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Abstract

Background: Thymoma is a heterogeneous group of tumors in biology and clinical behavior. Even
though thymoma is divided into five subgroups following the World Health Organization
classification, the nature of the disease is mixed within the subgroups.

Results: We investigated the molecular characteristics of genetic changes variation of thymoma
using cDNA microarray based-comparative genomic hybridization (CGH) with a 17 K cDNA
microarray in an indirect, sex-matched design. Genomic DNA from the paraffin embedded 39
thymoma tissues (A 6, AB |1, BI 7, B2 7, B3 8) labeled with Cy-3 was co-hybridized with the
reference placenta gDNA labeled with Cy-5. Using the CAMVS software, we investigated the
deletions on chromosomes 1, 2, 3, 4, 5, 6, 8, 12, 13 and 18 throughout the thymoma. Then, we
evaluated the genetic variations of thymoma based on the subgroups and the clinical behavior. First,
the 36 significant genes differentiating five subgroups were selected by Significance Analysis of
Microarray. Based on these genes, type AB was suggested to be heterogeneous at the molecular
level as well as histologically. Next, we observed that the thymoma was divided into A, B (I, 2) and
B3 subgroups with 33 significant genes. In addition, we selected 70 genes differentiating types A and
B3, which differ largely in clinical behaviors. Finally, the | | heterogeneous AB subtypes were able
to correctly assign into A and B (I, 2) types based on their genetic characteristics.

Conclusion: In our study, we observed the genome-wide chromosomal aberrations of thymoma
and identified significant gene sets with genetic variations related to thymoma subgroups, which
might provide useful information for thymoma pathobiology.
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Background

Thymoma is a thymic epithelial cell tumor having organ-
otypic features and no overt cytologic atypia. Although
controversy still remains, the classical histological classifi-
cations of thymoma based on the proportion of reactive
lymphocytes and tumor epithelial cells have been
replaced by a histogenetic classification that basically sub-
divides thymoma into medullary, cortical, and mixed
types, according to cytological features of epithelial cells
[1-5]. Several studies supported the validity of the histoge-
netic classification and the World Health Organization
(WHO) classification adopted five subtypes of thymoma
stratified in histogenetic classification [6-9]. The histolog-
ical subtypes in the WHO classification have been
reported to have independent prognostic significance,
and types A and AB demonstrate indolent biological
behavior compared with type B [6-8]. Several studies have
tried to demonstrate the underlying pathogenetic mecha-
nisms to explain the different biological behaviors of thy-
moma, according to the histological subtype and stages by
applying several markers, but no conclusive results have
been demonstrated yet [10-18].

A recent report on genetic alterations of thymoma using
comparative genomic hybridization (CGH) and fluores-
cent in situ hybridization methods demonstrated that
type B3 thymoma frequently occurred with losses of chro-
mosomes 6, 13 q, 16 q and gains of chromosome 1 q,
while type A thymoma rarely showed cytogenetic abnor-
malities [19]. Subsequent studies by the same group
based on loss of heterozygosity (LOH) analyses inferred
two different genetic pathways of tumorigenesis of thy-
moma, and heterogeneous genetic alterations in subtypes
of thymoma, excluding type A, were identified by CGH
and LOH analyses [20,21]. However, a recent CGH study
identified several new chromosomal imbalances even in a
significant proportion of type A thymomas [22].

The application of DNA microarray technology has pro-
vided us a high-throughput evaluation of the whole
genome as well as significant genetic information at a sin-
gle gene level and has enabled us to classify different neo-
plasms based on the characteristic genetic patterns. So far
there has been no report focusing on differences of genetic
alterations between subtypes of thymoma using a cDNA
microarray based-CGH method (microarray-CGH). In
our study, genetic alterations of all WHO-defined sub-
types of thymoma were investigated using high resolution
microarray-CGH followed by hierarchical cluster analyses
of the data to identify specific patterns of genetic aberra-
tions and genes associated with each subtype.

http://www.biomedcentral.com/1471-2164/8/305

Results

Chromosome analysis of thymoma

For evaluating the pattern of genetic aberration of thy-
moma, 13,248 unique genes were obtained after preproc-
essing, of which 8,411 were mapped by SOURCE.
Commonly amplified or deleted regions were identified
by averaging the log, ratio values of each gene from 39
thymoma patients, plotted on the location of the chromo-
somes using the Chromosome Analyzer and Map Viewer
using S-plus (CAMVS) (Figure 1A). When we evaluated
overall chromosome patterns based on the cut-off value of
+ 0.3, deletions in chromosomes 1, 2, 3, 4, 5, 6, 8, 12, 13
and 18 were identified.

Subtype specific analysis demonstrated losses of chromo-
somes 2, 4, 6q, and 13, identified in type A (Figure 1B),
and losses of chromosomes 1p, 2q, 3q, 4, 5, 6q, 8, 13, and
18 and a gain of chromosome 9q were identified in type
B1 (Figure 1C). Type B2 demonstrated losses of chromo-
somes 1p, 2q, 3q, 4, 5, 6q, 8, 13, and 18 (Figure 2A), and
type B3 revealed chromosome 2q, 4, 5, 6, 8, 12q, 13, and
18 losses, and chromosome 1q gain (Figure 2B). Type A
therefore demonstrated the least degree of chromosomal
abnormality while subtypes of type B thymoma showed
overlapping pattern losses in many chromosomes. Chro-
mosome 9q gain was identified only in type B1 thymoma,
while chromosome 1q gain was present only in type B3
thymoma. Meanwhile, type AB showed the losses of chro-
mosomes 2, 4, 5, 6q, 8, 13 and 18 (Figure 2C). In addi-
tion, losses of chromosomes 2, 4, 6, and 13 were observed
in all subtypes.

Overall genetic pattern analysis

To investigate the genetic differences of five subtypes of
thymoma, we selected 36 distinctive genes at a false dis-
covery rate (FDR) of 2.5% by multi-class SAM (23) (Addi-
tional file 1). Supervised hierarchical clustering of 39
cases of thymoma microarray-CGH data with the selected
36 genes demonstrated that types A and B were separately
clustered (Figure 3). However, types B1, B2 and B3
branches were intermingled with each other. In addition,
eight samples of type AB were dispersed in various B
branches, and three samples of type AB were included in
type A. These results suggest that type AB has combined
characteristics of types A and B, genetically (Figure 3).
Hence, type AB was excluded from further analyses to
diminish error rate in understanding the genetic charac-
teristics of thymoma subtypes. Among the 36 selected
genes, 16 are ESTs with unknown functions and six are
located in the 1q region. Cervical cancer oncogene-4
(HCC-4, 2q24.2) was amplified in all subtypes except for
type B1. T-cell receptor gamma locus (TARP, 7p15-p14)
was deleted in all subtypes except for type A (AB: 63%, B1:
33%, B2: 50%, B3: 12.5%).
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Figure |
Microarray-CGH profiles using CAMVS (Chromosome analyzer and Map Viewer using S plus). Each black line displays the

