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Abstract

Background: The parasitic trematode Schistosoma mansoni is one of the major causative agents of Schistosomiasis, a
disease that affects approximately 200 million people, mostly in developing countries. Since much of the pathology is
associated with eggs laid by the female worm, understanding the mechanisms involved in oogenesis and sexual maturation
is an important step towards the discovery of new targets for effective drug therapy. It is known that the adult female
worm only develops fully in the presence of a male worm and that the rates of oviposition and maturation of eggs are
significantly increased by mating. In order to study gene transcripts associated with sexual maturation and oviposition,
we compared the gene expression profiles of sexually mature and immature parasites using DNA microarrays.

Results: For each experiment, three amplified RNA microarray hybridizations and their dye swaps were analyzed. Our
results show that 265 transcripts are differentially expressed in adult females and 53 in adult males when mature and
immature worms are compared. Of the genes differentially expressed, 55% are expressed at higher levels in paired
females while the remaining 45% are more expressed in unpaired ones and 56.6% are expressed at higher levels in paired
male worms while the remaining 43.4% are more expressed in immature parasites. Real-time RT-PCR analysis validated
the microarray results. Several new maturation associated transcripts were identified. Genes that were up-regulated in
single-sex females were mostly related to energy generation (i.e. carbohydrate and protein metabolism, generation of
precursor metabolites and energy, cellular catabolism, and organelle organization and biogenesis) while genes that were
down-regulated related to RNA metabolism, reactive oxygen species metabolism, electron transport, organelle
organization and biogenesis and protein biosynthesis.

Conclusion: Our results confirm previous observations related to gene expression induced by sexual maturation in
female schistosome worms. They also increase the list of S. mansoni maturation associated transcripts considerably,
therefore opening new and exciting avenues for the study of the conjugal biology and development of new drugs against
schistosomes.
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Background

Schistosomiasis is an important public health problem
that affects approximately 200 million people, mostly in
developing countries, and that poses a risk to another 600
million [1]. Mortality attributed to schistosomiasis is esti-
mated to be around 11,000 deaths/year with an added
economic burden of 1.7 million disability adjusted life-
years lost per year [2]. The disease is transmitted when
parasite eggs in human feces reach fresh water and hatch
into miracidia. Upon infection of an appropriate snail
species, miracidia transform into sporocysts that asexually
reproduce generating hundreds of thousands of cercaria.
The cercaria are shed by the snail and swim until they find
an appropriate vertebrate host and penetrate through its
skin. The worms then undergo differentiation and migrate
in the bloodstream until they reach the mesenteric veins
where male and female worms pair.

Eggs from paired mature schistosomes are responsible for
most of the pathology caused by S. mansoni. Each mature
female lays on average 300 eggs per day, some of which
are excreted in the feces [3]. The remaining eggs end up in
the liver, intestine and other organs where they cause an
inflammatory reaction, producing significant scarring
which leads to a variety of symptoms depending on the
organ where they lodge. For instance, eggs trapped in the
bowel wall may cause bloody diarrhea, cramping, and
eventually inflammatory colonic polyposis [4]. Eggs that
are swept back to the hepatic portal system cause granulo-
matous reaction in the portal tract which can evolve to
hepatoportal fibrosis and portal hypertension. More inter-
estingly, although immature worms may lay eggs which
are occasionally shaped normally, those eggs are unable
to induce the formation of granulomas [5].

Male schistosomes are responsible for triggering and
maintaining female maturation. In absence of the male,
female worms cannot migrate against the blood flow from
the portal sites in the liver to the smaller mesenteric circu-
lation where they lay their eggs [6]. Therefore, the survival
of S. mansoni couples and the maintenance of their com-
plete life-cycle seem to be dependent on the existence of a
permanent association between sexes. Studies by Shaw
and Erasmus on praziquantel (the drug of choice for treat-
ing Schistosomiasis) have shown some evidence that the
drug disrupts the reproductive system of females and that
subcurative doses cause a long-lasting regression of both
ovary and vitelline gland 24 hours post-treatment [7].
Popiel et al. (1984) have shown that there is a dose-
dependent and reversible effect of oxamniquine (another
drug which is used for treating S. mansoni infections) on
the female reproductive system [8,9]. Although these
effects on the reproductive system are usually reversible,
these data might suggest that the reproductive system of
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female schistosomes could provide good targets for thera-
peutic agents against these parasites.

