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Abstract

Background: The development and outcome of cerebral malaria (CM) reflects a complex
interplay between parasite-expressed virulence factors and host response to infection. The murine
CM model, Plasmodium berghei ANKA (PbA), which simulates many of the features of human CM,
provides an excellent system to study this host/parasite interface. We designed "combination”
microarrays that concurrently detect genome-wide transcripts of both PbA and mouse, and
examined parasite and host transcriptional programs during infection of CM-susceptible (C57BL/
6) and CM-resistant (BALB/c) mice.

Results: Analysis of expression data from brain, lung, liver, and spleen of PbA infected mice
showed that both host and parasite gene expression can be examined using a single microarray,
and parasite transcripts can be detected within whole organs at a time when peripheral blood
parasitemia is low. Parasites display a unique transcriptional signature in each tissue, and lung
appears to be a large reservoir for metabolically active parasites. In comparisons of susceptible
versus resistant animals, both host and parasite display distinct, organ-specific transcriptional
profiles. Differentially expressed mouse genes were related to humoral immune response,
complement activation, or cell-cell interactions. PbA displayed differential expression of genes
related to biosynthetic activities.

Conclusion: These data show that host and parasite gene expression profiles can be
simultaneously analysed using a single "combination" microarray, and that both the mouse and
malaria parasite display distinct tissue- and strain-specific responses during infection. This
technology facilitates the dissection of host-pathogen interactions in experimental cerebral malaria
and could be extended to other disease models.
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Background

Cerebral malaria (CM) is a major cause of global morbid-
ity and mortality. The molecular basis of this syndrome
remains incompletely defined [1]; however, the develop-
ment, severity and ultimate outcome of malaria infections
are known to be influenced by genetic factors in both the
host and the parasite [1-3]. Murine models have been
informative in clarifying the molecular mechanisms
underlying CM. Plasmodium berghei ANKA (PbA) infection
of mice simulates many of the features of human CM |[3]
and infection of genetically defined inbred mice provides
an opportunity to dissect the host response to infection.
C57BL/6 (B6) and other susceptible mice [4-6] infected
with PbA develop malaria-associated encephalopathy
similar to CM in humans. In contrast, BALB/c mice do not
develop encephalopathy, although they become infected
and achieve similar levels of parasite density [7]. Host fac-
tors, including differential intensity and timing of pro-
and anti-inflammatory cytokine responses to infection,
have been implicated in susceptibility to CM in this
model [3].

Parasite-dependent factors also influence disease out-
come. PbA infection of B6 mice results in CM, while infec-
tion of the same host with the closely related parasite line
P. berghei K173 does not [8]. By comparing these models,
it has been postulated that parasite-dependent modula-
tion of host immune responses may contribute to the
pathogenesis of CM [9].

Genome-wide expression profiling is being increasingly
applied to dissect the complex details of the host response
to malaria infection [10-16]. Delahaye et al. identified
candidate mouse resistance genes to PbA by profiling
brain gene expression in resistant and susceptible mice
[15]. Sexton et al. examined transcriptional responses in
the spleens of B6 mice infected with PbA and reported
gene expression patterns suggestive of suppressed erythro-
poiesis, up-regulated host glycolysis and an interferon-
inducible target response [14]. Several studies have also
analyzed parasite expression patterns in vitro and in vivo
[17,18]; however, concurrent examination of the host-
parasite interaction has only been used to analyze the vec-
tor-parasite relationship between Anopheles stephensi and
P. berghei [19].

Malaria infections result in diverse clinical outcomes pre-
sumably because of the dynamic relationship between
parasite-expressed virulence factors and individual host
response to these determinants. The objective of this study
was to simultaneously examine both sides of the parasite-
host interface to identify corresponding PbA and murine
organ-specific expression profiles associated with resist-
ance or susceptibility to CM. We used custom-designed
"combination" microarrays containing both murine and
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plasmodial genes to define host and parasite transcrip-
tional programs in target organs during PbA infection of
CM-susceptible (B6) and resistant (BALB/c) mice. Malaria
gene expression was readily detected within host tissue,
and differential expression of parasite and murine genes
discriminated infection in resistant from susceptible mice,
identifying both host and parasite transcriptional pro-
grams which may contribute to CM.

Results and discussion

A combination murine/P. berghei ANKA microarray

We designed and tested a microarray (the "combination
array") composed of 42,034 sixty-mer probes designed to
detect over 20,000 known and predicted mouse tran-
scripts [20] as well as 17,313 known or predicted P.
berghei genes and ESTs. Because both the mouse and
malaria genomes are still being annotated, and the statis-
tical analyses employed are sensitive to artefacts that can
arise from duplicated genes, and inclusion of pseudo-
genes and unverified genes, we only considered probes in
our computational analyses that uniquely target 9,035
single-copy mouse genes and 8,577 independent P.
berghei genes or ESTs (henceforth referred to collectively as
"genes") annotated in current genome databases.