overall genetic pattern of each thymoma patient and the central orange horizontal line represents the common genetic altera-
tions of 8,411 genes in all patients. (A) Overall microarray-CGH profile of 39 thymoma patients showing the losses on chro-

mosomes |, 2, 3,4,5,6,8, 12, 13 and 18. (B) The common genetic alteration patterns in type A with losses of chromosomes
2, 4, 6q, and 13. (C) The common genetic alteration patterns in type Bl with losses of chromosomes 1p, 2q, 3q, 4, 5, 6q, 8, 13,

and 18 and a gain of chromosome 9q.
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Figure 2
(A) The common genetic alteration patterns in type B2 with losses of chromosomes 1p, 2q, 3q, 4, 5, 6q, 8, 13, and 18. (B) The

common genetic alteration patterns in type B3 with losses of chromosomes 2q, 4, 5, 6, 8, 12q, 13, 18 and a gain of chromo-
some |q. (C) The common genetic alteration patterns in type AB with losses of chromosomes 2, 4, 5, 6q, 8, I3 and 18.
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Genetic pattern profiles of thymoma subgroups by the hierarchical clustering of 36 selected genes. Color scale bar showing the
level of log R/G ratio. The thymoma subgroup of each patient is displayed in a different color as below.

Comparison of genetic aberration patterns between
subtypes of thymoma

A) Comparison between type A and type B

SAM was performed with types A and B in order to iden-
tify genetic alterations distinguishing tumors composed
of medullary and cortical epithelium. We selected 50
genes at a FDR of 1.7%, and the hierarchical clustering
showed the clear separation of type A and type B (Figure
4-A, Additional file 2). Small branch pattern analyses
showed more similarity between type B1 and type B2 than
between type B2 and type B3, and some similarity
between type A and type B3. Among the 50 genes selected,

chromosomes 1 and 5 included 10% each (5/50), and
chromosomes 6, 11, 13 and 17 each included 6% (3/50).
We observed that these genes were closely located within
each chromosome, suggesting the possible fragmental
losses of thymoma chromosomes. For example, three
genes were located nearby on 1p31, and four genes were
located nearby on the 5q arm. Among the genes on chro-
mosome 1, FLJ20489 (10/22), 15 KDa selenoprotein
(SEP15, 1p 31, 6/22), leptin receptor gene related protein
(LEPR, 1p 31, 7/22), and phosphatidylinositol glycan,
class K (PIGK, 1p 31, 11/22), were frequently deleted in
cortical subtypes.
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Figure 4

Comparison of genetic aberration patterns between subtypes of thymoma. (A) Hierarchical clustering with 50 selected genes
showing different genetic patterns between types A and B (I, 2, 3). (B) Hierarchical clustering of 70 genes showing different
genetic patterns in types A and B3. (C) Hierarchical clustering of 48 genes showing the different genetic patterns between

types B (I, 2) and B3. (D) Hierarchical clustering with 33 genes showing three molecular characteristic subgroups of thymoma
as types A, B(I,2) and B3.
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B) Comparison between type A and type B3

SAM was performed with types A and B3 in order to iden-
tify genetic alterations responsible for the markedly differ-
ent biologic behaviors of types A and B3. Seventy genes
with different copy numbers were selected with a FDR of
1.2%, and the cluster analysis using these 70 genes
showed clear separation between type A and type B3 (Fig-
ure 4-B, Table 1). Gains of these genes were prevalent in
type A while losses were prevalent in type B3. Twenty-five
of the 70 genes were ESTs, and 12 genes were located on
chromosome 6, most of which were concentrated on the
6p21.3-6p25 regions. In type B3, frequent deletions were
observed in chromosome 6 open reading frame 10
(Co6orf10, 6p21.3), butyrophilin subfamily 3, member A2
(BIN3A2, 6p22.1), and thiopurine s-methyltransferase
(TPMT, 6p22.3), with a frequency of 75% (6/8), 87.5%
(7/8), 75% (6/8), respectively. All the selected genes on
chromosome 5 were on the 5q arm, and we observed that
cervical cancer oncogene 4 (HCC-4, 2q24.2) was more
amplified in all type A cases than type B3 cases.

C) Comparison of cortical subtypes

Based on the previous results demonstrating that among
cortical subtypes, the pattern of small branches showed
more similarity between types B1 and B2 than types B2
and B3, we divided cortical subtypes into types B1+B2 and
B3 for evaluating genetic alterations. We selected 48 sig-
nificant genes with a FDR of 11% by SAM (Figure 4-C,
Additional file 3). As the FDR value of differential gene
selection is relatively high, type B1+B2 and type B3 were
not clustered clearly, but they showed a tendency of sepa-
ration. Twenty-nine of 48 selected genes were on chromo-
some 1, and nine of them were ESTs. Among the 29 genes
on chromosome 1, 26 (86%, 26/29) were amplified in
type B3 type, while only four (13%, 4/29) were amplified
in type B1+2. The selected genes were concentrated in the
1932 and 1q42-q43 regions.

D) Comparison between type A, type B 1+2, and type B3

SAM was carried out with three subgroups of types A,
B1+B2, B3, and 33 significant genes were selected at 2.6%
FDR, most of which are located on chromosomes 1 and 6
(Table 2). When a clustering analysis was carried out with
these 33 genes (Figure 4-D), type A was clearly separated
from types B1+2 and B3.

Twelve of the selected 33 genes were ESTs, with six genes
on chromosome 1. Four genes located on 1q, chromo-
some 1 open reading frame 21 (Clorf21), putative DNA/
chromatin binding motif (PLU-1), protein phophatasel
regulator subunit 12B (PPP1R12B), and SEC22 vesicle
trafficking protein-like 1 (SEC22L1) were amplified only
in type B3.

http://www.biomedcentral.com/1471-2164/8/305

E) Prediction analysis of thymoma subtypes

Based on the previous results, thymoma could be divided
into three genetically distinct subgroups (types A, B1+B2,
and B3) and genetically heterogeneous type AB. Predic-
tion Analysis of Microarray (PAM) (24) as in the method
was carried out to predict to which subgroup type AB
belongs. To equilibrate each group, the training set evenly
included six cases from types A, B1+2, and B3. Eleven
cases of type AB were used as a test set in the prediction
analysis. The cross-validation of the selected 44 subgroup
classifier genes showed 100% accuracy with types A and
B1+B2 and 50% accuracy with type B3 in the training set
(Figure 5-A). The prediction analysis demonstrated that
among the 11 cases of type AB, three cases were classified
into type A, and the remaining eight cases into type B (1,
2) (Figure 5-B), which is coherent with the dendrogram in
Figure 3.

