
generating K probes with standard deviations < cut-off for
continued population analysis (step 3, Figure 5). A mov-
ing window size of 11 probes was used and the median of
the standard deviation distribution was used as cut-off
value. This selection criterion is sample adaptive avoiding
problems with using a global cut-off criterion. The K
selected probes are next segmented on a per chromosome
basis using, e.g., the CGHplotter algorithm [14] or the
faster circular binary segmentation (CBS) algorithm [13]
(step 4, Figure 5). Herein, the segmentation algorithm
proposed by Autio et al. was used with the constant for
computing the number of changes (c-parameter) set to 10
[14]. Segmented values are used to cluster the K probes
into three distinct clusters by means of robust k-means
clustering (step 5, Figure 5). After clustering, there is an
option to merge clusters with cluster centers close to each

other. Merging is typically useful for samples not display-
ing three populations, e.g., samples with 1 or 2 copy
number populations. When indicated, a merge cluster cri-
terion of 0.2 or 0.3 in M was used. The resulting data con-
sists of 1–3 distinct populations of data that contains
information about the genomic mapping, M, and A for
each probe. The largest population is selected for lowess
normalization [29] generating a population specific cor-
rection curve (step 6, Figure 5). The correction curve is
next extrapolated to the entire range of A and used to cor-
rect M for all N reporters similar to Lowess (step 7, Figure
5). The extrapolation is done conservatively in the end
points of A by using the first/last data point of the popu-
lation specific correction curve to level out the global cor-
rection curve horizontally in the M-A plot thereby
moderating the impact of extreme points or missing val-
ues. After lowess correction, one population is selected as
the center population and all data is shifted such that this
population obtains median M equal to 0. Selection of a
center population can be based on different assumptions.
Finally, the normalized int1 and int2 intensities are
returned (step 8, Figure 5). By not segmenting the entire
set of observations, and by setting the crucial segmenta-
tion parameters for detecting breakpoints in the lower
scale, speed is gained while still retaining robustness as
long as the standard deviation cut off is not set too low.
The purpose of segmentation is to refine large regions
with identical copy number and not to detect small com-
plex copy number alterations.

Comparison of normalization methods
For comparisons, the R implemented lowess function was
used to create lowess-normalized data. For each identified
population (step 1–5, Figure 5) in every sample in data
sets 1–6 and 8, the standard deviations in M of the report-
ers in the population after Lowess, popLowess, and no
normalization (equal to Median) were calculated sepa-
rately. The number of populations in a data set for which
the popLowess strategy rendered a lower standard devia-
tion compared to the competitor was calculated. To eval-
uate if popLowess resulted in a significant number of
populations with lower standard deviations, one sided p-
values were calculated using the binomial distribution
with p = 0.5. This binomial test corresponds to the null
hypothesis that lower standard deviations for popLowess
are obtained by chance. This comparison was done both
when studying all populations as a whole and for each
population individually.

Sample adaptive gain/loss thresholds
Sample adaptive thresholds for calling gain or loss can be
generated by performing steps 1–3 in Figure 5 using the
same form of data input and standard deviation cut-off
criteria. The identified standard deviation cut-off value
can be scaled by multiplicative factors to generate sample
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specific gain/loss thresholds of desired stringency for
downstream applications, e.g., calling CNAs after segmen-
tation. Before creating sample adaptive thresholds, data
was pre-filtered and normalized using the popLowess
strategy. Sample adaptive thresholds for the Ca13928
breast tumor were created before and after a smoothing
window of 250 kBp size for 32 K BAC data and 50 kBp for
Agilent 244 K data. Thresholds were estimated using a
chromosomal moving window of size 1% of the total
probe number for each chromosome separately and the
standard deviation cut-off value was selected as the
median of the standard deviation distribution. The cut-off
value was scaled by a factor 2 to create the ± thresholds in
M displayed in figure 9.

Availability and requirements
An implementation of popLowess in R http://www.r-
project.org is available both as a plugin to the BioArray
Software Environment (BASE) [28] and as a stand-alone
version.

Project name: popLowess

Project home page: http://baseplugins.thep.lu.se/wiki/
se.lu.onk.popLowess

Operating system(s): Platform independent

Programming language: R

License: GNU GPL
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IQR: Inter Quartile Range

Lowess: Global intensity-based lowess normalization

Median: Global median normalization

popLowess: population-based intensity-based lowess nor-
malization

SKY: Spectral karyotyping technique

Competing interests
The author(s) declares that there are no competing inter-
ests.

Authors' contributions
All authors participated in the development of the model.
JS implemented and developed the methods. JS and MR
performed the statistical tests. JVC conceived the study. JS
and JVC drafted the manuscript. All authors participated
in the design of the study and in completing the manu-
script. All authors read and approved the final manu-
script.

