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Abstract
Background: Owing to the explosion of information generated by human genomics, analysis of
publicly available databases can help identify potential candidate genes relevant to the cancerous
phenotype. The aim of this study was to scan for such genes by whole-genome in silico subtraction
using Expressed Sequence Tag (EST) data.

Methods: Genes differentially expressed in normal versus tumor tissues were identified using a
computer-based differential display strategy. Bcl-xL, an anti-apoptotic member of the Bcl-2 family,
was selected for confirmation by western blot analysis.

Results: Our genome-wide expression analysis identified a set of genes whose differential
expression may be attributed to the genetic alterations associated with tumor formation and
malignant growth. We propose complete lists of genes that may serve as targets for projects
seeking novel candidates for cancer diagnosis and therapy. Our validation result showed increased
protein levels of Bcl-xL in two different liver cancer specimens compared to normal liver. Notably,
our EST-based data mining procedure indicated that most of the changes in gene expression
observed in cancer cells corresponded to gene inactivation patterns. Chromosomes and
chromosomal regions most frequently associated with aberrant expression changes in cancer
libraries were also determined.

Conclusion: Through the description of several candidates (including genes encoding extracellular
matrix and ribosomal components, cytoskeletal proteins, apoptotic regulators, and novel tissue-
specific biomarkers), our study illustrates the utility of in silico transcriptomics to identify tumor cell
signatures, tumor-related genes and chromosomal regions frequently associated with aberrant
expression in cancer.
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Background
Large-scale transcriptome analysis of genes that are differ-
ently expressed in tumor tissues compared to their normal
counterparts is an important route to the identification of
candidates that could play a role in human malignancies.
A number of techniques, ranging from differential display
and nucleic acid subtraction to serial analysis of gene
expression, expression microarrays and gene chips, have
been used to the discovery of such aberrantly expressed
cancer-related genes [1]. The well-established differential
screening technology, that allows for the simultaneous
comparison of multiple gene expression levels between
two samples differing in tissue type and pathological
state, has been the more extensively applied. This simple
and powerful method could be performed either experi-
mentally or, since late 1999, digitally using expression
databases. The computer-based differential display method-
ology, also referred to as 'in silico subtraction' or 'elec-
tronic northern' [2-7], could identify transcripts
preferentially expressed or repressed in the tumor context
by comparing cancerous libraries (present in publicly
available databases) against the remaining libraries. Strik-
ingly, only few attempts were made to apply in silico tran-
scriptomics to genome-wide and multi-tissue screening of
cancer genes [8-10]. Thus, given the continuous expan-
sion of the EST databases, both in terms of sequence and
source diversity, updated and independent transcriptomic
analyses are permanently needed.

In this study, we mined EST libraries for genes differen-
tially expressed in normal and tumor tissues by using a
novel computational approach, with the assumption that
both the up- and down-regulated pools might contain
genes involved in tumorigenesis. This strategy identified
differential expression profiles and cancer candidate genes
which may be useful in future cancer research. Higher
expression of the anti-apoptotic protein Bcl-xL in liver
cancer specimens compared to normal liver was con-
firmed by immunoblot analysis. Strikingly, we found that
most cancer-associated changes in gene expression corre-
sponded to genes that were actually downregulated or
repressed. The chromosomes and chromosomal regions
most frequently associated with aberrant expression
changes in tumor versus normal cells were also deter-
mined. This analysis suggests that, although genes differ-
entially expressed in cancerous libraries are distributed
throughout the genome, chromosomal 'hot spots' of can-
didate genes could be identified.

Results
Identification of differentially expressed genes between 
normal and cancer tissues
Genes differentially expressed in tumor libraries com-
pared to their normal counterparts are likely to play
important roles in cancer etiology or could constitute rel-