Discussion

A number of study results on systemic genetic analyses of
thymoma have been reported in the past few years after a
few case reports on the chromosomal abnormalities of
thymoma [19-22], [25-27]. Zettl et al. demonstrated for
the first time recurrent chromosomal imbalances in type
B3 thymoma with CGH and FISH methods [19]. They
identified 16 cases of type B3 that showed chromosomal
gains (1q, Xq, and 8p12) and losses (6 and 13q), while 12
cases of type A did not reveal any chromosomal abnor-
malities, with the exception of one case with a partial loss
of 6p. Subsequently, the same group, using CGH and mic-
rosatellite analyses, inferred two pathways of thymoma
tumorigenesis by demonstrating that type A (3/8 cases)
presented with consistent LOH in the region 6p23.3-25.5
only, while type B3 revealed various aberrations such as
APC on chromosome 5q21 (3/14 cases), RBon 13q14 (5/
14 cases), and p53 gene on 17p13.1 (4/14 cases) loci, as
well as LOH in the region 6p23.3-25.5 (5/14 cases) [20].
They expanded their samples to include types AB and B2
in addition to types A and B3 by using laser-assisted
microdissection or short-term thymic epithelial tumor
cell cultures and found that 1) the various WHO-defined
subtypes of thymoma exhibited different profiles of
genetic alterations, 2) only type A was genetically homo-
geneous with abnormalities mainly involving chromo-
some 6 while other subtypes showed genetic
heterogeneity, and 3) some cases of type B2 were geneti-
cally closely related to type B3, and might arise from this
type by gain of genetic aberrations [21]. In addition, Pen-
zel et al [22] reported a main cluster characterized by a
gain of 1q and losses of 6q and 16q occurring only in type
B3 (3/4 cases). Three of eight cases of type A thymoma
demonstrated various types of chromosomal imbalances
in contrast to the study results reported by Zetti et al [19].
Namely, the results of the CGH studies on thymoma by
two groups demonstrated some discrepancies [19-22].
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Table I: List of distinctive 70 genes between types A and B 3

ID Symbol Cytoband Name type A type B3
gain loss gain loss
AA186327 SNX14 6ql4-ql5 sorting nexin 14 (5/8)
AA458945 RAB30 11ql2-ql4 RAB30, member RAS oncogene family (5/6) (4/8)
Al201652 EST (4/6) (1/8)  (3/8)
Al337344 HSRGI 16q23.1 HSV-1 stimulation-related gene | (6/6) (3/8)  (1/8)
AA991868 EST (6/6) (3/8)  (2/18)
AA465687 HCC-4 2q24.2 cervical cancer oncogene 4 (6/6) (2/8) (4/8)
Al493835 ESTs (6/6) (2/8)  (1/8)
AW087220 ESTs (4/6)
AA478436 SMARCD2 17q23-q24 SWI/SNF related, matrix associated, actin dependent regulator of (6/6) (2/8)
chromatin, subfamily d, member 2
Al015542 TG737 13ql2.1 Probe hTg737 (5/6) (2/8)
Al733279 ESTs (6/6) (218)  (418)
AA97368I ESTs (3/6)
N93021 TBCA 5ql4.1 (5/8)
AA917489 ESTs (6/6)
AA775364 RPL30 8q22 ribosomal protein L30 (1/6)
AA987488 ESTs (2/6) (2/8)
AA478585  BTN3A3 6p22.1 butyrophilin, subfamily 3, member A3 (176) (2/8)
Al291184 OCLN 5ql3.1 occludin (5/6) (218)
Al348521 HBSIL 6q23-q24 HBS | -like (6/8)
AA287917  TNPOI 5ql3.2 karyopherin (importin) beta 2 (2/6) (2/8)
AA885609 MAPIA 15q13- microtubule-associated protein |A (8/8)
qter
Al375415 ESTs (2/8)
AA489670 ESTs (3/8)
Al972677 MSMB 10gl1.2 microseminoprotein, beta- (1/6) (1/6)
N71628 SPIB 19q13.3- Spi-B transcription factor (Spi-1/PU.| related) (3/5) (1/6)
ql34
Al383789 ESTs
Al261862 ESTs (2/6) (378)
Al985214 TFPI 2q31- tissue factor pathway (2/6)
q32.1
HI7513 HSPAIL 6p21.3 heat shock 70kDa protein |-like (2/8)
T61428 NEDD9 6p25-p24  neural precursor cell expressed, developmentally down-regulated 9 (2/6) (2/8)
N90109 NCL 2ql2-qter nucleolin (3/6) (1/8)
Al972568 RPL36A Xq22.1 ribosomal protein L36a (3/6)
AA442092 CTNNBI 3p2l catenin, beta |, 88 kDa (1/8)
AA902196 ESTs (2/6) (1/8)
AWO009090 NDUFB3 2q31.3 NADH dehydrogenase | beta subcomplex, 3, 12 kDa (1/8)
AA975250 MAT2B 5q34- methionine adenosyltransferase Il, beta (3/8)
q35.1
Al281237  Cl3orfl2 13ql12.3 chromosome |3 open reading frame 12 (3/8)
H51066 OBRGRP Ip31.3 leptin receptor gene-related protein (2/8)
AA465386 DDX21 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 (3/8)
AI951501 RPLI2 9q34 ribosomal protein L12 (6/6) (1/8)
AWO075424 SFRS3 6p21 splicing factor, arginine/serine-rich 3 (6/6) (1/8)
Al086414 EST (218)
Al279626 EST (2/8)
AA677257 TPMT 6p22.3 thiopurine S-methyltransferase (6/8)
AA887201 Cl3orfl 13ql4 chromosome 13 open reading frame | (1/8)
Al284218 ESTs (2/6) (1/8)
AA991871 FOXAI 14q12-q13 forkhead box Al (376)
AAB64434 ESTs (4/6) (178)  (1/8)
Al318162  FLJI14936 Ip33- hypothetical protein FLJ14936 (1/8)
p32.1
AA504351 ZNF146 zinc finger protein 146 (1/6) (6/8)
Al302566 ESTs (3/6) (1/8)
Page 8 of 15

(page number not for citation purposes)


http://www.ebi.ac.uk/cgi-bin/dbfetch?AA186327
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA458945
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI201652
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI337344
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA991868
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA465687
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI493835
http://www.ebi.ac.uk/cgi-bin/dbfetch?AW087220
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA478436
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI015542
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI733279
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA973681
http://www.ebi.ac.uk/cgi-bin/dbfetch?N93021
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA917489
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA775364
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA987488
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA478585
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI291184
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI348521
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA287917
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA885609
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI375415
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA489670
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI972677
http://www.ebi.ac.uk/cgi-bin/dbfetch?N71628
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI383789
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI261862
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI985214
http://www.ebi.ac.uk/cgi-bin/dbfetch?H17513
http://www.ebi.ac.uk/cgi-bin/dbfetch?T61428
http://www.ebi.ac.uk/cgi-bin/dbfetch?N90109
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI972568
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA442092
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA902196
http://www.ebi.ac.uk/cgi-bin/dbfetch?AW009090
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA975250
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI281237
http://www.ebi.ac.uk/cgi-bin/dbfetch?H51066
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA465386
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI951501
http://www.ebi.ac.uk/cgi-bin/dbfetch?AW075424
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI086414
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI279626
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA677257
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA887201
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI284218
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA991871
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA864434
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI318162
http://www.ebi.ac.uk/cgi-bin/dbfetch?AA504351
http://www.ebi.ac.uk/cgi-bin/dbfetch?AI302566