In contrast to male schistosomes that undergo normal
morphological development regardless of their pairing
status, females from single sex infection (single-sex
females) show clear differences from those which are
paired to males. Virgin females are considerably smaller
than paired females [10]. When paired females are sepa-
rated from males they stop laying eggs and regress to an
immature state, however if they are allowed to couple they
maturate again [9,11-13] showing that the maintenance
of sexual maturation in the female is dependent upon the
presence of the male partner. The stimulus for female mat-
uration is independent of male sperm, species and fertili-
zation [14-17]. In addition to the morphological
modifications present in single-sex females, separation of
female worms leads to a large variety of changes in the
physiology of the worm, culminating in the atrophy of the
ovary and vitelline gland [5]. For instance, there is a great
increase in DNA synthesis in single-sex females upon pair-
ing with males. Also, paired females utilize more glucose
than unpaired ones [18]. In spite of their immaturity, sin-
gle-sex females reach a limited level of development,
allowing them to lay eggs, which are usually malformed
and non-viable [5,14]. The rates of oviposition and matu-
ration of eggs are significantly increased by pairing of the
single-sex female worms with males [15].

Different factors have been proposed to be involved in S.
mansoni sexual maturation including physical/tactile con-
tact [11,14,15], nutrition [6,19-21] and chemical stimuli
[16,22,23]. In support to the importance of tactile contact,
Michaels showed that when halves of worms (i.e. one of
the two segments from worms that were cut in two halves)
are allowed to mate in vitro, like halves (either cranial or
caudal halves) always mate normally while unlike halves
almost always mate abnormally, postulating that both
sexes of worms have linear receptors which are used to
determine dating and mating position [15]. In support to
the role of nutrition, S. mansoni female worms from sin-
gle-sex infections have limited pharyngeal musculature,
thin intestinal cecal walls, lack of digestive enzymes and
reduced intake of red blood cells than females from paired
infections [20]. LoVerde and colleagues have suggested
that the muscularity of the male worm allows it to assist
the weaker females with pumping host blood into their
intestine by a massaging effect of the muscular walls of the
gynecophoric canal (i.e. a ventral longitudinal groove in
the surface of male Schistosomatidae) [6]. Also, Cornford
and Huot demonstrated that there is transfer of 4C glu-
cose from male worms to females, implying that male
schistosomes indeed help feed female worms [21]. Chem-
ical stimuli such as acetone or ether extracts of male
worms have been shown to induce female development in
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vitro [16]. Also, an observed cholesterol transfer from
males to females may suggest a role for hormonal factors
[23].

On the male parasite side, the effects of sexual pairing on
male worms are very subtle and therefore have received
little attention in comparison to female worms. Neverthe-
less, some studies show that male S. mansoni and S. hae-
matobium worms from single-sex infections are
significantly smaller and have a reduction in the number
of testes when compared to worms from homologous
paired infections [24,25]. Using the data published by
Basch and Gupta it is possible to observe that pairing also
stimulates a higher rate of cell division (as measured by
the number of nuclei per section unit area) in males when
bisexually paired males and unisexual unpaired males are
compared [26]. The stimulatory effect of female schisto-
somes on male worms has also being studied at the bio-
chemical and molecular level. For instance, worms from
single-sex infections have more glutathione than worms
from paired-infections and this difference can be reversed
by incubation of those worms with females [27,28]. Also,
female worms stimulate tyrosine incorporation, lipid
accumulation and lipase utilization in males [23,29].
Another interesting fact is that paired male schistosomes
express a 79-KDa protein in its gynecophoral canal and
that this protein detection is severely limited at the surface
of single-sex male worms [30]. This protein, which shows
wide distribution on the surface of adult female worms
has homology to developmentally-regulated homotypic
adhesion molecules and is suspected to be essential for
continued interaction between sexes and sexual develop-
ment of schistosomes.

Several expression analyses were recently performed in
schistosomes using microarrays to study gender differ-
ences in gene expression of S. mansoni and S. japonicum, as
well as stage specific, strain specific, maturation specific,
and species specific differences [31-38]. Microarrays were
also used to investigate the vertebrate hepatic host
response to infection with S. mansoni [39]. These studies
have provided important information concerning the
biology of the parasite and the host response. In this
study, we describe the use of DNA microarrays to study
the effect of sexual pairing of S. mansoni (Brazilian LE
Strain) in the adult gene expression. To accomplish this
objective we compared worms from single-sex infections
with worms from paired-infections. Our results reveal
novel information of genes putatively involved in oogen-
esis and sexual maturation of schistosomes and allow the
identificaton of new possible targets for therapeutic inter-
vention.
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Results and discussion

Evaluation of replication quality

In order to investigate the quality of our replicates we
tested the correlation between different types of replicates
using LIMMA (Linear Models for Microarray Data) [40].
To generate single-sex worms we exposed multiple Biom-
phalaria glabrata snails each to a single miracidium and
harvested the cercariae shed by them after one month.
Multiple mice were subsequently infected with either sin-
gle-sex or mixed-sex cercariae and the worms harvested 51
days post-infection. The experimental design included
three types of replicates: biological, technical and in-slide
replicates encompassing 6 slides in total for each experi-
ment. In brief, single-sex and paired-infection worms were
harvested from multiple mice and pooled separately in
pools of 500 worms or more (each pool contained worms
from different mice). The RNA from each pool was
extracted separately and then hybridized to the slides.
Three biological replicates were used for each experiment
and each of them was hybridized twice (dye swap).
Because each probe was printed in duplicate we computed
also the correlation between in-slide replicates.