Acknowledgements
We wish to thank Patrik Edén and Mattias Höglund for helpful comments 
on the manuscript. This work was supported by the Knut and Alice Wal-
lenberg Foundation via the SWEGENE program (JS and JVC), the Swedish 
Cancer Society (GJ), the American Cancer Society (GJ and JVC), John och 
Augusta Perssons stiftelse (GJ and JVC), and the Swedish Foundation for 
Strategic Research through CREATE Health – the Lund Strategic Centre 
for Clinical Cancer Research (MR).

References
1. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A,

Williams CF, Jeffrey SS, Botstein D, Brown PO: Genome-wide
analysis of DNA copy-number changes using cDNA microar-
rays.  Nat Genet 1999, 23(1):41-46.

2. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C,
Kuo WL, Chen C, Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson
DG: High resolution analysis of DNA copy number variation
using comparative genomic hybridization to microarrays.
Nat Genet 1998, 20(2):207-211.

3. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Wald-
man F, Pinkel D: Comparative genomic hybridization for
molecular cytogenetic analysis of solid tumors.  Science 1992,
258(5083):818-821.

4. Ylstra B, van den Ijssel P, Carvalho B, Brakenhoff RH, Meijer GA:
BAC to the future! or oligonucleotides: a perspective for
micro array comparative genomic hybridization (array
CGH).  Nucleic Acids Res 2006, 34(2):445-450.

5. Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E, Esposito
D, Alexander J, Troge J, Grubor V, Yoon S, Wigler M, Ye K, Borresen-
Dale AL, Naume B, Schlicting E, Norton L, Hagerstrom T, Skoog L,
Auer G, Maner S, Lundin P, Zetterberg A: Novel patterns of
genome rearrangement and their association with survival
in breast cancer.  Genome Res 2006, 16(12):1465-1479.

6. Fridlyand J, Snijders AM, Ylstra B, Li H, Olshen A, Segraves R, Dairkee
S, Tokuyasu T, Ljung BM, Jain AN, McLennan J, Ziegler J, Chin K,
Devries S, Feiler H, Gray JW, Waldman F, Pinkel D, Albertson DG:
Breast tumor copy number aberration phenotypes and
genomic instability.  BMC Cancer 2006, 6:96.

7. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL,
Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T,
Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM,
Esserman L, Albertson DG, Waldman FM, Gray JW: Genomic and
transcriptional aberrations linked to breast cancer patho-
physiologies.  Cancer Cell 2006, 10(6):529-541.

8. Jonsson G, Naylor TL, Vallon-Christersson J, Staaf J, Huang J, Ward
MR, Greshock JD, Luts L, Olsson H, Rahman N, Stratton M, Ringner
M, Borg A, Weber BL: Distinct genomic profiles in hereditary
breast tumors identified by array-based comparative
genomic hybridization.  Cancer Res 2005, 65(17):7612-7621.
Page 17 of 18
(page number not for citation purposes)

http://www.r-project.org
http://www.r-project.org
http://baseplugins.thep.lu.se/wiki/se.lu.onk.popLowess
http://baseplugins.thep.lu.se/wiki/se.lu.onk.popLowess
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10471496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10471496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10471496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9771718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9771718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1359641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1359641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16439806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16439806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16439806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17142309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17142309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17142309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16620391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16620391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16620391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17157792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17157792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17157792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16140926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16140926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16140926


BMC Genomics 2007, 8:382 http://www.biomedcentral.com/1471-2164/8/382
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

9. Vissers LE, Veltman JA, van Kessel AG, Brunner HG: Identification
of disease genes by whole genome CGH arrays.  Hum Mol
Genet 2005, 14(Spec No 2):R215-223.

10. Pinkel D, Albertson DG: Comparative genomic hybridization.
Annu Rev Genomics Hum Genet 2005, 6:331-354.

11. Quackenbush J: Microarray data normalization and transfor-
mation.  Nat Genet 2002, 32(Suppl):496-501.

12. Jong K, Marchiori E, Meijer G, Vaart AV, Ylstra B: Breakpoint iden-
tification and smoothing of array comparative genomic
hybridization data.  Bioinformatics 2004, 20(18):3636-3637.

13. Olshen AB, Venkatraman ES, Lucito R, Wigler M: Circular binary
segmentation for the analysis of array-based DNA copy
number data.  Biostatistics 2004, 5(4):557-572.

14. Autio R, Hautaniemi S, Kauraniemi P, Yli-Harja O, Astola J, Wolf M,
Kallioniemi A: CGH-Plotter: MATLAB toolbox for CGH-data
analysis.  Bioinformatics 2003, 19(13):1714-1715.