BMC Genomics 2007, 8:305

http://www.biomedcentral.com/1471-2164/8/305

Table I: List of distinctive 70 genes between types A and B 3 (Continued)

Al311303 ESTs

@78)

AWO078798 UBB 17p12- ubiquitin B (6/6) (2/6)
pll.2

AA927666 ARCH Ip35.1 archease (3/6) (1/8)
AA426027 SNX3 6q21 sorting nexin 3 (3/6) (6/8)
Al262055 ESTs (1/8)
AA936514  Céorfl0 6p21.3 chromosome 6 open reading frame 10 (176) (6/8)
Al364310 ESTs (5/6)
AA504141 UBE2J | 6ql5 ubiquitin-conjugating enzyme E2, J| (UBC6 homolog, yeast) (1/8)
AA130187 WTI I1pl3 Wilms tumor | (1/6)

N56693 COX7B Xq2l.1 cytochrome c oxidase subunit VIlb (5/6) (1/8)
AA401441 BF 6p21.3 B-factor, properdin (1/8)
AA917821 MRPS30 5qll mitochondrial ribosomal protein S30 (1/6)
Al431827 ESTs (4/8)
AA935697 ESTs (3/8)
Al248605 BTN3A2 6p22.1 butyrophilin, subfamily 3, member A2 (7/8)
Al206970 ESTs
AWO058415 HBXIP Ip13.3 hepatitis B virus X interacting protein (2/6)

N69107 YWHAH 22ql2.3 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation (1/6)

protein, eta polypeptide

AAB863025 ESTs

(2/6)

The ID indicate GeneBank ID and the symbol and the cytoband information are from their SOURCE http://source.stanford.edu. The incidence is
the number oh cases having log2 ratio in the range of our criteria + 0.3. ESTs are expressed sequenced tags, clones of unknown functions. Genes

are listed according to order FDR values.

We used cDNA microarray based-CGH to investigate the
genome-wide genetic aberrations of thymoma. In contrast
to CGH and LOH analyses, cDNA microarray based-CGH
could provide us a high-throughput evaluation of the
whole genome and also with significant genetic informa-
tion at a single gene level. The other advantages of using
microarray-CGH are the utility of paraffin embedded tis-
sue DNA, the requirement of a small amount of genomic
DNA and the possible direct comparison with RNA
expression. With this technique there was no need to
amplify the DNA in order to obtain the genetic informa-
tion of more than 10,000 genes, which sometimes may
blur the results. Compared to RNA expression analysis, for
which we need the fresh, well-stored tissue samples (the
major limitation of tissue procurement), using the paraf-
fin embedded tissues allowed us to do the retrospective
studies using a large number of samples.

The main purpose of our study was to identify differential
genetic patterns to explain distinct morphologic findings
and different biologic behaviors, according to subtypes of
thymoma. For this, we included all WHO-defined sub-
types of thymoma for genetic analysis, as in the previous
reports [25-29]. The previous studies using CGH and mic-
rosatellite analyses excluded subtypes with large numbers
of lymphocytes (type AB, B1, and B2) from the samples
because CGH analyses generally require a tumor cell con-
tent of more than 50% [19,20]. As we consider the clinico-
pathological behavior of thymoma comes from the
complex biology with thymic spindle epithelial cells and
surrounding microenvironment including lymphocytes.
Hence, to understand the phenotypic biology of thy-

moma, whole tissues were used for genetic evaluation in
this study. The results from the current data might support
in-depth understanding of tumor biology with more clin-
ically relevant information, resulting in potential clini-
cally useful biomarker candidates for subtype
classification. However, the careful explanation is needed
for understanding pathogenesis of thymoma concerning
the influence from the lymphocytes.

The CAMVS, which was developed in our institute for the
effective analysis and visualization of microarray-CGH
results, was used to identify the significant genetic aberra-
tions of thymoma. Chromosomal deletions in chromo-
somes 1, 2, 3,4, 5, 6,8, 12, 13 and 18 were observed by
the comparison of the mean log, ratio after microarray-
CGH of a total of 39 cases, suggesting the characteristic
genetic aberrations of thymoma. The chromosome 6 loci,
known to possess many tumor suppressor genes, well-
established deletion sites in thymoma such as 6q21,
6423, and 6q25-27, and the genes selected in our study,
were also frequently located on 6q, confirming the previ-
ous data [29].

Subtype specific analyses demonstrated that losses of
chromosomes 2, 4, 6, and 13 were identified in all sub-
types of thymoma. Type A thymoma had the least number
of chromosomal abnormalities while type B had many
more chromosomal abnormalities in accordance with the
previously reported data [19-22]. Thymoma type B
revealed increased genetic aberrations suggesting a rup-
ture in chromosomal stability, and these findings corre-
late well with the indolent biological behavior of type A
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Table 2: List of distinctive 33 genes among types A, B (I, 2) and B3

http://www.biomedcentral.com/1471-2164/8/305

ID Symbol Cytoband Name type A type B (1,2) type B3

gain  loss gain loss gain  loss
AA186327 SNX14 6ql4-ql5 sorting nexin 14 (1/14) (5/8)
AA287917 TNPOI 5ql3.2 karyopherin (importin) beta 2 (4/6) (1/14) (2/8)
AA442092 CTNNBI 3p2l catenin, beta | (1/14) (1/8)
AA455917 SEC22L1I 1q21.2-q21.3 SEC22 vesicle trafficking protein-like | (2/6) 8/14) (2/18) (1/8)
AA458945 RAB30 I1ql2-ql4 RAB30, member RAS oncogene family (5/6) (10/14) (4/8)
AA465386 DDX2l1 DEAD (Asp-Glu-Ala-Asp) box polypeptide 2| (4/14) (3/8)
AA465687 RBMSI 2q23.2 cervical cancer oncogene 4 (6/6) (2/14) (7/14)  (2/8) (4/8)
AA478436 SMARCD2 17q23-q24 SWI/SNF related, matrix associated, actin (6/6) (3/14) 6/14) (1/8) (2/8)