To test the specificity of our combination array, we
hybridized one microarray with Cy3-labelled cDNA from
uninfected B6 brain and Cy5-labelled cDNA from PbA
infected B6 blood, containing approximately 20% parasi-
tized red blood cells. In uninfected brain, the spot inten-
sity  distribution  from  malaria probes  was
indistinguishable from that of random-sequence negative
control probes on the array, while 20% of the mouse
probes exceeded the 99th percentile of negative control
probe intensities (Figure 1), presumably representing the
fraction of genes expressed in brain. In contrast, 25% of
the malaria probes exceeded the 99t percentile of nega-
tive control probe intensities in infected blood. This indi-
cates that the malaria probes were functional under our
standard hybridization conditions and had minimal
cross-hybridization to mouse cDNAs. Therefore, the com-
bination array was able to specifically detect parasite and
host gene expression.

Host and parasite tissue-specific expression patterns

We next hybridized combination arrays with cDNA from
four malaria target organs (lung, brain, liver, and spleen)
from B6 (susceptible) and BALB/c (resistant) mice over a
time-course of infection (pre-infection [day 0], at an early
time point with low parasitemia [day 3] and just prior to
the development of CM in susceptible mice with high par-
asitemia [day 6]). In total, we detected 2,829 mouse genes
with expression above the 99t percentile of negative-con-
trol probes in at least one tissue, among which 2,268 were
detected at least 6-fold higher in at least one tissue relative
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Microarray probe specificity. A test hybridization was performed using cDNA from uninfected mouse brain and from PbA-
infected mouse blood. The curves show the cumulative distribution of normalized log2 intensity values for control (black),
malaria (orange) and mouse (blue) probes. The dashed black lines indicate the 99t percentile for the negative control probes.
The top panel represents data from uninfected brain and shows that intensity values of malaria probes did not differ from the
random-sequence control probes, indicating that mouse cDNA did not significantly cross-hybridize to malaria probes. The
PbA-infected blood hybridization (bottom panel) demonstrated that PbA transcripts could be detected in the presence of
mouse transcripts at standard hybridization conditions. Examples of top-expressed genes are given in the text boxes.
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to the gene median expression across all tissues (Figure
2A). We confirmed that these transcripts displayed tissue-
specific gene expression patterns similar to those previ-
ously described [20], including enrichment of expected
Gene Ontology Biological Process (GO-BP) categories
[21] among the genes expressed in different tissues (Figure
2A). For example, genes highly expressed in the spleen
were significantly associated with the GO-BP categories of
'ITmmune Response' and 'Response to Biotic Stimulus'.

We detected 5,632 malaria genes with expression above
the 99t percentile of negative-control probes in at least
one tissue, among which 2,159 were detected at least 15-
fold higher in at least one infected tissue relative to unin-
fected tissue. This indicated that they were unlikely to rep-
resent cross-hybridization to mouse transcripts in the
same samples and were roughly consistent with the
number of malaria genes previously found to be expressed
in infected blood [17,22]. PbA transcripts also displayed
an organ-specific "signature" of gene expression that was
modulated over the course of infection (Figure 2B).

Strikingly, the majority of PbA transcripts with detected
expression were present in the lung (Figure 2B). Although
information about the PbA genes is sparse, the lung-
expressed genes encoded apparent heat shock proteins,
ribosomal proteins, and proteasome components, and
the cluster is significantly enriched with GO-BP annota-
tions of nucleic acid metabolism, entry into host, and
metabolism (P < 0.05). Further analysis of the lung-
expressed genes, using P. falciparum Protein-Protein Inter-
action (PPI) sub-networks identified by LaCount et al.
[23], showed that a number of gene pairs in the PPI net-
work were significantly over-represented in the group of
PbA genes expressed in the lung (P < 0.001), including
some associated with cell invasion (P < 0.05) [See Addi-
tional file 1]. These findings suggest that the lung may be
a preferential site of PbA biosynthesis, metabolism and
proliferation. Although this intriguing observation may
reflect, at least in part, pulmonary blood volume, models
using PbA in mice [24] and P. falciparum in rats [25] indi-
cate that parasites do sequester in the lung. Examination
of parasite transcription profiles shows that parasites are
undergoing replication and metabolic functions in the
lung and are displaying activity other than simple adhe-
sion. Parasite sequestration and replication in the lung
would be expected to induce the release of parasite prod-
ucts, cytokine production, and recruitment of immune
cells, thereby causing pulmonary inflammation and/or
injury. Indeed pulmonary pathology has been reported in
previous studies of PbA infection, including increased
pulmonary vascular permeability and edema [8,26-28].
Additionally, respiratory distress is associated with severe
malaria due to P. falciparum [29,30], and pulmonary
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edema often occurs in individuals who develop CM
[31,32].