15. Neuvial P, Hupe P, Brito I, Liva S, Manie E, Brennetot C, Radvanyi F,
Aurias A, Barillot E: Spatial normalization of array-CGH data.
BMC Bioinformatics 2006, 7:264.

16. Khojasteh M, Lam WL, Ward RK, MacAulay C: A stepwise frame-
work for the normalization of array CGH data.  BMC Bioinfor-
matics 2005, 6:274.

17. Smyth GK, Speed T: Normalization of cDNA microarray data.
Methods 2003, 31(4):265-273.

18. Oshlack A, Emslie D, Corcoran LM, Smyth GK: Normalization of
boutique two-color microarrays with a high proportion of
differentially expressed probes.  Genome Biol 2007, 8(1):R2.

19. Johannsson OT, Staff S, Vallon-Christersson J, Kytola S, Gudjonsson
T, Rennstam K, Hedenfalk IA, Adeyinka A, Kjellen E, Wennerberg J,
Baldetorp B, Petersen OW, Olsson H, Oredsson S, Isola J, Borg A:
Characterization of a novel breast carcinoma xenograft and
cell line derived from a BRCA1 germ-line mutation carrier.
Lab Invest 2003, 83(3):387-396.

20. Jonsson G, Staaf J, Olsson E, Heidenblad M, Vallon-Christersson J,
Osoegawa K, de Jong P, Oredsson S, Ringner M, Hoglund M, Borg A:
High-resolution genomic profiles of breast cancer cell lines
assessed by tiling BAC array comparative genomic hybridi-
zation.  Genes Chromosomes Cancer 2007, 46(6):543-558.

21. Paulsson K, Heidenblad M, Morse H, Borg A, Fioretos T, Johansson B:
Identification of cryptic aberrations and characterization of
translocation breakpoints using array CGH in high hyperdip-
loid childhood acute lymphoblastic leukemia.  Leukemia 2006,
20(11):2002-2007.

22. de Leeuw RJ, Davies JJ, Rosenwald A, Bebb G, Gascoyne RD, Dyer MJ,
Staudt LM, Martinez-Climent JA, Lam WL: Comprehensive whole
genome array CGH profiling of mantle cell lymphoma
model genomes.  Hum Mol Genet 2004, 13(17):1827-1837.

23. Shadeo A, Lam WL: Comprehensive copy number profiles of
breast cancer cell model genomes.  Breast Cancer Res 2006,
8(1):R9.

24. Lipson D, Ben-Dor A, Yakhini Z: Determining the center of
array-CGH data.  In Computational aspects of DNA copy number
measurement Technion – Israel Institute of Technology, Computer
Science Department; 2007:105-110. 

25. Garnis C, Lockwood WW, Vucic E, Ge Y, Girard L, Minna JD, Gazdar
AF, Lam S, Macaulay C, Lam WL: High resolution analysis of non-
small cell lung cancer cell lines by whole genome tiling path
array CGH.  Int J Cancer 2006, 118(6):1556-1564.

26. Agilent Technologies   [http://www.agilent.com]
27. Agilent eArray   [http://earray.chem.agilent.com/earray]
28. Saal LH, Troein C, Vallon-Christersson J, Gruvberger S, Borg A,

Peterson C: BioArray Software Environment (BASE): a plat-
form for comprehensive management and analysis of micro-
array data.  Genome Biol 2002, 3(8):SOFTWARE0003-. 

29. Yang MC, Ruan QG, Yang JJ, Eckenrode S, Wu S, McIndoe RA, She
JX: A statistical method for flagging weak spots improves
normalization and ratio estimates in microarrays.  Physiol
Genomics 2001, 7(1):45-53.
Page 18 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16244320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16244320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16124865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15475419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15475419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15475419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15593402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15593402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16716215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16297240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16297240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17204140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17204140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17204140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12649339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12649339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17334996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17334996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17334996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16990785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16990785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16990785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15229187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15229187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15229187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16417655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16417655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16187286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16187286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16187286
http://www.agilent.com
http://earray.chem.agilent.com/earray
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12186655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12186655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12186655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11595791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11595791
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	Normalization of aCGH data using Median
	Genomic imbalances correlate with intensity in aCGH data
	Normalization of aCGH data using population-based intensity-based lowess
	Stratification of M values into copy number populations
	A procedure for normalization of aCGH data using popLowess
	Selecting a population to represent intrinsic copy number
	Application to tumor specimens on different aCGH platforms
	Comparison of popLowess strategy to standard normalization methods
	Spatial effects
	Adaptive sample-specific thresholds for calling copy number change
	Normalization affects downstream analysis

	Conclusion
	Methods
	Data sets
	Pre-filtering and conventional normalization of aCGH data
	Population-based intensity-based lowess
	Comparison of normalization methods
	Sample adaptive gain/loss thresholds
	Availability and requirements

	List of abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