dependent regulator of chromatin, subfamily d,
member 2
AA478585 BTN3A3 6p21.3 butyrophilin, subfamily 3, member A3 (1/6) (1/8)
AA774608 PPPIR12B 1q32.1 protein phosphatase |, regulatory (inhibitor) (1/8)
subunit 12B
AA931882 ESTs (3/14) (5/8)
AA973568 ESTs (6/6) (1/14) (9/14)  (2/18) (4/8)
AA97368I ESTs (5/6) (3/14) (1/8)
AA991868 ESTs (6/6) (2/14) (7/14)  (3/8) (1/8)
AA991871 FOXAI 14q12-q13 forkhead box Al (376) (1/14) (3/8)
Al001856 ESTs BRG I -binding protein ELD/OSAI (2/6) (6/14) (2/8)
Al015542 TTCIO 13q12.1 Probe hTg737 (516) (1o/14) (2/8) (1/8)
Al201652 ESTs (576) 7/14)  (1/8) (3/8)
Al261862 ESTs (2/6) (12/14) (378)
Al289196 MANIA2 Ipl3 mannosidase, alpha, class |A, member 2 (3/6)
Al291184 OCLN 5ql3.1 occludin (5/6) (2/14) (1/14) (1/8)
Al300984 ESTs (1/6) (2/14)
AlI311303 ESTs (9/14) (378)
Al335359 Clorf2l 1925 chromosome | open reading frame 21 (3/8)
Al337344 HSRGI 16q23.1 HSV-1 stimulation-related gene | (6/6) (1/14) (8/14) (3/8) (2/8)
Al34852| HBSIL 6q23-q24 HBS|I-like (8/14) (6/8)
Al392929 PLU-I 1q32.1 putative DNA/chromatin binding motif (1/8)
Al401608 ESTs (2/8)
Al492063 ESTs (2/6)  (1/14) (3/14)  (5/8)
Al493835 ESTs (6/6) (1/14) (4/14) (2/18) (1/8)
Al655101 XPRI 1q25.1 xenotropic and polytropic retrovirus receptor (1/14) (1/14)  (4/8)
Al972955 TARP 7p15-pl4 T cell receptor gamma locus (1/6) (7/14)
H99842 EIF5A 17p13-pl2 eukaryotic translation initiation factor 5A (2/6)

The ID indicate GeneBank ID and the symbol and the cytoband information are from their SOURCE http://source.stanford.edu. The incidence is the
number oh cases having log,ratio in the range of our criteria + 0.3. ESTs are expressed sequenced tags, clones of unknown functions. Genes are

listed according to order FDR values.

and the aggressive behavior of type B. Although a loss of
chromosome 6q had been reported as the only chromo-
somal abnormality in a rare case of type A thymoma, a
recent report by Penzel et al [22] identified various types
of chromosome gains such as 1q, 9q, 16, 17, 20, and 22
and losses such as 2q, 4q, 5q, 6q, 9p, and 13q in three out
of eight cases of type A analyzed. We also identified losses
of chromosomes 2, 4, 6q, and 13 in type A. So the results
of our study support the genetic heterogeneity in a signif-
icant proportion of type A, although genetic aberrations
were usually less prominent, as compared with type B.

Furthermore, type B demonstrated heterogeneous and
overlapping chromosomal aberrations in our study.

Losses of chromosomes 1p, 2q, 3q, 4, 5, 6q, 8, 13, and 18
and a gain of chromosome 9q were identified in type B1.
Type B2 demonstrated losses of chromosomes 1p, 2q, 3q,
4,5, 6q, 8, 13, and 18 and type B3 revealed chromosome
2q,4,5,6,8,12q, 13, 18 losses and chromosome 1q gain.
We could confirm the type B3 specific 1q gain and losses
of 6, 13, and 16 in all three cortical subtypes, as in previ-
ous reports [19-22]. However, losses of chromosomes 2q,
4,5, 8, 13 and 18 were also identified in all three cortical
subtypes. So our results also confirm the presence of vari-
ous other overlapping chromosomal abnormalities in
three cortical subtypes in addition to well established B3
specific 1q gain and chromosome 6, 13, and 16 losses.
Furthermore, we identified chromosomal abnormalities
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Figure 5

Prediction analysis of thymoma subgroups. (A) Cross-validated probabilities of the selected 13644 genes at threshold 2.78 in
the training set using |8 cases of thymoma subgroups, six cases each of A, B (I, 2), B3, showing 90% accuracy. (B) Prediction
analysis of | | ambiguous type AB samples as a training set showed the similar result as Figure 2, designating three as type A and
eight as type B.
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of type B1 for the first time. Type B1 shared a similar pat-
tern of chromosome losses with B2 but showed a 9q gain,
which was identified only in type B1l. These diverse
genetic variations in our data support the underlying
genetic influence on the biology of thymoma subtypes,
resulting in various clinical behaviors.

After the systematic insight into genetic aberrations of thy-
moma was achieved according to molecular characteris-
tics, the types were dissected into genetically related
subgroups for further detailed analyses. First, we identi-
fied that type AB is genetically heterogeneous, so we
excluded type AB for further analyses. Then, we identified
that type A was distinct from type B, based on the molec-
ular characteristics.

The cortical subtypes did not demonstrate clear separation
by hierarchical clustering analysis. Among cortical sub-
types, type B1 morphologically maintains distinct cortico-
medullary differentiation with indistinct tumor epithelial
cells and usually shows indolent biologic behavior, as
compared with types B2 and B3. Type B2, which definitely
shows more aggressive biologic behavior than type B1,
has more prominent tumor epithelial cells than type B1
and gray zones are sometimes present between type B2
and B3 histologically. Furthermore, tumors having both
type B2 and B3 areas are commonly present. So we
expected genetic similarities between type B2 and type B3.
However the pattern of small branches showed more sim-
ilarities between types B1 and B2 than between types B2
and B3.

Based on the hierarchical clustering analysis, we could
assume that thymoma could be divided into four geneti-
cally different subgroup of types A, AB, B1+2, and B3. We
tried to assign 11 genetically heterogeneous cases of type
AB into types A and B using the prediction analysis. The
prediction analysis results were coherent with the cluster-
ing analysis results, showing that three clustered in type A
were predicted to be type A, and eight clustered in type B
were designated as type B. Type AB was reported to be
genetically more heterogeneous than type A and some
chromosomal aberrations characteristic of type B were
reported to be present in type AB [21,22]. Type AB is
defined as an organotypic thymoma, showing both fea-
tures of medullary and cortical thymoma. In fact, there is
a wide morphologic spectrum in type AB. Some show a
distinct nesting of spindled epithelium as in the Regard
type of nasopharyngeal carcinoma, while in others, epi-
thelial cells are sprinkled individually as in the Schmincke
type of nasopharyngeal carcinoma.