Baseline differences and unique temporal responses to
PbA infection in CM-resistant (BALBIc) versus CM-
susceptible (B6) mice are predominantly associated with
immune function

Different clinical outcomes to malaria may be attributable
to the differential immunological resting state of resistant
(BALB/c) and susceptible (B6) hosts - that is, differences
in transcriptional status at baseline may influence the sub-
sequent course of infection. Additionally, host response
during infection is likely to contribute to outcome. To test
these hypotheses, a linear model was employed to com-
pare expression profiles in specific tissues of both mouse
strains at baseline (day 0) and between baseline and post-
infection (days 3 and 6 versus day 0). Six hundred and
eight (608) mouse genes were expressed differentially at
baseline (P < 0.05), and 607 genes showed a significant
differential response to infection (P < 0.05) between
resistant and susceptible mice. Two hundred and sixty-six
(266) genes were differentially expressed both at baseline
and over infection, and 949 genes were differentially
expressed at baseline and/or during the course of infec-
tion. To further characterize these 949 genes, we per-
formed clustering analysis of gene expression at each time
point in all tissues (Figure 3). This revealed several groups
of genes with distinctive profiles over the time course,
many of which are enriched for immunological GO-BP
categories.

The expression of one group of 191 genes was consistently
greater in resistant mice at baseline and over infection
(Figure 3 lower panel, metallic blue bar). Functional cate-
gories significantly enriched in this group included
'defence response’, 'immune response', 'complement acti-
vation' and 'humoral immune response'. Inmune-related
genes within these groups included interferon-inducible
guanylate nucleotide binding protein 1 (gbp1) and chem-
okine (C-C motif) receptor 4 (ccr4).

Of interest was a cluster of 265 genes with significant
enrichment in immune related GO categories. This cluster
was highly expressed at baseline in livers of resistant ani-
mals, up-regulated in livers of susceptible mice over the
course of infection, as well as being upregulated in lungs
and spleens of resistant mice during infection (Figure 3
lower panel, maroon bar). Functional annotations associ-
ated with this cluster included 'cell adhesion’, 'cell com-
munication', 'response to stimulus', 'external stimulus
and biotic stimulus', and 'defence, immune and humoral
immune response'. Several immunologic cell surface mol-
ecules were clustered within this group (e.g., vcam1), as
were numerous genes containing immunoglobulin (Ig)
domains. Additionally, 38 transcripts encoded or puta-
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Figure 2

Overview of mouse and malaria gene expression in all organs. A. Highly expressed mouse genes. 2268 mouse genes
were expressed in the top 25th percentile. Left, normalized intensity values of genes (in rows) are ordered using Pearson cor-
relation and hierarchical clustering. Samples (columns) are grouped chronologically (i.e. Day 0, 3, and 6) by organ. Right, GO-
gram indicates statistically significant enrichments of select GO-BP functional annotations in gene clusters. Red bars indicate
that a particular gene is annotated with the given GO-BP category and that the GO-BP category is significantly over-repre-
sented within the cluster in which the gene was placed. Blue bars indicate that a particular gene is annotated with the given GO
category and that the GO category is not significantly enriched within the given cluster. Not all GO categories that displayed
significant enrichment are shown. For brevity, GO-BP category names are abbreviated and final digits of GO identifiers are
shown in parentheses. The vertical multi-colored bar denotes gene clusters (pink indicates genes highly expressed in the lung,
blue in brain, yellow in liver and grey in spleen). GO-BP categories overrepresented in each of the known organs correlate
with known function, e.g. GO-BP categories significantly enriched in the spleen cluster include "immune response" and
"response to biotic stimulus". B. Highly expressed malaria genes. 2159 malaria genes were expressed in the top 25t percentile.
Left, normalized intensity values of genes were ordered using Pearson correlation and hierarchical clustering. Samples are
grouped chronologically by organ. Middle and Right, GO- and Protein-gram indicate statistically significant enrichments of GO-
BP or Pfam annotations in highlighted gene clusters. Color codes are as in A. Interestingly, the majority of highly expressed
PbA genes were found in the lung and functional annotations for these transcripts included categories related to metabolism or
host-parasite interaction.
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Figure 3

Differentially expressed genes at baseline (before infection) and over the infection time course between resist-
ant (BALB/c) and susceptible (B6) mice. 608 mouse genes were differentially expressed prior to infection and 607 mouse
genes were differentially expressed over infection (linear model, P < 0.05), with 266 differentially expressed in both categories.
Left, heat maps showing significance levels at day 0 or responding to infection (Resp. Inf.), which shows whether differentially
expressed genes were significantly different prior to infection, over infection or both. Middle left, log2-scale ratios of BALB/c to
B6 intensity values of the 949 differentially expressed genes (in rows) grouped using cosine-angle correlation and hierarchical
clustering. Samples (columns) are chronologically ordered by organ. Middle, corresponding intensities for each gene (normal-
ized and median-subtracted) and for both mouse strains are shown. Nine major clusters are highlighted on the dendrogram
with a vertical, multi-colored bar. Right, GO-gram indicating statistically significant enrichments of functional (GO-BP) annota-
tions in the highlighted clusters. Numbers in parenthesis correspond to final digits of GO identifiers. Red bars indicate that a
particular gene is annotated with the given GO-BP category and that the GO-BP category is significantly over-represented
within the cluster in which the gene was placed. Blue bars indicate that a particular gene is annotated with the given GO cate-
gory and that the GO category is not significantly enriched within the given cluster. Not all GO categories that displayed signif-
icant enrichment are shown. Lower panel, detailed view of representative clusters including highlighted genes of interest.
Clusters of differentially expressed genes were up-regulated in resistant mice at day 0 and remained up-regulated over infec-
tion (e.g. "blue" cluster), changed over infection (orange) or were up-regulated in susceptible mice at day 0 and remained up-
regulated over infection (turquoise).
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tively encoded Ig family member genes. Other potentially
important transcripts figure included cytokine receptors, 2
subcomponents of complement component 1q, at least 9
interferon-inducible genes and several signalling mole-
cule transcripts.