evant genetic markers for cancer diagnosis. Here, we have
performed in silico differential display to identify novel
and known cancer-associated genes by comparing all the
libraries representing tumors to the corresponding nor-
mal libraries for each tissue type. Details about the data
mining procedures are presented in Table 1. In order to be
able to compare expression levels between normal and
tumor state, we compared EST counts from non-normal-
ized, non-subtracted cDNA libraries. To overcorrect for
the false positive rate, we decided to perform the highly
conservative Bonferroni correction. Using this procedure,
a total of 673 genes showed differential expression in
tumor versus normal libraries by a factor of 10 or higher
(Additional File 1: 'Upregulated candidates complete list',
and Additional File 2: 'Downregulated candidates com-
plete list'), with about one third being up-regulated (299)
and the remaining being down-regulated (539). The in sil-
ico subtraction also resulted in the identification of 181
and 336 genes predicted to be present or absent in the
tumor types compared to normal tissues, respectively.
Because these EST clusters were identified either in normal
or tumor libraries, it was not possible to derive their
expression ratio, so we decided to present them as sepa-
rated tables (Additional File 3: 'Tumor specific candidates
complete list', and Additional File 4: 'Normal specific can-
didates complete list'). However, these two groups of
genes have been fused to the 'up-regulated' and 'down-
regulated' pools in the subsequent analyses. All in all, a
sum of 112 novel transcripts was also found (i.e.
sequences for which no description was available at the
time of the study). Noteworthy, in silico subtraction iden-
tified 14.5 % (154/1060) previously studied genes
involved in oncogenesis, based on a list of ~ 2500 genes
compiled as previously described [11]. Since the fraction
of such reference genes in our initial data set was 7.5 %
(2401/31800), our data mining protocol expectedly lead
to a significant enrichment in cancer genes (p value = 2.2
10-16; exact Fisher test). These previously characterized
and well-studied genes include the p57KIP2 and p19INK4d

cyclin inhibitors, and the ras-GAP, c-fos, ret and myc onco-
genes. Last, in order to independently verify the validity of
the EST-based tissue profiles, SAGE data were used to give

Table 1: Overview of the EST-based data mining strategy. 
Screening for differentially expressed genes between normal and 
cancer tissues. EST counts in each analytical step. Total number 
of EST clusters in each class (upregulated, downregulated, 
tumor-specific or absent in tumors) was determined after 
Bonferroni corrected exact Fisher test.

Total RNA (Ensembl) ~ 31,800
Total ESTs (after clustering) ~ 3.3 106

Total clusters 26,601
Total up-regulated EST clusters 227
Total down-regulated EST clusters 473
Total EST clusters specific to tumors 173
Total EST clusters absent in tumors 308
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an indication of the tissue distribution of our transcripts
in normal tissues. While SAGE results specified by tissue
type converged with the analysis of ESTs for 65,4 % (197/
301), 53,9 % (91/169), and 53,2 % (93/171) of the exam-
ined hits in the 'down', 'up' and 'normal-specific' groups
respectively, i.e. precisely in the classes where an expres-
sion in the normal condition was expected, this percent-
age decreased to 37,7 % (46/122) for the 'tumor-specific'
group of transcripts.

Cancer candidate gene analysis
The first general observation that could be made from our
results is that a same gene could be either up-regulated or
repressed according to the tumor cell type, allowing iden-
tification of tissue-specific gene expression profiles in
tumor versus normal cells. For instance, among the set of
candidates with differential expression in cancer, we
observed a massive down-regulation of several collagen
alpha chain genes (but not beta chain genes) in various
tumor tissues, including decreased expression of collagen
alpha 2(I) (also termed col1A2) in skin, placenta, testis,
eye and bone (see Figure 1). Interestingly, col1A2 has been
reported as a tumor suppressor gene that could inhibit ras-
induced oncogenic transformation [12,13]. Apart from
collagens, other types of proteins that could be used as
useful biomarkers include cytokeratins (CK). CK are par-
ticularly interesting epithelia specific intermediate fila-
ments because their degradation gives rise to soluble
fragments, measurable in the blood of patients and capa-
ble of cancer monitoring [14]. Our results show that a
total of 13 CK genes were differentially expressed between
normal and malignant cells in 9 different tissues (Figure
1), allowing tissue-specific expression profiling (e.g. spe-
cific expression of CK 5, 13 and 16 in tumor brain). Addi-
tionally, in line with previous microarray data [15], we
found that hair-specific type II keratin was overexpressed
in breast tumors compared to normal breast. We further
determined that over the 190 genes which displayed aber-
rant expression in more than one tissue, 131 were "dereg-
ulated" in the same way (either up- or down, Figure 2 and
Additional File 5: 'Consistent candidates in multiple tis-
sues'). Included in this list of 'consistent' candidates are 13
transcripts encoding different ribosomal components, in
accordance with the increasing body of evidence from the
literature that correlates changes in the protein synthesis
machinery with cancer [16-18]. Specific signatures for
ribosomal genes could be determined, e.g. downregula-
tion of the genes encoding 60S ribosomal L37, L38 and
L44 in libraries prepared from tumor skin and tumor
blood, whereas placental cancer libraries appear to be spe-
cifically enriched in transcripts encoding 40S ribosomal
S2, S3 and S17. As depicted in Figure 3 (for the full data
set, see Additional File 6: 'Tissue specific candidates'),
some genes display a tissue-specific pattern of differential
expression in tumor types, thus making them candidates