The WHO cdlassification of thymoma is reported to be
associated with the invasiveness and recurrence of thy-
moma. Among the various gene sets, the 70 genes distin-

http://www.biomedcentral.com/1471-2164/8/305

guishing types A and B3 might be related to the
malignancy of thymoma, because B3 is the typical malig-
nant tumor with a metastatic property among 5 subtypes.
Among the 70 genes, the significant number of genes were
related to cell structure and adhesion. NEDD9 (T61428,
neural precursor cell expressed developmentally down
regulating 9) and CTNNB (AA442092, cadherin-associ-
ated protein beta 1), which are known to be the adhesion-
related genes, were deleted in type B3, suggesting
increased cell motility for metastasis. As Penzel et al.
reported the genetic amplification in chromosome 1 in
malignant type B2 and B3, frequently amplified genes
chromosome 1 were observed in B3 [22].

There have been no standard methods to detect the signif-
icant genes among the distinct groups in microarray-
CGH. Several reports mentioned the correlation of the
CGH and expression profiling suggesting the possibility
of using similar approach for both in selecting the signifi-
cant genes [33,34]. Among the several analytic methods
for gene expression profiling, SAM method has been used
as one of the standard methods based on the t-test. There-
fore, SAM method is applied in this investigation.
Recently, a few reports suggest new methods to detect
numbers of significant genes between distinct groups in
microarray-CGH [35,36]. As there is no valid method to
analyze differentially gained or lost genes in microarrya-
CGH, more appropriate method with biological valida-
tion should be evaluated.

Only one concern of this study is the limited numbers of
the samples in each type. Especially with the microarray-
CGH, which could evaluate thousands of genes simulta-
neously, the sample size is the significant matter. To over-
come the over-fitting problem, one effort is to divide the
samples into the training and the independent test set.
However, the sample size is not large enough to select the
genes based on this approach, requiring us to apply the
cross-validation method in the same training set. As all
these efforts to define the subgroups based on the clinico-
pathologic or molecular level result from the lack of good
prognostic markers and treatment strategies of thymoma,
the capacity of prediction of current proposed genes sets
needs to be validated in more samples prospectively in
accordance with the clinical parameters.

Conclusion

In this study, we evaluated the genetic characteristics of
the WHO-defined five subtypes of thymoma using micro-
array-CGH. We observed that thymoma could be divided
into four genetically distinct groups of A, AB, B1+2, and
B3. Type AB was determined to be genetically heterogene-
ous in morphology. We identified sets of genes which
characterize the molecular subgroups for the basis of
understanding thymoma biology and the candidate
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biomarkers of each group. In conclusion, this study pro-
vides significant information on the genetic background
of thymoma for classification purposes.

Methods

Patients

Thirty-nine cases of thymoma tissue samples (A : 6, AB :
11,B1:7,B2:7, B3 : 8) were obtained as paraffin embed-
ded tissue blocks from the files of the Department of
Pathology at the Severance Hospital, Yonsei University
College of Medicine. The median age of patients at diag-
nosis was 50 years (range 26-71 years), and the male ver-
sus female ratio was 23:16.

DNA preparation

Ten serial 10 pm thick tissue sections were cut from repre-
sentative paraffin blocks for genomic DNA extraction. The
pathologist (Professor Yang WI) confirmed the diagnoses
and subtypes according to the WHO classification (9),
and localized tumor areas in the corresponding hematox-
ylin-eosin (H&E) stained tissue section. Fresh normal pla-
cental tissues from healthy newborns were snap-frozen
for reference samples. Genomic DNA extraction from the
slide was performed according to the conventional proto-
col[30]. Briefly, scraped tissue from the slides was depar-
affinized by washing it twice with 1 pl of xylene at 55°C
for five minutes. After two washes with 100% ethanol, the
samples were dried for two hours at 50°C. The tissues for
reference samples were incubated with 400 ul of DNA
lysis buffer [10 mM Tris pH 7.6, 10 mM EDTA, 50 mM
NacCl, 0.2% SDS, 200 pg/ml Proteinase K] at 42°C for 12
to -24 hours. The incubated products were treated with
the same amount of phenol/chloroform/isoamylalcohol
(Gibco-BRL, Gaithersburg, MD, USA) to isolate the
nucleic acid from the proteins. The DNA was precipitated
with 100% ethyl alcohol containing a 1/3 volume of 10 M
ammonium acetate and 2 pl of glycogen. After being
rinsed with 70% ethyl alcohol, the DNA was dried at
room temperature and then dissolved in ultra-pure water.
The quantity and quality of the DNA were evaluated using
the Gene Spec III (Hitachi, Japan) and the Gel Documen-
tation-Photo System (Vilber Lourmat, France).

cDNA microarray based - CGH (Microarray-CGH)

In this study, we used 17K ¢cDNA microarrays (CMRC-
GenomicTree, Daejeon, Korea) that included 15,720
unique genes. Of these genes, 11,552 were mapped by
SOURCE, a web based database provided by the Genetics
Department of Stanford University [37]. Microarray-CGH
experiments were performed with the indirect design to
determine the genome-wide genetic aberrations in thy-
moma subtypes using sex-matched placental tissue as a
reference. Labeling of DNA was performed following the
institutional protocol as described previously [30,31].
Briefly, four pg of placenta and thymoma tissue DNA were
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fluorescently labeled with Cy3 or Cy5-dUTP (Dupont
NEN Life Sciences, Boston, MA, USA), respectively, using
BioPrime DNA Labeling System (Invitrogen, Carlsbad,
CA, USA). Labeled products were purified with a PCR
Purification Kit (Qiagen, Dusseldorf, Germany) and com-
bined with 30 pg of human Cot-1 DNA (Gibco BRL,
Gaitherburg, MD, USA), 100 pg of yeast tRNA (Gibco
BRL, Gaitherburg, MD, USA) and 20 pg of poly(dA-dT)
(Sigma, Saint Louis, MO, USA). Then, the hybridization
mixture was concentrated using a Micro-con 30 (Milli-
pore, Bedford, MA, USA) and hybridized to the 17K cDNA
microarray at 65°C for 16 to18 hours. After washing, the
microarray was scanned using GenePix 4000B (Axon Inc,
Foster, CA, USA). The microarray data was obtained by
GenePix Pro 4.1 software (Axon Inc, Foster, CA, USA).

Data Analysis

Raw data preprocessing and normalization

Fluorescent spot signals were obtained by subtracting
background intensity from the total spot intensity. The
genes with missing values for more than one of the exper-
iments were removed for further analysis. The variation
from the different labeling efficiencies was corrected using
within-slide global normalization, which subtracted the
median of log, (R/G) intensity ratio from the log, trans-
formed data.