A third gene cluster of interest (Figure 3 lower panel, tur-
quoise bar), significantly associated with the GO annota-
tions of 'signal transduction', 'cell communication', 'cell
surface receptor linked signal transduction' and 'G-pro-
tein coupled receptor signalling pathway', was up-regu-
lated in susceptible mice at baseline and in response to
infection. Genes encoding proteins likely involved in cell
communication included platelet-derived growth factor
receptor-like (pdgfr1) and members of the uPAR/Ly6/
CD59 family. C-reative protein (crp) was also highly up-
regulated in the lungs of resistant mice at baseline,
decreasing over infection.

Additional analysis of the genes selected by the linear
model, using the Ingenuity pathways analysis program,
identified pathways and gene networks enriched in the
expression data and therefore likely to be important in
CM pathogenesis. Pathways significantly associated with
all genes selected by the linear model (right-tailed Fisher's
Exact Test, p < 0.05) include pyruvate metabolism, p38
MAPK signalling and platelet-derived growth factor
(PDGF) signalling [see Additional file 2]. Pyruvate kinase
deficiency has been shown to protect animals from severe
disease in another murine malaria model, P. chabaudi
chabaudi [33]. In vitro studies have demonstrated that P.
falciparum glycosylphosphatidylinositol (GPI) moities
stimulate macrophages to produce the proinflammatory
cytokines IL-6 and IL-12 via a p38 MAPK-dependent path-
way [34]. Although no studies have directly linked PDGF
signaling with malaria infection, PDGF is known to stim-
ulate proliferation and chemotaxis in many cell types,
including leukocytes; Moreover, platelets are a source of
PDGF and may be important in PbA pathogenesis [5,35].

Analysis of genes differentially expressed in the liver at day
0 identified a network involving several immune-related
transcripts, including signal transducer and activator of
transcription 1 (stat1), a transcription factor involved in
several inflammatory signaling processes (Figure 4A).
Many genes in this network were highly expressed in
resistant mice at baseline and became up-regulated in sus-
ceptible mice over the course of infection (Figure 4B).
Therefore, Statl-mediated signaling, which includes the
interferon-0/B and interferon-y signaling pathways, may
moderate survival early in PbA infection. Our analysis
shows that resistant BALB/c mice are primed for this
response at baseline, while B6 mice show a delayed
response, which may contribute to poor outcome. Both
interferon-o/f and interferon-y signaling have previously
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been associated with malaria infection. Development of
CM in PbA infection requires both IFNyand IFNYy receptor
[28,36]. However, early production of IFNY, as observed
in the K173 murine model of non-cerebral malaria may
protect against subsequent progression to cerebral malaria
[9]. Moreover, IFNo. and IFNYy receptor polymorphisms
have been linked to protection from severe and cerebral
malaria in humans [37,38]. Recent work comparing tran-
scriptional responses in presymptomatic versus clinically
apparent P. falciparum infection identified IFNY signalling
pathway members, including STAT1, to be induced early
in infection [16], lending further support to the role of
this signalling pathway. Since the differential response
appears to involve a temporal sequence (i.e., early expres-
sion occurs in mice that survive acute infection and late
expression involves CM development), enhancement of
this pathway at appropriate times during the course of
infection could improve the outcome of susceptible ani-
mals. Further experiments in a broader range of mouse
strains will be required to examine how Statl-mediated
signalling, including early interferon-o/f3 and/or-y medi-
ated responses, modulates the progression of plasmodial
infections and whether it could be used as a biomarker to
predict resistance to CM.

Malaria gene expression is modified by host genetic
background and tissue microenvironment

We hypothesized that malaria gene expression would dif-
fer depending on the susceptibility status of the mamma-
lian host. Therefore, we examined differential PbA gene
expression between mouse strains. Using a linear model,
469 malaria genes were identified as differentially
expressed (P < 0.05, Figure 5). Of note, when clustered,
these genes showed striking differences, not only between
resistant and susceptible hosts, but also between the target
tissues examined (Figure 5).