for specific diagnostic markers. Among these 114 genes
differentially expressed in only one tissue are 14-3-3 sigma
in brain tumors and Bnip3L in blood. This latter gene,
belonging to the Bcl-2 family of apoptotic regulators, has
been described as a potential tumor suppressor [19,20].
Last, it is worth noting that a novel member of the meth-
yltransferase enzyme family (ENST00000270172), that
contains clear transcriptional repressors [21,22], was
found to be specifically overexpressed in placental
tumors.

Taken together, these results suggest that EST data could
be successfully mined to provide digital profiles of differ-
ential gene expression at the full genome level between
normal and cancerous tissues. Our lists of transcriptional
signatures might help to select candidate markers in can-
cer genetics or potential targets for therapy.

Increased expression of Bcl-xL in liver tumors
Bcl-2 family member Bcl-xL (Bcl2-associated X membrane
protein) was selected for confirmation by immunoblot-
ting due to its plausible biological role in cancer suscepti-
bility. Moreover, both EST and SAGE results indicated that
Bcl-xL was poorly expressed in normal liver, while abun-
dant in other tissues (both normal and cancerous, data
not shown), suggesting that this apoptotic regulator could
constitute a good marker for liver cancer progression. As
depicted in Figure 4, western blot analysis confirmed
overexpression of Bcl-xL in a subset of human liver cancer
specimens (hepatocellular carcinoma, adenocarcinoma
but not cholangiocellular carcinoma) compared to nor-
mal liver (and placenta).

Identification of chromosome locations of differential 
gene expression in cancer
We next sought to analyze the chromosomal distribution
of the genes which were over-expressed or repressed in
tumor tissues. To this end, we mapped the previously
identified genes showing significant differential expres-
sion between normal and tumor tissues along human
chromosomes according to their banding, in order to
build cancer-oriented transcriptome maps. To avoid pos-
sible biases due to chromosome length (e.g. chromosome
Y as an obvious case) or different chromosomal gene den-
sities, we computed the percentage of candidate genes
against the total number of genes present on a particular
chromosome or banding (see Table 2).

First, our results show that some chromosomes appear to
be more active than others (Table 2A), with, for instance,
chromosomes 15, 19 and Y being rarely involved in can-
cer-related gene expression changes compared to chromo-
somes 4 and 6. As expected from the results of Table 1,
most chromosomal regions associated with changes in
expression levels actually correspond to gene inactivation
Page 3 of 11
(page number not for citation purposes)



BMC Genomics 2006, 7:94 http://www.biomedcentral.com/1471-2164/7/94
patterns in cancer cells (373 up-regulated versus 744
down-regulated hits), striking examples of cancer-associ-
ated inactivation of gene expression being chromosome
17 and chromosome 3. While most tissues (14/16) were
clearly subject to these cancer-associated gene inactivation
patterns (especially lung, eye, colon, prostate and stom-
ach), two tissues (tumor blood and liver) did not follow
this trend. Chromosomal regions displaying at least five
hits were further listed and this rough analysis was suffi-
cient to detect 11 and 29 regions of clustering of up- and
down-regulated genes, respectively (Table 2B). We found
previously identified chromosomal regions associated
with either tumor amplicon (e.g. 12q13) or deleted (e.g.
11p15) regions in tumors [23-26]. Interestingly, some of
the chromosomal locations which were identified show
tissue specificity, e.g. 12q13.3 in muscle. Moreover, in
some cases, candidate genes could be contiguous or clus-
tered in limited banding intervals. For instance, 19q13 is
associated in tumor tissues of placental origin with com-
plete extinction of eight clustered genes, namely preg-
nancy-specific beta-1-glycoproteins PSG-1, -2, -3, -4, -5, -
6, -9 and -11. These genes belonging to the carcinoembry-
onic antigen family encode the major placental proteins
found in maternal circulation during pregnancy [27,28].