The approach used was to estimate a common correlation
for all the genes within blocks corresponding to each type
of replicate. As would be desired, the level of correlation
between in slide technical replicates was between 0.90
and 0.92 for male and female experiments respectively.
Dye swap replicates displayed a correlation between -0.85
(male experiment) to -0.89 (female experiment), indicat-
ing that the fluorescent dyes introduce a very minimal
bias in hybridization intensities. The correlation between
our biological replicates (using RNA isolated from differ-
ent pools of worms) was 0.73 for the female experiment
and 0.61 for the one investigating sexual pairing on male
worms. Our results are in agreement with the data pub-
lished by Hoffmann and colleagues who found an in-slide
replicate correlation of 0.91 and a correlation ranging
from 0.81 to 0.90 between slides (biological) [31,41].

Differentially expressed genes

Statistical analysis of the data using a linear model to
assess differential expressed genes revealed a large number
of transcripts of gene products putatively related to sexual
maturation in both male and female schistosomes (Table
1 and 2). Only genes with at least two-fold difference (log,
ratios > 1 or £ -1) and logOdds > 4.6 were considered dif-
ferentially expressed. Volcano plots, where the magnitude
of the gene expression ratio is displayed on the x-axis and
the significance of the difference in expression between
groups on the y-axis, are shown in (Figure 1). 265 genes
were observed to be differentially expressed between
mature and immature female parasites and 53 genes
between mature and immature male worms.
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Table I: Top 30 most differentially expressed genes in adult female schistosomes.

Name M A PValue B

Similar to putative ATPase N2B (HFN2B) 5E-05 possible antisense -4.41895  10.84994  1.35E-09  20.60678
Extracellular superoxide dismutase [CU-ZN] precursos (ECI.15.1.1) (EC-SOD) (6E-97) -4.83772  11.60992  1.35E-09  20.10658
Unknown 2572 possible antisense -2.97935  9.42528| 1.35E-09 19.78673
Similar to female specific eggshell protein ORF 2 (|1E-144) -4.00956  10.33001  1.57E-09  19.40354
Unknown 1477 -4.37742  9.800644  1.70E-09  19.13286
Unknown 535 possible antisense -3.40857 8462215 4.12E-09  18.16237
Unknown 1495 -3.78529  7.836334 4.60E-09  17.92087
Unknown 926 -2.97584  9.805078  8.07E-09  17.27377
Unknown 778 -2.84958  9.831668  1.72E-08  16.36883
Unknown 2609 possible antisense -3.23019  9.170634  1.72E-08  16.34812
Unknown 1805 possible antisense -2.99634  7.133567  1.74E-08  16.24925
S. mansoni 18S rRNA gene, complete sequence -2.15136  9.47819 1.87E-08  16.09624
S. mansoni eggshell protein mRNA, 3' end -3.65217  8.873222  1.94E-08  15.9848|
Similar to S. mansoni small subunit rRNA gene (DNA level 0.0) -3.35601 12.32288  2.74E-08  15.58348
Unknown 3085 -2.23101 10.75529  3.35E-08  15.32323
Unknown 46 -2.74433 7536724 4.14E-08  15.05545
S. mansoni ribosomal intergenic spacer DNA -2.74253 10.10216  5.38E-08  14.74033
Unknown 398 1.685296  12.69879  6.12E-08  14.54298
S. mansoni small subunit rRNA gene -2.12156  13.00096  6.12E-08  14.50706
Similar to plasma kallikrein precursor (EC 3.4.21.34) IE-11 2.181398 12.00887 6.63E-08  14.37559
Unknown 475 -3.28488  8.766573  6.63E-08  14.33036
Similar to aldehyde dehydrogenase | family, member Bl (1E-160) 2708917 13.41307 8.44E-08  14.04777
Unknown 4495 -2.75499  7.45355 9.68E-08  13.86973
Unknown 260 possible antisense 2245423  13.61931 1.I8E-07  13.6361
Unknown 2268 -2.67757  7.592068  |.25E-07 1351174
Similar to RAS-like GTP-binding protein Rho (2E-89) 2.059329 12.85641  1.25E-07  13.46496
Unknown 3554 -3.30468  11.33136  1.25E-07  13.45976
Unknown 2741 1.934138  11.25831  1.52E-07  13.2270I
S. mansoni 28S rRNA gene gap region -2.27931 8995688 2.01E-07 12.91806
Similar to eggshell protein precursor (chorion protein) 2E-12 possible antisense -3.34778  10.20964  2.04E-07  12.84231

Top 30 most differentially expressed genes in adult female schistosomes. M values are the log-ratio of the two expression intensities. A values are
the mean log-expression of the two. Genes with negative M values are down-regulated in immature females (or up in paired-infection worms) and

genes with positive M values are up-regulated in immature worms.