An initial group of 60 genes, expressed in the lung and
liver of susceptible (B6) mice (Figure 5 lower panel, tur-
quoise bar) was over-represented in the GO category of
'cell communication'. One major cluster defined a set of
53 co-expressed genes highly up-regulated in the lungs
and livers of susceptible (B6) mice and spleens of resistant
(BALB/c) mice (Figure 5 lower panel, navy bar). GO cate-
gories significantly enriched in this cluster included
'response to stimulus and temperature’, 'glucose, amino
acid, hypusine and pigment metabolism' and the four pre-
dominant GO categories of 'biosynthesis', 'cellular proc-
ess', 'metabolism' and 'physiological process'. The cluster
representing 54 highly expressed genes in spleens of sus-
ceptible mice (Figure 5 lower panel, maroon bar) had lim-
ited functional annotations, but was significantly
represented in the GO categories of 'response to stimulus'
and 'drug transport'. A smaller cluster of 33 genes, which
was up-regulated in the lungs of resistant mice and to a
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Figure 4

A network involving genes differentially expressed at Day0 may be associated with protective early immune
response to infection. A. Genes differentially expressed at baseline in liver were found to be significantly overrepresented in
this network by the Ingenuity Pathway Analysis software (P < 0.05). This network involves the transcription factor stat/ and
many other immunologically important transcripts encoding cell adhesion molecules (icam !, vcam1), receptors (tlr8,ifnar2)
acute phase proteins (crp, apcs) and others (cxcl9, gbp |, ikbke). Increasing colour intensities indicate relative up-regulation of
gene expression in resistant (red nodes) compared to susceptible mice (green nodes). B. Clustergram showing log2-scale
ratios of BALB/c to B6 intensity values of the genes found in the network (A). Genes (in rows) are grouped using cosine-angle
correlation and hierarchical clustering, and samples (columns) are chronologically ordered by organ. Many of these genes
which were upregulated in BALB/c liver at baseline become up-regulated in susceptible (B6) mice over the course of infection.
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Malaria genes differentially expressed across the infection time course in resistant and susceptible mice. 439
PbA genes were selected as differentially expressed in resistant and susceptible hosts during infection (linear model, P < 0.05).
Left, log2-ratios of BALB/c to B6 intensity measurements of PbA genes (rows) are clustered using cosine-angle correlation.
Samples (in columns) are chronologically ordered by organ. Middle, intensities (normalized and median-subtracted) are shown
for each gene in each mouse strain. Eight major clusters are highlighted on the dendrogram and using a vertical, multi-colored
bar. Right, GO- and Protein-grams indicating statistically significant enrichments of GO-BP or Pfam annotations in the high-
lighted clusters. GO-BP and Pfam names are abbreviated and numbers in parenthesis correspond to final digits of GO identifi-
ers. Red bars indicate that a particular gene is annotated with the given category and that the category is significantly over-
represented within the cluster in which the gene was placed. Blue bars indicate that a particular gene is annotated with the
given category and that the category is not significantly enriched within the given cluster. Not all GO and Pfam categories that
displayed significant enrichment are shown. Lower panel, detailed view of representative clusters including highlighted genes of
interest. The clusters identify gene groups that show remarkable differences in expression between hosts and also between tis-
sues, giving evidence that PbA transcription is influenced both by the host response and tissue microenvironment.
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lesser extent in the livers of susceptible animals, was asso-
ciated with regulation of enzyme activity and mitotic
interphase (Figure 5 lower panel, light blue bar). Lastly, a
prominent cluster containing predominantly putative
genes lacking GO annotations appeared in the brains of
resistant mice (Figure 5 lower panel, purple bar).

Although it was anticipated that parasites might respond
differently in resistant versus susceptible hosts, the unique
transcriptional signature that the parasite displayed in
each of the four organs examined provides in vivo evi-
dence that malaria parasites are profoundly influenced by
the host genetic background and tissue microenviron-
ment in which they replicate or sequester. The systematic
transcriptional profiling of the same parasite isolate in
multiple organs identified differential expression of a
number of enzymes involved with energy pathways, cell
signalling molecules, and genes encoding heat-shock pro-
teins, some of which may constitute the parasites' own
response to host defence. However, many of the tran-
scripts remain annotated as hypothetical proteins and sev-
eral evident gene clusters, especially those transcribed in
the brains, have no gene ontology or protein information
associated with them. Regardless, further investigation of
these differentially expressed clusters may yield new
potential targets for drug development and provide fur-
ther insights into the regulation of plasmodial virulence
determinants in vivo.

Verification of expression analysis using quantitative real-
time RT-PCR

Quantitative real-time RT-PCR (qRT-PCR) was performed
to analyze the expression of a number of representative
mouse genes (including cell adhesion molecules,
cytokines, and interferon-inducible transcripts) and PbA
genes, which were either identified by our statistical anal-
ysis or previously shown to be important in other studies
but not identified by our analysis (e.g. TNF-a). qRT-PCR
results correlated well with normalized intensity data in
each organ at each time point, yielding a median overall
correlation of 0.724 with the microarray data, and thereby
confirming the validity of observed gene expression pat-
terns [see Additional file 3].