In conclusion, in addition to providing differential
expression profiles for individual genes, our EST-based
procedure identified discrete regions on specific chromo-

somes that are enriched in genes deregulated in cancer
libraries.

Discussion
Owing to advances in biotechnology and bioinformatics,
researchers can now capture "molecular portraits" of vari-
ous particular cancers using gene chips or SAGE data.
These methods provide information on tens of thousands
of genes simultaneously, and some variations in genes
might be directly related to the cancer phenotype [1,29].
As multi-dimensional analysis of EST data is analogous to
microarray experiments, we used the virtual differential
display methodology to identify genes differentially
expressed in normal versus tumor tissues. Our compre-
hensive approach gives an overview of numerous candi-
date genes which may be useful as improved biomarkers
for diagnosis or as targets for developing novel treatment
methods. For instance, EST-based formulation of colla-
gen, integrin or cytokeratin expression profiles may have
potential as a diagnostic aid for the detection of both
tumor formation and development. Noteworthy, for dis-
covery of tumor-associated molecules, it may be benefi-
cial to use a combination of various digital differential
display procedures and experimental data on gene expres-
sion. This is illustrated by the identification of prostate-
specific Ets factor as a novel marker for breast cancer both
computationally [8,30] (and this study) and experimen-
tally [30-32].

Patterns of differential expression for collagen and cytokeratin genes in multiple normal and tumor tissuesFigure 1
Patterns of differential expression for collagen and cytokeratin genes in multiple normal and tumor tissues. 
The data are shown in a table format, in which rows represent individual genes and columns represent individual normal tissue. 
The color in each cell reflects the differential expression level of the corresponding gene in a particular tissue. A four color 
code was used to represent gene induction and repression in cancer libraries (dark green: 'normal-specific', i.e. not expressed 
in tumor libraries; light green: downregulated in tumor libraries; orange: upregulated in tumor libraries; red: 'tumor-specific'). If 
there was no significant change in gene expression between normal and tumor libraries or in case of missing/excluded data, the 
gene was given in a black color. The number inside the colored cells indicates the statistical significance (p-value < 0.01 after 
Bonferroni correction). See additional information for the full data.
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General limitations of EST-based strategies, which have
been abundantly discussed elsewhere [4,33,34], include
poor sequencing depth of the libraries, uncertainty con-
cerning the origin of the samples, and differences in
library sizes. In addition, analysis of tumor-related differ-
ential expression patterns of individual transcripts may
have specific drawbacks. For example, cancer cells often
proliferate more rapidly than adjacent normal cells and it
is possible that, in some cases, the observed changes in
transcript abundance may reflect a response to increased
proliferation rather than transformation per se. One

related problem is that many cell types are often pooled
together during the preparation of EST libraries. Given
that most cancers start as growths of single cells, the lack
of cell-type specific libraries is a major limiting factor of
the method. Lastly, the determined variations in transcript
expression may not correlate with similar variations in the
abundance of the encoded protein, highlighting the need
to experimentally test the computer-based predictions
either by western blotting or immunohistochemistry. Our
validation result showing that Bcl-xL protein expression
was markedly increased in hepatocellular carcinoma and

Genes whose transcripts varied significantly and consistently in abundance in at least two different tissuesFigure 2
Genes whose transcripts varied significantly and consistently in abundance in at least two different tissues. 
Thirty genes were selected in each class of differential expression (upregulated, downregulated, tumor-specific or absent in 
tumors). The results are shown for twelve tissues. The legend is the same as in Figure 1. See additional information for the full 
data.
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Genes whose transcripts exhibited tissue-specific differential expression in normal versus tumor librariesFigure 3
Genes whose transcripts exhibited tissue-specific differential expression in normal versus tumor libraries. This 
figure is a compilation of genes that appear to be differentially expressed in only one of the 15 studied tissues. The results are 
shown for fourteen tissues. The color code is the same as in Figure 1. See additional information for the full data.
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liver adenocarcinoma suggests that this Bcl-2 family mem-
ber represent a potential marker for progression of a sub-
set of liver cancers. Analysis of Bcl-xL immunoreactivity in
more liver cancer specimens is needed to enhance the reli-
ability of this finding. However, as it correlates with previ-
ous results [35-37], and in view of the pro-survival effect
of Bcl-xL, we hypothesize that Bcl-xL overexpression could
confer specific protection from death to several types of
liver cancer cells compared to their healthy counterparts.
If true, modulation of Bcl-xL expression level and/or activ-
ity might represent an interesting strategy to optimize the
efficacy of chemotherapeutic agents in this particular tis-
sue, as liver cancer represents a significant source of mor-
bidity and mortality worldwide [38].