Our results show that 55% of the genes which are differ-
entially expressed are expressed at higher levels in paired
females while the remaining 45% are more abundant in
immature female worms. The differentially expressed
transcripts (Table 1) in female worms included many pre-
viously identified gender related genes including the p14
eggshell protein gene (Contig 1625, SCMESP), other egg
shell proteins (Contig 6116, Contig 1557, SMEGGPRO,
Contig 867), extracellular superoxide dismutase (Contig
119, SCMSOD2, SEG_SCMOD, SCMSOD3, SCMSODM),
tyrosinase (Contig 948, Contig 1617), cathepsin B
(SMA312106), dynein light chain (SMU55992), gyneco-
phoral canal protein (SMU47862), aspartate aminotrans-
ferase (Contig 1636), diacylglycerol acetyltransferase
(Contig1301) and female specific protein fs800
(SCMFS800) [41-43].

Fs800, has already been shown to be up-regulated in the
vitelline cells during maturation of female worms and has
been linked to the production and maintenance of eggs
[42]. The gynecophoral canal protein (SMU47862), also

previously shown to be differentially expressed between
male and females, has been implicated in male/female
communication or interaction [44]. Our data showing
down regulation of the small G protein Ras in female is
also consistent with published observations [45]. Tyrosi-
nase, extracellular superoxide dismutase, glucose trans-
porter protein I, diacylglycerol acetyltransferase 2-like
protein, aspartate aminotransferase and egg shell proteins
are known to be differentially expressed between male
and females suggesting that they might be related either to
sexual determination, maturation, reproduction or other
sex specific activities [31,41]. Our results show that these
genes, in addition to being differentially expressed
between genders, are also differentially expressed in
female worms in different sexual maturation stages. A
great number of transcripts not previously associated with
sexual maturation were also observed. These included
membrane antigens, importin beta-1, S. mansoni glucose
transporter, myosin heavy chain, rho2 gtpase, lecithin-
cholesterol acytransferase, apoferritin-2, various ribos-
omal proteins and others (Table 1). Of the 265 genes we
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Table 2: Top 30 most differentially expressed genes in adult male schistosomes.

Name M A P Value B

S. mansoni female specific polypeptide mRNA -2.66936  12.21286 4.91E-06 12.51864
Similar to putative ATPase N2B (HFN2B) 5E-05 possible antisense -2.8511 10.52274 6.99E-05 9.333646
S. mansoni small subunit rRNA gene -2.27115  11.68601 6.99E-05 8.885995
Unknown 4206 1.760138 12.02897 6.99E-05 8.616023
Similar to S. mansoni small subunit rRNA gene (DNA level 0.0) -2.45433  9.02915  6.99E-05 8.605466
Unknown 3242 possible antisense -1.80035 11.01702 6.99E-05 8.465827
Similar to rat snRNP-associated polypeptide N (8E-33) -2.46543  11.86099 6.99E-05 8.424534
S. mansoni glucose transporter protein (SGTP2) mRNA, complete CDS 1.864996 11.93532 6.99E-05 8221553
Similar to actin, cytoplasmic 3 (beta-actin 3) 9E-79 1.933797 11.65976 6.99E-05 8.206634
S. mansoni 5.8S ribosomal RNA and 28S ribosomal RNA genes, partial sequence, and internal transcribed spacer, complete -2.28119  10.0614  9.51E-05 7.819557
sequence

Unknown 3085 -2.18385 9.768994 0.000105 7.632409
Similar to VKG protein (4E-08) and collagen alpha I(IV) chain precursor (8E-08) -2.50168 8788424 0.00011  7.456866
Unknown 926 -1.98422 8257669 0.00011  7.378939
Unknown 1783 possible antisense -2.15972  11.35038 0.0001 | 7.344978
Similar to Ras-like GTP-binding protein Rho (2E-89) 1.921029 10.26005 0.00011  7.295446
Unknown 43 2.663762 12.76366 0.000112 7.151475
Unknown 4470 2.191225 8598522 0.000112 7.122331
S. mansoni internal transcribed spacer 2, partial sequence -2.14823  10.26113 0.000112 7.105776
S. mansoni heat shock protein 86 mRNA, complete CDS -2.5539 12.64794 0.000147 6.767502
Similar to splicing factor 3A subunit 2 (spliceosome associated protein 62) |E-15 possible antisense -1.73796 1033214 0.000147 6.674734
Similar to putative sSRNP (7E-07) -2.21174 9511203 0.000147 6.664802
Unknown 2858 -2.47374 7487032 0.000147 6.65119
Similar to NADH dehydrogenase 3 (NADH dehydrogenase subunit 3) 6E-35 possible antisense -1.66681  10.67992 0.000147 6.616512
Unknown 70 1.387855 13.84221 0.000173 6.419602
S. mansoni cathepsin B (SM31) mRNA, complete CDS 1.506688 12.30752 0.000173 6.379095
Unknown 4275 2.032754 9.699271 0.000182 6.290137
Unknown 971 -1.92642  13.63907 0.000196 6.153524
Unknown 1927 possible antisense -1.69877  11.13445 0.000196 6.122623
Unknown 312 possible antisense -1.43402  12.21602 0.000196 6.115432
Unknown 3940 1.553483 13.10834 0.000199 6.070285