Analysis of mouse and malaria gene groups previously
associated with malaria disease pathogenesis

Previous studies in various experimental models of
malaria have demonstrated that specific host responses
may influence clinical outcome [14,15] and that certain
malaria genes may contribute to parasite virulence or dis-
ease pathogenesis. Based on the results from these previ-
ous studies, we chose to examine expression patterns of
genes represented on the array in specific categories asso-
ciated with malaria infection. For mouse genes, functional
categories included 'cell adhesion', 'toll-like receptors',
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'immune response' (cytokines, chemokines and their
receptors), 'interferon responsive genes', 'acute phase pro-
teins', 'erythroid-associated transcripts', 'complement acti-
vation', 'glycolysis' and 'hemostasis' [see Additional file
4]. PbA transcripts examined included the bir family of
genes, orthologues of the P. falciparum rif/stevor genes
[39] which encode for variant surface antigens [40]; an
orthologue of sequestrin and the GO-BP category of 'inva-
sion' [see Additional file 5]. While many of the PbA tran-
scripts were in the top quartile of expressed genes,
especially in the lungs, none of the chosen groups showed
a significant enrichment of genes selected by the linear
model (hypergeometric distribution, P < 0.05) and only
two were differentially expressed between resistant and
susceptible animals. This finding suggests that while par-
asite surface molecules and invasion-associated genes
may be important in infection, they are not associated
with a parasite phenotype that promotes the development
of CM.

However, in several host gene groups, there was a signifi-
cant enrichment of differentially expressed genes selected
by the linear model (Figure 6). This emphasizes the role
of toll-like receptors; cytokines, chemokines and their
receptors; interferon responsive genes; acute phase pro-
teins and complement activation groups in the PbA CM
model. In our analysis, many IFN-inducible genes were
identified as differentially expressed (Figure 6C), lending
further support for the importance of the timing and mag-
nitude of interferon responses in mediating outcomes in
PbA infection. With this and other microarray studies
[13,14,16] identifying the expression of interferon-induc-
ible genes in response to P. berghei, it could be argued that
differences in constitutive and early innate immune
responses by IFN-regulated genes, could contribute to
innate resistance in BALB/c mice, and may be prognostic
of outcome.

This analysis also identified complement-related genes as
a group likely to be important to PbA susceptibility (Fig-
ure G6E). Epidemiological evidence links decreased com-
plement receptor 1 (CR1) expression with reduced
malaria incidence and disease severity [41]. Additionally,
increased expression of Clgbeta is found in the brains of
susceptible mice, compared to resistant ones, in PbA
infection [15]. As with unregulated cytokines, a defective
or deregulated complement response may also contribute
to the pathophysiology of malaria.

Conclusion

In this study, we designed and applied a combination oli-
gonucleotide microarray to simultaneously interrogate
organ-specific transcriptional responses on both sides of
the pathogen-host interface in experimental murine
malaria. The use of this and other host and/or plasmo-
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Figure 6

Gene groups previously implicated in host response to malaria with significant enrichment of genes selected
by the linear model. The hypergeometric distribution was used to determine whether there was significant overlap between
genes in categories previously implicated in malaria and those chosen by the linear model. Categories that showed an enrich-
ment of differentially expressed genes included: A. Toll-like receptors, B. Immune response (cytokines, chemokines and their
receptors), C. Interferon responsive genes, D. Acute phase proteins and E. Complement activation. Intensity values (median-
subtracted, normalized, log2 scale) are shown for mouse genes (rows) represented on the microarray, in functional categories
previously associated with malaria infection. Samples (columns) are chronologically ordered by organ. Left, heat maps showing
relative intensity (%-tile Int.), and significance levels at day 0 (DO0) or responding to infection (R.l.), which shows whether the
corresponding gene was expressed significantly different between resistant and susceptible mice prior to infection, over infec-
tion or both. The final digits of its GO identifiers in parenthesis indicate GO-BP categories. Genes in each group were ordered
using cosine-angle correlation and hierarchical clustering on the log-ratios.
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dium microarrays to examine parasite transcriptional pro-
files in vivo [10-15,17], demonstrates important features
of how both host and pathogen respond during infection.
A host/parasite combination array not only offers the
advantage of providing concurrent information about
both organisms, but is also more time- and cost-effective,
and does not provide additional challenges for data anal-
ysis than using separate platforms.

The combination microarray data generated by this study
provide an initial understanding of the dynamic tissue-
specific bi-directional interaction between pathogen and
host in malaria. Several unique insights emerged from this
study. From the pathogen perspective, the lung is an
important site of parasite metabolism and proliferation
and that parasite transcriptional differences occurred not
only between different hosts, but also within different
organ environments. The differential response between
resistant and susceptible mice was primarily associated
with immune function and our analysis provides evidence
for the importance of interferon signalling, interferon-
responsive genes and complement-related genes in CM
pathogenesis. Ultimately, when combined with comple-
mentary genetic strategies including targeted gene disrup-
tion, or extended to other host-pathogen pairs including
humans and P. falciparum, such work may provide further
insights into the pathogenesis of CM and facilitate the
design of novel interventions targeting both host and par-
asite gene networks to improve clinical outcome in
malaria.