Aside from the proposal of potential diagnosis markers
and targets for future cancer research, a more theoretical
perspective of our study is the identification of critical fac-
tors that could influence differential gene expression lev-
els in normal versus cancer cells, including genomic
landscape features, e.g. levels of polymorphisms, chromo-
some breakpoints, gene density, GC content and chroma-
tin methylation status. In this regard, although we cannot
rule out the possibility of unidentified biases in our data
mining procedure, our result showing a higher frequency
of gene inactivation patterns in tumor tissues is intriguing,
and sheds light on the importance of understanding the
molecular mechanisms of negative gene regulation in can-
cer.

Conclusion
The final outcomes of the present work are identification
of chromosomal regions frequently associated with aber-
rant expression in cancer libraries, description of differen-
tial expression profiles, and listing of cancer candidate
genes (e.g. Bcl-xL) which may be useful as tissue-specific
biomarkers for cancer diagnosis or as targets for antican-
cer research.

Methods
Data preparation
We have used an EST-based pipeline to scan for differen-
tial gene expression levels between normal and tumor
states. Human ESTs from dbEST [39] (October 2004
release) were first extracted using the ACNUC sequence
retrieval system [40]. ESTs were classified according to
their UNIGENE library features [41] (October 2004). For
each EST in dbEST, we extracted the accession code of the
EST and the tissue or organ from which the EST library has
been made. The tissue type was retrieved from the line
containing 'Tissue_type', 'Tissue description', 'Organ' or
'Keyword'. This parsing approach stored no data when the
tissue information did not appear in these fields, or in
case of typographical errors or ambiguous aliases. ESTs
that were labeled as coming from an unspecified tissue
(e.g. 'mixed', 'pooled organs', 'cell line') or from a mixture
of specified tissues, were discarded. The eVOC ontology
[42] (October 2004) for anatomical sites and pathology
types was then used to classify the libraries through a
number of criteria such as tissue origin and pathological
context including tumor state. This well-accepted hierar-
chical vocabulary provided us with a mean to determine
when a specific tissue was part of an organ and when a
specific label was part of the 'tumoral' state. A total of
5135 'tumor' and 2503 'normal' (i.e. non-pathological)
libraries were catalogued. Our approach to EST clustering
used the human genome as a reliable guide. ENSEMBL
RNAs [43] annotated on human genome assembly
(release 16.3) were used as a backbone for the clustering
of dbEST sequences using MEGABLAST (alignment length
= 100 bp and similarity = 95%) [44]. In order to avoid par-
alogous false positive assignation, only best EST hit
matches were subsequently selected. RNA clustering of
ESTs in both normal and tumor tissues was the starting
point for digital differential analysis of gene expression.

Computer-based differential display procedure
The cDNA libraries were categorized into non-normalized
or normalized/subtracted libraries by screening for the
appropriate keywords in the original annotation of the
respective dbEST entries (in the 'Keyword' and 'Library
treatment' fields). All libraries for which none of the key-
words were found were defined as being non-normalized.
After removal of normalized and subtracted EST libraries,
we created pools of equivalent EST libraries, i.e. libraries

Western blot analysis of Bcl-xL expression in human normal and tumoral liverFigure 4
Western blot analysis of Bcl-xL expression in human 
normal and tumoral liver. Lane 1: hepatocellular carci-
noma (male, age 65); lane 2: adenocarcinoma (male, age 52); 
lane 3: cholangiocellular carcinoma (male, age 46); lane 4: 
normal liver (male, age 24); lane 5: normal placenta (female, 
age 24). Bcl-xL immunoreactivity (26 kD) was observed in 
two out of three liver cancer samples (lanes 1–3). Normal 
samples (lane 4–5) had no signal for Bcl-xL expression. Note 
that GADPH protein levels varied between normal tissues 
and cancer liver specimens and did not correlate with the 
mRNA levels predicted by the computer-based screen. The 
expression of tubulin was used as control for equal protein 
loading.
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derived from the same tissue type and state (normal and
tumor). Differential screening analysis was accomplished
for a considered tissue when both normal and tumor
pools displayed at least 10,000 ESTs. A total of 15 distinct
paired tissue pools (blood, bone, brain, colon, eye, liver,
lung, lymph, mammary gland, muscle, placenta, prostate,
skin, stomach, testis) representing approximately 1.5 mil-