Andlysis of Microarray-CGH

The obtained data were analyzed using the Chromosome
Analyzer and Map Viewer using S-plus (CAMVS) devel-
oped by the Cancer Metastasis Research Center (CMRC),
Yonsei University College of Medicine, Seoul, Korea. To
evaluate the general genetic pattern of whole chromo-
some, 0.025 span was introduced to give the weighted
mean through the neighboring 250 probes, resulting in
the advantage of evaluation of ratios of 250 proves simul-
taneously. Smoothing line is based on the more weight on
the nearer probes. In this study, we used the predeter-
mined cut-off value for the significant copy changes by
comparing the level of genetic changes using normal tis-
sue DNAs including placenta, lymphocyte and gastric tis-
sues in the previous study [32]. Based on the assumption
that the sex chromosomal single copy difference is the
only change between the XX and XY normal gastric tissue
DNA, the result showed that the changes in the autosomal
chromosomes were minimal with the range of -0.3 <
log,(R/G) < 0.3 (mean + 1SD), while the changes in the
sex chromosomes were -0.64 < log,(R/G)< 0.64. Hence,
cut-off values of log,(R/G) > + 0.64 (mean + 1SD) as
amplification or deletion, log,(R/G)> + 0.3 (mean + 1SD)
as gain or loss were determined.

The Significant Analysis of Microarray (SAM) was used to
identify the specific genes that showed differences
between the groups [23] with more than 15% frequencies
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in the group. To evaluate the accuracy of selected genes
representing the thymoma subtypes, we performed the
analysis by using Prediction Analysis of Microarray (PAM)
software [24]. The obtained data were clustered using soft-
ware program Cluster version 2.10 and visualized with
Treeview version 1.47 [38].

Authors' contributions

GYL performed the experiments, data analysis and drafted
the manuscript. WIY was participated in case selection
and pathologic review. HCJ participated in obtaining the
clinical information and data analysis. SCK performed the
set-up of analysis program and preliminary analysis MYS
performed the set-up of microarray-CGH using gDNA
from paraffin-embedded slides. CHP is participated in
data analysis. HCC participated in its design and coordi-
nation, and data interpretation. SYR conceived of the
study, participated in data analysis, interpretation and
finalized manuscript. All authors have been read and
approved the manuscript.

Additional material

Additional file 1

Distinctive 36 genes between thymoma 5 subgroups. The ID indicate
GeneBank ID and the symbol and the cytoband information are from their
SOURCE [37]. The incidence is the number oh cases having log2 ratio in
the range of our criteria + 0.3. ESTs are expressed sequenced tags, clones
of unknown functions. Genes are listed according to order FDR values.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-305-S1.xls]

Additional file 2

List of distinctive 50 genes between types A and B (1, 2, 3). The ID indi-
cate GeneBank ID and the symbol and the cytoband information are from
their SOURCE [37]. The incidence is the number oh cases having log2
ratio in the range of our criteria + 0.3. ESTs are expressed sequenced tags,
clones of unknown functions. Genes are listed according to order FDR val-
ues.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-305-S2 xls]

Additional file 3

List of distinctive 48 genes between types B (1, 2) and B3. The ID indicate
GeneBank ID and the symbol and the cytoband information are from their
SOURCE [37]. The incidence is the number oh cases having log2 ratio in
the range of our criteria + 0.3. ESTs are expressed sequenced tags, clones
of unknown functions. Genes are listed according to order FDR values.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-305-S3.xls]

Acknowledgements
This work was supported by a grant of the Korea Health 21 R&D Project,
Ministry of Health & Welfare, Republic of Korea (0405-BCO01-0604-0002).

http://www.biomedcentral.com/1471-2164/8/305

References

I
2.

20.

21.

22.

Bernatz PE, Harrison EG, Clagett OT: Thymoma: clinicopatho-
logic study. | Thorac Cardiovasc Surg 1961, 42:424-44.

Marino M, Miiller-Hermelink HK: Thymoma and thymic carci-
noma: relation of thymic epithelial cells to the cortical and
medullary differentiation of thymus. Virchows Arch Pathol Anat
1985, 407:119-149.

Kirchner T, Miiller-Hermelink H-K: New approaches to the diag-
nosias of thymic epithelial tumors. Progr Surg Pathol 1989,
10:167-189.

Kirchner T, Schalke B, Buchwald ], Ritter M, Marx A, Miiller-Her-
melink H-K: Well-differentiated thymic carcinoma: an organ-
otypical low-grade carcinoma with relationship to cortical
carcinoma. Am J Surg Pathol 1992, 16:1153-1169.

Suster S, Moran CA: Thymoma, atypical thymoma, and thymic
carcinoma: a novel conceptual approach to the classification
of thymic epithelial neoplasm. Am | Clin Pathol 1999,
111:826-833.

Quintanilla-Martinez L, Wilkins EW, Ferry JA, Harris NL: Thy-
moma: morphologic subclassification correlates with inva-
siveness and immunologic features: a study of 122 cases.
Hum Pathol 1993, 24:958-969.

Quintanilla-Martinez L, Wilkins EW Jr, Choi N, Efird ], Hug E, Harris
NL: Thymoma. Histologic subclassification is an independent
prognostic factor. Cancer 1994, 74:606-617.

Marx A, Miller-Hermelink HK: Thymoma and thymic carci-
noma. Am | Surg Pathol 1999, 23:739-742.

Rosai J, Sobin LH: Histological typing of tumours of the thy-
mus. In: World Health Organization International Histolog-
ical Classification of Tumours. Heidelberg: Springer Verlag;
1999:1-65.

Mukai K, Sato Y, Hirohashi S, Shimosato Y: Expression of ras p21
protein by thymoma. Virchows Arch B Cell Pathol Incl Mol Pathol
1990, 59:11-16.

Tateyama H, Mizuno T, Tada T, Eimoto T, Hashimoto T, Masaoka A:
Thymic epithelial tumors: evaluation of malignant grade by
quantification of proliferating cell nuclear antigen and nucle-
olar organizer regions. Virchows Arch A Pathol Anat Histopathol
1993, 422:265-269.

Yang WI, Efird JT, Quintanilla-Martinez L, Choi N, Narris NL: Cell
kinetic study of thymic epithelial tumor using PCNA (PC10)
and Ki-67 (MIB-1) antibodies. Hum Pathol 1996, 27:70-76.

Chen FF, Yan JJ, Chang KC, Lai WW, Chen RM], Jin YT: Immuno-
histochemical localization of Mcl-1 and bcl-2 proteins in
thymic epithelial tumors. Histopathology 1996, 29:541-547.
Hirabayashi H, Fujii Y, Sakaguchi M, Tanaka H, Yoon HE, Komoto Y,
Inoue M, Miyoshi S, Matsuda H: pl1 6INK4, pRB, P53 and cyclin D1
expression and hypermethylation of CDKN2 gene in thy-
moma and thymic carcinoma. | Cancer 1997, 73:639-644.

Yang WI, Yang KM, Hong SW, Kim KD: E-Cadherin expression in
thymomas. Yonsei Med | 1998, 39:37-44.

Perrens M, Labouyrie E, Groppi A, Dubus P, Carles D, Velly JF, de
Mascarel A, Merlio JP: Expression of NGF receptors in normal
and pathological human thymus. | Neuroimmunol 1998,
85:11-21.