Methods

Mouse/PbA combination microarray design

The 21,626 mouse probes were identical to those in a pre-
vious study for which hybridization was detected in at
least one of 55 mouse tissues analyzed [20]. 12,328
known and predicted P. berghei gene sequences were
downloaded from the Plasmodium falciparum Genome
Projects website at the Wellcome Trust Sanger Insti-
tute[42]. P. berghei EST (5,582) and GSS (5,482)
sequences were gathered from the University of Florida P.
berghei Genome Tag Sequences website in August 2004
[43]. Redundancy checks were performed using sequence
alignments (BLAST) with an e-value threshold of e-8. From
the University of Florida sequences, 4,520 GSS sequences
were found to be unique from ESTs. From the Sanger set,
7,211 sequences were found to be unique from ESTs. All
University of Florida EST sequences were included in the
final sequence set which totaled 17,313 malaria
sequences. Sixty-mer probes were designed using a proto-
col in which T, -balanced sequences beginning every 10
bases in each target gene are evaluated for secondary struc-
ture, repeat content, and uniqueness, and a single probe
that best balances these parameters was selected. One or
two probes were designed for each of the malaria
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sequences. Probe sequences were submitted to Agilent
Technologies (Palo Alto CA) for array manufacture.

Mice and parasites

Experiments were approved by and conducted according
to the University of Toronto animal ethics guidelines.
Male B6 and BALB/c mice, 6-8 weeks of age, were
obtained from Charles River Laboratories (Senneville
QC). Cryopreserved P. berghei ANKA (MR4, Manassas VA)
was thawed and passaged through naive B6 donor mice.

Experimental design

On day 0, prior to infection, 5 mice from each strain were
euthanized and served as a baseline control for all experi-
mental mice. Immediately following euthanasia, whole
blood was collected by direct cardiac puncture, and intact
brains, livers, spleens and lungs were excised, snap-frozen
in liquid nitrogen and stored at -80°C until use. 10 mice
from each strain were infected with 1 x 10 freshly isolated
P. berghei ANKA parasitized erythrocytes by intraperito-
neal injection. Parasitemia was monitored daily using
thin blood smears stained with modified Giemsa (Proto-
col Hema 3 Stain Set, Sigma, Oakville ON). Five mice
from each strain were sacrificed at both day 3 and day 6
following infection. Blood and organs were harvested as
above.

RNA isolation

Total RNA was extracted by homogenizing organs in Tri-
zol reagent (Invitrogen, Burlington ON) according to the
manufacturer's instructions, and mRNA was purified as
described previously [20,44]. Briefly, RNA samples were
denatured and loaded onto a 0.25 ml Oligo-dT cellulose
(NEB, Mississauga ON) column in 40 mM Tris pH7.5, 1
M NacCl, 2 mM EDTA and 0.2% SDS. The columns were
washed, and RNA was eluted in TE. This process was
repeated once. Eluted mRNA was ethanol precipitated,
resuspended in dH20 and stored at -80°C until use. Integ-
rity of RNA was assessed by formaldehyde agarose gel
electrophoresis.

cDNA labeling and microarray hybridization

cDNA was reverse-transcribed from 1--2 g mRNA using
Superscript 1I reverse p transcriptase (Invitrogen) with 1
ug random nonamer primers and 0.25 g T18VN per p
reaction. The reaction mix contained a final concentration
of 1X RT Buffer, 10 mM DTT, 0.5 mM each ANTP and 0.5
mM 5-(3-aminoallyl)-2'deoxyuridine-5'-triphosphate
(AAdUTP, Sigma). Following the RT reaction, RNA was
hydrolyzed using NaOH/EDTA and cDNA was purified
using QIAquick PCR Purification columns (Qiagen, Mis-
sissauga ON), washed with 80% ethanol and eluted in
water. Purified cDNA was coupled with N-hydroxysuccin-
imide esters of Cy3 or Cy5 (GE Lifesciences, Baie d'Urfe
QC) in bicarbonate buffer, following the manufacturer's
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instructions. Dye reactions were quenched by adding
hydroxylamine and labeled cDNAs were separated from
free dye molecules using QIAquick columns. Cy3 and
Cy5-labeled cDNA pairs and Agilent control spots were
added to a final volume of 0.5 ml hybridization buffer (1
M NaCl, 0.5% sodium sarcosine, 50 mM methyl ethane
sulfonate (MES), pH 6.5, 33% formamide and 40 g
salmon sperm DNA (Invitrogen)). Hybridizations were
performed in Agilent hybridization chambers at 42°C
with rotation for 18-24 hours. Slides were washed in 6X
SSPE, 0.005% sarcosine, followed by 0.06X SSPE, allowed
to dry and scanned with a 4000A microarray scanner. TIFF
images were quantified with GenePix (Axon Instruments,
Union City CA). Each array was hybridized with two sam-
ples representing equivalent tissues at equivalent time
points in the different mouse strains.