lion ESTs were therefore retained for the whole genome
screening. Differential screening was performed for each
tissue type individually using EST counts from tumors and
corresponding normal counterparts. The relative expres-
sion of one particular gene in a tissue was characterized by
the ratio of the number of ESTs matching this gene to the
total number of ESTs sequenced in the respective tissue.

Table 2: Chromosomal regions of differential gene expression in cancer. (A) Number of hits, i.e. number of genes with differential 
expression per chromosome, is depicted. 'Up' and 'down' mean chromosomal regions with increased and decreased tumor expression, 
respectively. '%' represents the percentage of candidate genes against the total number of genes present on the chromosome. (B) 
Chromosomal regions found to be associated with at least 5 hits in the digital subtraction analysis are shown ('banding'). '%' represents 
the percentage of hits for a particular chromosomal banding against the total number of genes present in the same banding. 
Chromosomal bandings marked in bold correspond to previously identified regions associated with either tumor amplicon ('Up' 
column) or deleted ('Down' column) regions in tumors.

A B

Chromoso
me

Up Down Up+Down Up Down

Total Hits % Total Hits % Total Hits % Banding % Banding %

1 33 1.02 54 1.68 87 2.70 1q21.3
1q32.1

3.12
3.20

2 11 0.75 28 1.90 39 2.65 2p11.2
2p13.3
2q35

6.66
9.26
4.55

3 11 0.55 58 2.89 69 3.43 3p21.31 4.03 3p21.31 3.14
4 38 2.26 46 2.73 84 4.99 4q13.3 9.37
5 4 0.67 8 1.35 12 2.02 5q33.1 6.58
6 14 1.22 36 3.15 50 4.37 6p21.31 6.33
7 11 1.05 19 1.81 30 2.86 7q21.3