Yoshino |, Kase S, Yano T, Sugio K, Sugimachi K: Expression status
of E-cadherin and alpha-, beta-, and gamma-catenins in thy-
moma. Ann Thorac Surg 2002, 73:933-937.

Baldi A, Ambrogi V, Mineo D, Mellone P, Campioni M, Citro G, Mineo
TC: Analysis of cell cycle regulator proteins in encapsulated
thymoma. Clin Cancer Res 2005, 11:5078-83.

Zettl A, Strobel P, Wagner K, Katzenberger T, Ott G, Rosenwald A,
Peters K, Krein A, Semik M, Miiller-Hermelink HK, Marx A: Recur-
rent Genetic Aberrations in Thymoma and Thymic Carci-
noma. Am | Pathol 2000, 157:257-266.

Zhou R, Zettl A, Strébel P, Wagner K, Miiller-Hermelink HK, Zhang
SjSJ, Marx A, Starostik P: Thymic epithelial tumors can develop
along two different pathogenetic pathways. Am | Pathol 2001,
159:1853-1860.

Inoue M, Starostik P, Zettl A, Strébel P, Schwarz S, Scaravilli F, Henry
K, Willcox N, Miiller-Hermelink H-K, Marx A: Correlating
Genetic Aberrations with World Health Organization-
defined Histology and Stage across the Spectrum of Thymo-
mas. Cancer Res 2003, 63:3708-3715.

Penzel R, Hoegel |, Schmitz W, Nlaeker H, Morresi-Hauf A, Aulmann
S, Hecker E, Mechtersheimer G, Otto HF, Rieker R]: Clusters of

Page 14 of 15

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2164-8-305-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-8-305-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-8-305-S3.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13868094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13868094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1463094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1463094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1463094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10361520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10361520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10361520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8253462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8253462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8033040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8033040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10366159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10366159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1974093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1974093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8099456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8099456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8099456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8543314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8543314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8543314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8971561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8971561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8971561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9529983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9529983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9626993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9626993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11899204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11899204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11899204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16033820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16033820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10880395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10880395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10880395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11696445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11696445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12839963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12839963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12839963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12712440

BMC Genomics 2007, 8:305

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.
38.

chromosomal imbalances in thymic epithelial tumours are
associated with the WHO classification and the staging sys-
tem according to Masaoka. Int | Cancer 2003, 105:494-498.
Virginia GT, Robert T, Gilbert C: Significance analysis of micro-
arrays applied to the ionizing radiation response. PNAS 2001,
98:5116-5121.

Robert T, Trevor H, Balasubramanian N, Gilbert C: Diagnosis of
multiple cancer types by shrunken centroids of gene expres-
sion. PNAS 2002, 99:6567-6572.

Kristoffersson U, Heim S, Mandahl N, Akerman M, Mitelman F: Mul-
tiple clonal chromosome aberrations in two thymomas. Can-
cer Genet Cytogenet 1989, 41:93-98.

Sonobe H, Takeuchi T, Ohtsuki Y, Taguchi T, Shimizu K: A thy-
moma with clonal complex chromosome abnormalities.
Cancer Genet Cytogenet 1999, 110:72-74.

Mirza |, Kazimi SN, Ligi R, Burns |, Braza F: Cytogenetic profile of
a thymoma. A case report and review of the literature. Arch
Pathol Lab Med 2000, 124:1714-1716.

Sasaki H, Ide N, Fukai I, Kiriyama M, Yamakawa Y, Fujii Y: Gene
expression analysis of human thymoma correlates with
tumor stage. Int | Cancer 2002, 101:342-347.

Inoue M, Marx A, Zettl A, Strébel P, Starostik P, Miiller-Hermelink H-
K, Starostik P: Chromosome 6 suffers frequent and multiple
aberrations in thymoma. Am J Pathol 2002, 161:1507-1513.

Seo MY, Rha SY, Yang SH, Kim SC, Lee GY, Park CH, Yang WI, Ahn
JB, Park BW, Chung HC: The pattern of gene copy number
changes in bilateral breast cancer surveyed by cDNA micro-
array-based comparative genomic hybridization. Int | Mol Med
2004, 13:17-24.

Yang SH, Seo MY, Jeong HJ, Jeung HC, Shin J, Kim SC, Noh SH, Chung
HC, Rha SY: Gene copy number change events at chromo-
some 20 and their association with recurrence in gastric can-
cer patients. Clin Cancer Res 2005, 11:612-620.

Park CH, Jeong HJ, Choi YH, Kim SC, Jeong HC, Park KH, Lee GY,
Kim TS, Yang SW, Ahn SW, Kim YS, Rha SY, Chung HC: Systematic
analysis of cDNA microarray-based CGH. Int | Mol Med 2006,
17:261-267.

Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE:
Microarray analysis reveals a major direct role of DNA copy
number alteration in the transcriptional program of human
breast tumors. Proc Nat Acad Sci 2002, 99:12963-12968.
Wieringen WNYV, Belien JAM, Vosse S), Achame EM, Ylstra B: ACE-
it: a tool for genome-wide integration of gene dosage and
RNA expression data. Bioinformatics 2006, 22:1919-1920.

Diskin §J, Eck T, Greshock ], Mosse YP, Naylor T, Stoeckert CJ,
Weber BL, Maris JM, Grant GR: STAC: A method for testing the
significance of DNA copy number aberrations across multi-
ple array-CGH experiments. Genome Res 2006, 16:1149-1158.
Bilke S, Chen QR, Westerman F, Schwab M, Catchpoole D, Khan J:
Inferring a tumor progression model for neuroblastoma
from genomic data. J Clin Oncol 2005, 23(29):7322-7331.
SOURCE [http://source.stanford.edu]

Michael BE, Paul TS, Patrick OB, David B: Cluster analysis and dis-
play of genome-wide expression patterns. PNAS 1998,
95:14863-14868.

http://www.biomedcentral.com/1471-2164/8/305

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 15 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12712440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12712440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12011421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12011421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12011421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2766255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2766255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10198628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10198628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11079034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11079034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12209958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12209958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12209958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14654965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14654965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14654965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15701848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15701848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15701848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16391824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16391824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12297621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12297621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12297621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16731696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16731696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16731696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16899652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16899652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16899652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16145061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16145061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16145061
http://source.stanford.edu
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Chromosome analysis of thymoma
	Overall genetic pattern analysis
	Comparison of genetic aberration patterns between subtypes of thymoma
	A) Comparison between type A and type B
	B) Comparison between type A and type B3
	C) Comparison of cortical subtypes
	D) Comparison between type A, type B 1+2, and type B3
	E) Prediction analysis of thymoma subtypes


	Discussion
	Conclusion
	Methods
	Patients
	DNA preparation
	cDNA microarray based - CGH (Microarray-CGH)
	Data Analysis
	Raw data preprocessing and normalization
	Analysis of Microarray-CGH


	Authors' contributions
	Additional material
	Acknowledgements
	References