Top 30 most differentially expressed genes in adult male schistosomes. M values are the log-ratio of the two expression intensities. A values are the mean log-expression of
the two. Genes with negative M values are down-regulated in immature females (or up in paired-infection worms) and genes with positive M values are up-regulated in

immature worms.

identified as differentially expressed in females, 142 did
not contain any annotation because they did not show
significant similarity with sequences contained in the
NCBI at the time the array was printed [41]. These genes
represent a multitude of unexplored proteins which might
be potential targets for new therapeutic agents.

Of the genes with an associated gene ontology, genes that
were up-regulated in single-sex females were mostly
related to energy generation (i.e. carbohydrate and pro-
tein metabolism, generation of precursor metabolites and
energy, cellular catabolism, and organelle organization
and biogenesis) while genes that were down-regulated
were related to RNA metabolism, reactive oxygen species
metabolism, electron transport, organelle organization
and biogenesis and protein biosynthesis (Figure 3). The
increased amount of antioxidants in mature female is in
agreement with their increased need to detoxify hemo-
globin byproducts associated with increased blood cell
consumption [46]. On the other hand, one would expect
that paired-infection females express more carbohydrate
and protein metabolism genes than single-sex worms. The
fact that we found more of those genes in single-sex
females supports Basch's nutritional theory of sexual mat-

uration. If males do indeed help females to feed, this
could allow mature worms to direct their metabolism to
the more important egg generation (since the male is
already taking care of energy generation) and therefore
genes related to energy generation should be decreased in
mature females in relation to immature. Among the genes
that are down-regulated there are six genes coding for egg-
shell proteins. This is expected since paired females are
egg-laying machines capable of converting the equivalent
of their own body dry weight into eggs [47] and consum-
ing about 8 millions erythrocytes per day. In light of this
high metabolic activity of mature females, it has been pro-
posed that female-specific gene products associated with
the metabolic machinery of egg production and hemo-
globin catabolism should be highly represented in molec-
ular biological studies of gender [47] which is the case in
this study. The fact that genes associated with organelle
organization were both up and down regulated in imma-
ture females could possibly be explained by differences in
vitelline cells production among mature and immature
females. It has been shown that paired female schisto-
somes produce several thousands vitteline cells per day
[48]. This high mitotic activity must demand high
amounts of protein synthesis and the participation of an
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The volcano plot for the female (A) and male (B) datasets. Volcano plot identifying genes which are significantly different
between mature and immature female (A) and male (B) S. mansoni adult worms. The plot displays print-tip normalized fluores-
cence intensity ratios for all replicates on a two-axis system. The x-axis corresponds to the log, of the fold change between
mature and immature worms and the y-axis corresponds to the Log Odds (or B value) which is the odds (or probability) that a
certain gene is differentially expressed. A Log Odds value of O (horizontal line in each graph) corresponds to a 50-50 chance
that the gene is differentially expressed. The higher the Log Odds for each gene, the higher the probability that the gene is dif-
ferentially expressed and not a false positive. The pink areas show genes that were considered as differentially expressed, i.e. it
showed a fold difference greater than or equal to 2 (log, fold change > | or < -1) and logOdds > 4.6 (99% of chance of being
statistically significant). The green area shows genes that have logOdds within the acceptable range but which have fold differ-
ences smaller than 2.
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array of proteins related to organelle biogenesis and
organization. The fact that some genes related to this proc-
ess were up-regulated in immature females is more diffi-
cult to explain but it could be due to some compensatory
mechanism whereby immature females make up for the
lack of nutritional support by males by producing new
cells.