7q22.1
8.93
3.32

8 18 1.25 30 2.08 48 3.34
9 31 1.69 39 2.13 70 3.82 9q34.11

9q34.3
3.60
3.60

10 5 1.05 10 2.10 15 3.15
11 30 1.32 46 2.03 76 3.36 11p15.1

11p15.4
11p15.5
11q12.2

7.81
2.56
5.88
7.81

12 25 1.14 61 2.78 86 3.91 12q13.13
12q13.3

4.80
10.12

12q13.13 7.20

13 19 1.76 21 1.94 40 3.70
14 5 1.27 8 2.03 13 3.29 14q11.2 2.59 14q11.2

14q32.33
2.59
8.89

15 7 0.84 16 1.93 23 2.77
16 19 1.08 40 2.28 59 3.36 16p11.2 3.10 16p11.2

16q12.2
3.10
9.80

17 9 0.74 38 3.14 47 3.88 17q21.2
17q25.3

5.71
2.81

17q21.2
17q23.3

5.00
8.06

18 12 0.86 31 2.22 43 3.08
19 14 0.80 29 1.65 43 2.44 19p13.3 2.43 19p13.11

19q13.2
19q13.31
19q13.33

2.15
3.69
7.04
3.14

20 10 0.56 38 2.13 48 2.69 20q13.12 2.92
21 8 0.70 25 2.18 33 2.87 21q22.3 3.12 21q22.3 3.75
22 17 1.20 31 2.19 48 3.40
X 21 1.59 31 2.34 52 3.93 Xq28 4.76
Y 1 0.64 1 0.64 2 1.27
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As such 'gene expression profiles' were derived from 'nor-
mal' and 'tumor' libraries, it was possible to build 2 × 2
contingency tables and then to apply the Fisher exact test
against the null hypothesis that there was no association
between a particular gene and the tumoral state. A p-value
was determined for statistical significance and, because
multiple tests were performed, a Bonferroni correction
was applied on each pairs in order to reduce the false pos-
itive rate and to perform candidate gene sorting. Statisti-
cally significant hits showing at least 10-fold differences
were compiled. Four classes of genes were defined,
namely (i) genes displaying significantly higher expres-
sion levels in tumor tissues ('up-regulated' genes); (ii)
genes displaying significantly lower expression levels in
tumor tissues ('down-regulated' genes); (iii) genes
expressed in tumor but not in normal tissues ('tumor-spe-
cific' genes); (iv) genes absent in the tumor types com-
pared to normal tissues. Apart from the genes displaying
absolute differences between normal and tumor condi-
tion, a ratio based on EST abundance in both conditions
was computed to estimate the expression fold change for
up- and down-regulated genes. Cytogenetic map position
of the hits was inferred using ENSEMBL data (release
16.3). The pattern of expression of the differentially
expressed transcripts (n = 1190, as determined by the EST
analysis) in normal tissues was independently assessed by
comparison to SAGE results obtained on the SAGE Genie
website [45] and processed as previously described [46]. A
total of 141 (non-tumoral) libraries containing more than
20,000 tags were partitioned into 19 normal tissues. The
expression pattern of 13,435 transcripts was determined.
Eight tissues (blood, brain, colon, liver, lung, mammary
gland, placenta and prostate) were unambiguously
mapped to the tissue terms used in the EST data mining
procedure. From this sample, we queried as to which can-
didate transcripts associated with differential expression
in a particular tissue (on the basis of the EST predictions)
was expressed in the corresponding normal tissue
(according to the SAGE data). Information on differential
expression was also gained from reference to primary lit-
erature. As this effort corresponded to a manual task par-
ticularly unfitted to the large number of candidate genes
presented here, we limited the analysis to the "up-regu-
lated" and "down-regulated" lists related to the liver and
breast tissues. We found that 54.2% (for liver) and 41.7%
(for breast) of the annotated candidates identified
through our computer-based screen were consistent with
previously published data (see Additional files 1 and 3).
The differential display procedure and other analytical
steps were developed with R [47]. Expression and
genomic data were stored in a local PostgreSQL database
(GeMCore) [48] using PERL and Java script.

Western blot analysis
Nitrocellulose membrane was from Euromedex (Souffel-
weyersheim, France). The membrane was immunoblotted
with anti-human Bcl-xL antibody (1:1 000 dilution, BD
Pharmingen), and then with anti-mouse IgG antibody
conjugated to horseradish peroxidase (1:5 000 dilution,
Dako). Protein bands were revealed using enhanced
chemiluminescence kit (ECL, Amersham). The membrane
was stripped according to manufacturer's instructions and
reprobed with anti-glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) monoclonal antibody (1:1 000 dilu-
tion) and with anti-alpha-tubulin (1:1000 dilution,
Sigma) to correct for differences in protein loading.
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Additional material

Additional File 1
Upregulated candidates complete list. Upregulated genes in tumor tissues 
(complete list). Hits displaying at least a 10-fold increase in tumor-
derived libraries compared to their normal tissue counterpart are shown. 
Chromosomal locations for each hit were inferred from Ensembl cytoge-
netic map. Hits were sorted by p value (exact Fisher's test; p < 0.05, Bon-
ferroni corrected), ranked by expression ratio and ordered by tissue. Both 
known and novel ('NULL') transcripts are listed. 'Y': 'Yes'; 'ND': non-
determined. Pubmed ID (PMID) is given for annotated candidate tran-
scripts whose differential expression was documented in previously pub-
lished data. '*': in silico studies.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-94-S1.xls]

Additional File 2
Downregulated candidates complete list. Downregulated genes in tumor 
tissues (complete list). Hits displaying at least a 10-fold decrease in 
tumor-derived libraries compared to their normal tissue counterpart are 
shown. Chromosomal locations for each hit were inferred from Ensembl 
cytogenetic map. Hits were sorted by p value (exact Fisher's test; p < 0.05, 
Bonferroni corrected), ranked by expression ratio and ordered by tissue. 
Both known and novel ('NULL') transcripts are listed. 'Y': 'Yes'; 'ND': 
non-determined. Pubmed ID (PMID) is given for annotated candidate 
transcripts whose differential expression was documented in previously 
published data. '*': in silico studies.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-94-S2.xls]
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