For male parasites, our results show that 56.6% of the dif-
ferentially expressed genes were present in larger quanti-
ties in mature males while the remaining 43.4% are more
expressed in males from single-sex infections. The fact that
more genes were differentially expressed between females
than between males is consistent with the fact that imma-
ture males present less morphological and biochemical
differences than immature females. Nevertheless this data
does not agree with a previous study of gene expression
induced by sexual maturation which found a similar
number of differentially expressed genes in males and
females [36]. This difference might have been caused by
differences in the experimental design, data analysis
parameters, host characteristics or differences in the para-
site strain used. Indeed, results from Moertel and col-
leagues have shown that more than 600 genes are
differentially expressed when different strains S. japonicum
are compared under identical conditions [38]. When the
gene lists of our experiments and Fitzpatrick and Hoff-
mann [36] are compared (See Additional file 1) we find
less than 10% of genes which are common to the two
datasets and in one case (single-sex males) we did not find
any genes in common. Our data also shows that mature
male worms express more genes related to the metabo-
lism of proteins, nucleotides, macromolecules, ion trans-
port, and metabolite/energy generation than unpaired
worms, which suggests that paired worms are more meta-
bolically active. The data agrees with Fitzpatrick and Hoff-
mann (2006) in that more genes potentially involved in
RNA metabolism were differentially expressed between
mature and immature male worms [36], nevertheless we
did not find a greater proportion of genes in the structural
molecule activity GO category.

Interestingly, the data from Khalil and Mansour show that
male worms from single-sex infections are in fact smaller
than worms from paired-infections [24]. Although the
authors do not explain this phenomenon, our results sug-
gest that the difference in size could be linked to the
higher expression of genes involved in energy generation
and accumulation (Figure 3). The fact that paired male
worms absorb and phosphorylate glucose more rapidly
than unpaired worms also reinforces this hypothesis [18].
Nevertheless, we observed a paradoxical higher expres-
sion of Cathepsin B Sm31 in unpaired male worms. Gotz
and Klinkert demonstrated that this protein is an enzyme
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which is involved in the degradation of hemoglobin in
the digestive tract of schistosomes [49].

Another interesting observation is that unpaired male
worms synthesize more lecithin-cholesterol acyltrans-
ferase (LCAT), acyl-CoA binding proteins (ACPB) and
fatty acid binding protein (FABP). In humans LCAT is
responsible for the formation of cholesteryl esters starting
from lecithin and cholesterol and it is the LCAT on the
surface of nascent HDL particles that convert cholesterol
and phosphatidylcholine of chylomicron and VDLD in
cholesteryl esters. The accumulation of cholesteryl esters
in the nascent HDL convert it in mature HDL and directs
it back to the liver where the cholesterol is usually
unloaded. The acyl-CoA binding proteins are small pro-
teins which bind to long and medium chain acyl-CoA
esters with high affinity and which can act as intracellular
carriers of acyl-CoA esters. FABPs, are a members of a fam-
ily of cytosolic lipid binding proteins and that have been
investigated as possible vaccine candidates [50]. Further-
more, Gobert and colleagues demonstrated that the S.
japonicum FAPB is confined to lipid droplets in male
worms that are probably involved with the nurture of
female worms [51].

In studies with humans and marmosets (Callithrix jacchus)
the plasmatic levels of total cholesterol, esterified choles-
terol, triglycerides and phospholipids were significantly
reduced after infection with S. mansoni [52,53]. Similar
effect was observed by Doenhoff and colleagues, who
reported a reduction in atherosclerosis in rats predisposed
to cardiovascular disease (apoE/") after infection with S.
mansoni [54]. They suggested that this reduction could be
due to a modulatory effect of the infection by S. mansoni
on lipid metabolism in the host. On the other hand,
Ramos and colleagues proposed that the cholesterol
reduction could be caused by changes in the LCAT and/or
ACAT (acyl-CoA-cholesterol acyl transferase) activity, syn-
thesis or secretion produced by the liver of infected ani-
mals [52]. Taking into consideration that schistosomes
are not capable of synthesizing cholesterol [55,56], the
fact that sexual pairing has an effect upon so many genes
related to fatty acid and cholesterol metabolism in male
worms becomes even more relevant.

Validation of microarray results using real time
quantitative PCR

In order to validate the microarray results we performed
real-time RT PCR. Contigs considered to be differentially
expressed were first checked against the S. mansoni
genome to evaluate the validity of the probes printed on
the arrays and to remove redundant contigs (i.e. different
contigs which represented the same gene).
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Primer pairs were designed for all genes considered as dif-
ferentially expressed and then tested against the genome
using electronic PCR [57] and BLAST [58] to select only
those that amplified a unique region of the genome. 41
female and 20 male primer pairs qualified, of which
approximately 20 of each were randomly selected for real
time quantitative PCR. The results from the quantitative
PCR for the male and female experiments were compared
against the results of our microarray hybridizations using
linear regression analysis [59] and showed a strong corre-
lation (R = 0.84 and R = 0.67 respectively).

Conclusion

The results presented on this article confirm previous
results related to gene expression induced by sexual matu-
ration in schistosome worms. It also contributes a wealth
of information about genes (either characterized or unan-
notated) that may be involved in this process. Since most
of the differentially expressed genes do not have homol-
ogy to other genes, further work is necessary to character-
ize these transcripts and assign biological functions to
them. Once the Schistosoma mansoni genome is fully anno-
tated, it will be possible to extract more interesting infor-
mation from our data. Nevertheless, we believe that the
myriad of up- and down- regulated genes we describe here
open new and exciting doors for the study of the conjugal
biology and the development of new drugs against schis-
tosomes.

Methods

Unisexual infections

S. mansoni lifecycle was maintained at Instituto de
Pesquisa Rene Rachou, Fiocruz (Brazil). S. mansoni (LE
Brazilian strain) is maintained in Biomphalaria glabrata as
intermediate host. Outbred Swiss mice were used as defi-
nite hosts. To obtain single-sex adult worms, B. glabrata
snails were exposed to a single miracium, which was gen-
erated from eggs obtained from the liver of infected mice
[60]. After one month the snails were tested for positive
infection by verifying the shedding of cercaria following
exposure of the snails to artificial light [61]. 100-200 cer-
caria from each snail were injected in the peritoneum of
female Swiss mice.

Mice were housed conventionally in polypropylene cages
with stainless steel screen covers. All animals received lab
mouse chow and water ad libitum. The animals were sacri-
ficed at 51 days post-infection according to ethical proce-
dures and adult worms were obtained by portal perfusion
[62]. The worms were washed in cold saline solution and
checked by microscopy for the presence of possible unde-
sirable mixed-sex infections. We separated the single-sex
adult worms in multiple pools (each one containing >500
worms which were originated from multiple mice) which
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were frozen at -80°C until further processing of the sam-
ples.

Paired-infections

To obtain worms from paired-infections, B. glabrata snails
were exposed to multiple miracidia and the cercaria from
these snails used to infect Swiss mice. Each mouse
received approximately 100 cercaria and the animals were
sacrificed at 51 days post-infection. The perfusion was per-
formed in the same fashion as for single-sex worms. The
worms were washed with cold saline solution and care-
fully separated by their sex with forceps under the micro-
scope. Worms from each sex were pooled separately
(>500 worms/pool) and frozen until further processing.

RNA extraction and amplification

Total RNA was extracted using Trizol reagent (Invitrogen
Life Technologies, CAT#15596-026) according to the
manufacture's instructions. The RNA was quantified using
a Nanodrop ND-100 UV/Vis spectrophotometer (Nano-
Drop Technologies, USA) and the overall RNA quality was
assessed using denaturing gel electrophoresis [63]. Two ug
of total RNA from each sample were amplified by doing
two rounds of linear amplification using the Amino Allyl
MessageAmp 1I kit (Ambion, CAT#1753). The amplifica-
tion was done according to manufacture's specifications
and aaUTP was used on the second round of amplifica-
tion so that the final product could be labeled using indi-
rect labeling.

RNA labeling and hybridization

Aminoallyl amplified RNA was labeled using Cy3 and
Cy5 by indirect labeling according to a modified version
of the TIGR's standard operational procedure [64]. In
brief, for each hybridization 15 pg of amplified RNA was
dried in a speed-vac, resuspended in pH 9.0 carbonate
buffer and incubated for 5 minutes at RT. After this incu-
bation, 4.5 pL of one of the two dyes dissolved in DMSO
(Amersham, CAT#PA23001 and PA25001) was added to
the solution and the samples were incubated at RT in the
dark for one hour. Labeled RNA was purified away from
unincorporated dye using RNeasy MinElute Cleanup Kit
(Quiagen, CAT#74204). The Cy3 and Cy5 labeled sam-
ples were then combined, dried again, and resuspended in
hybridization buffer (50% formamide, 5x SSC, 0.1%
SDS).

Microarray hybridization and experimental design

The pools of female or male worm RNA from single-sex
infections were hybridized against RNA from paired-
infections from worms of the same sex. Each experiment
was performed in duplicate (technical replicate) using a
dye swap design in order to account for dye biases. The
samples were hybridized using oligonucleotide DNA
microarrays obtained from the laboratory of Karl Hoff-
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Figure 2

Distribution of Gene Ontology terms for the differentially expressed genes in female worms. A. Pie plot showing the
Gene Ontology classification for the genes that were up-regulated in adult single-sex female worms. The graph does not con-
tain all genes that were up-regulated since the majority of those do not have assigned GOs. B. pie plot showing the distribution
of GOs for the genes that were down-regulated in adult single-sex female worms. The graph does not contain all genes that
were down-regulated since the majority of those do not have assigned GOs.

mann at the University of Cambridge, UK. The arrays con-
tained 7335 oligonucleotides (50 mers) spotted in
duplicate. Each oligonucleotide represented either a sin-
gleton (a single EST sequence) or a contig (contigous
sequences of overlapping EST sequences) generated by
assembly with CAP3. The oligonucleotides were designed
based on transcriptome information available at the time
[41]. Briefly, the slides were pre-hybridized by placing
them in coupling jars containing pre-hybridization solu-
tion (5x SSC, 0.1% SDS, 1%BSA) for 40 minutes at 42°C.

The slides were then washed by dipping 10 times in a
beaker containing DI water, the water was changed and
the operation repeated once. The slides were spun dry
using a table-top high speed microarray centrifuge (Tel-
eChem International Inc.,, USA). The samples (resus-
pended in hybridization) were hybridized overnight
under cover slips inside Corning® hybridization chambers
(Corning, USA) which were kept in a water bath at 42°C
in the dark. Slides were washed two times for five minutes
each in low stringency wash at 42°C (2x SSC, 0.1% N-lau-
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mansoni.

roysarcosine), followed by two washes for 5 min in
medium stringency wash (0.1x SSC, 0.1% N-lauroysarco-
sine) at RT and 2 washes for 5 minutes each in high strin-
gency wash solution (0.1x SSC). Slides were spun dry and
scanned using a microarray dual channel laser scanner
(GenePix 4000B, Molecular Devices, USA) at 10 um reso-
lution, 100% laser power and PMT levels which were

adjusted in order to obtain similar distributions of red
and green signal intensities.

Real time RT-PCR

A subset of genes predicted to be differentially expressed
was selected for validation using real-time RT-PCR. Total
amplified RNA (2 pg) from mixed sex infection and single
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sex infection was used for reverse transcription using Taq-
Man Reverse Transcription Reagents (Applied Biosystems;
Cat# N808-0234). Products were amplified using the
Applied SYBR Green Masters Mix kit (Applied Biosystems,
Cat#4309155) in an ABI Prism 7900HT Sequence Detec-
tion (Applied Biosystems) with the following profile:
50°C for 2 min, 95°C for 10 min; 40 cycles of 95°C for
15 s and 60°C for 1 min. Each reaction was performed
using 1 uL of cDNA from the RT reaction using a final vol-
ume of 20 uL (PCR Master Mix 1x, 200 nM of each
primer). Expression levels of S. mansoni alpha-tubulin
(accession number M80214) were used as endogenous
control within each sample. Relative levels of gene expres-
sion were calculated using the 2-4ACT method [65]. Each
sample was analyzed for primer dimer, contamination or
mispriming by inspection of their dissociation curves.

Data analysis

Overall, analysis of sexual pairing induced gene expres-
sion encompassed 6 slides (for each experiment), incor-
porating 3 replicates and dye swaps. The data, which are
MIAME compliant [66], were submitted to ArrayExpress
at EBI using MIAMExpress [67]. Spots were analyzed using
GenePix Pro and flagged according to their quality (i.e.
spots were flagged as 'Bad' whenever they were contami-
nated with particles, were smeared or dilated, had irregu-
lar shape or were in areas of high background; otherwise
they were flagged as 'Good'). Raw intensity data were ana-
lyzed using the R statistical language [68]. The data were
inspected for spatial biases on both the red and green
channel (background and signal), for print-tip bias, dye
bias and intensity dependent bias using the maArray pack-
age [69]. The data were then print-tip normalized using a
modified version of the robust spline method [40,70].
The statistical analysis was performed using a linear
model incorporating replication information. The in-
slide, dye swap and pool's replicate correlations were cal-
culated using the duplicate Correlation function of
LIMMA [71]. A list of differentially expressed genes was
generated by applying a Bayesian smoothing to the linear
model fit. Genes that had log odds > 4.6 (99% probability
that the gene is differentially expressed between the con-
ditions being compared) and M values >1 or <-1 (2 fold
difference among groups) were considered as significant.
Because the slides were designed based on the assembly of
ESTs from S. mansoni and because the genome wasn't
available at the time the slides were printed, we decided to
test the differentially expressed genes against the complete
genome. In brief, pairs of primers were designed for all
differentially expressed genes (M values <1 or <-1 and log-
Odds > 4.6) using a web tool (Genscript Corp, USA [72])
and then tested against the genome and the predicted
complete CDSs using mePCR [45] in order to see if each
primer pair would theoretically amplify a single region of
the genome. Primer pairs that amplified more than one
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region were discarded. We further tested the primers to see
if two primer pairs would amplify the same gene (pre-
dicted CDS) in order to remove redundant genes (i.e.
genes that were spotted more than one time at the arrays
because of assembly problems).

Further analysis was performed using Blast2GO [73]. This
software allows the evaluation of differences in annota-
tion between two groups of data. The analysis of GO
terms association for the genes considered differentially
expressed in both experimental groups, for the two exper-
iments, was performed by using the combined graphs func-
tion of the software. These graphs allow the visualization
of the combined annotation of a group of sequences and
this can be used to study the biological meaning of a sub-
group of sequences. Combined graphs are a good alterna-
tive to enrichment analysis because they don't require a
reference group and allow the use of small numbers of
sequences [74].
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