Normalization

The median intensity measurements extracted from the
GenePix files were spatially detrended [20]. We applied
variance stabilizing normalization (VSN) [45] in Biocon-
ductor [46] and transformed to log2 scale. To compensate
for potential cross-hybridization of mouse mRNA to
malaria probes, the day 0 intensity value of each probe
was subtracted from the day 3 and 6 intensity values in the
same tissue. The intensity scale data (shown in Figures 2,
3 and 4) was median-subtracted across tissues. Because
most genes are not expressed in most tissues, this prevents
the clustering algorithm from seizing on noise amplified
in the log scale. After the cross-hybridization removal step
and median subtraction, all negative values were set to
zero. Finally, the ratios of BALB/c to C57BL/6 intensity
measurements in log2 scale (henceforth referred to as log
ratios) were obtained after loess smoothing using Biocon-
ductor [46] of VSN-normalized arrays.

Microarray probe annotation

Gene names were obtained by pairwise alignment to Ref-
seq (m33 May 2005) and Ensembl (v31 May 2005) using
megablast [47]. The corresponding official gene names to
the RefSeq and Ensembl IDs were obtained from the
Mouse Genome Informatics (MGI). GO-Biological Proc-
ess (GO-BP) annotations for mouse probes were from
Zhang et al. [20]. PbA probes were aligned using blat [48]
to the gene sequences provided by the P. berghei genome
project at the Sanger Institute downloaded in July 2005
[42]. Since, to the best of our knowledge, there is no P.
berghei functional annotation data, we annotated PbA
genes by their P. falciparum orthologues using homology
tables were obtained from Hall et al. [18]. Among the
8,577 PbA genes in the arrays, 2,616 have a P. falciparum
orthologous gene whose identifier starts with "PF" or
"MAL". P. falciparum GO-BP annotations were obtained
from the Gene Ontology database downloaded in May
2005 and PlasmoDB annotations released in October
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2002 [49]. Only 813 out of the 2,616 P. falciparum genes
with a homologous PbA gene in the arrays have a func-
tional annotation. Pfam assignments available for 8,502
malaria genes in the arrays were downloaded from
GeneDB on November 24th, 2005 [50]. Of these, only
1,106 or 13% have a product name other than "hypothet-
ical protein".

Statistical analysis

For statistical analysis, linear models for microarray data
[51] were applied to the normalized log ratios using the
Limma software package version 1.9.6 [52] in Bioconduc-
tor. Linear models are a statistical approach similar to
ANOVA, which generalize both ANOVAs and linear
regressions. B6 samples were taken as reference in the
design matrix and two contrast matrices were used. The
first contrast matrix was used to estimate the difference
between susceptible and resistant mice at day 0. The sec-
ond contrast matrix was used to estimate the difference in
the response to the infection between susceptible and
resistant mice (i.e., to compare the difference between the
expression level at day 0 and the average expression level
of day 3 and 6 between the two mouse strains). Design
and contrast matrices are available upon request. P-values
for the four tissues were combined in a p-value per probe
using the F-distribution. F-pvalues of probes mapped to
the same gene were combined using Fischer method.
Genes with a combined F-p-value < 0.05 were considered
differentially expressed. P-values were not corrected for
multiple testing.

Clustering

We obtained the log ratios per gene by averaging the log
ratios of probes mapped to the same gene. Genes were
clustered according to their log ratio using either Pearson
(Figure 2) or cosine-angle correlation (Figures 3, 4, 5, 6),
and hierarchical clustering functions available in Biocon-
ductor and R. The intensity diagrams show the median-
subtracted intensity per gene obtained by averaging the
relative measurements of probes mapped to the same
gene. Clusters were selected for functional/annotation
analysis by partitioning the corresponding dendrogram at
a fixed height (between 1.2 and 1.7). The exact height was
manually determined for each dendrogram based on the
visual homogeneity of the sub-clusters and their size.

Functional analysis

GO annotations were up-propagated using the GO-graph
available in the GO package version 1.8.2 in Bioconduc-
tor. Enrichment of functional (GO-BP) or protein (Pfam)
annotations on each sub-cluster was scored using the
hypergeometric distribution. Annotations with a hyperge-
ometric p-value smaller than 0.05 were considered to be
significantly over-represented in a sub-cluster. For visuali-
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zation, similar significant GO categories were joined
together under their most specific common ancestor.

Network and pathway analysis

Networks and pathways involving genes selected by the
linear model were identified using Ingenuity Pathway
Analysis software [53]. The analysis was performed on all
949 genes differentially expressed at baseline and across
the course of infection (Figure 3), and also on genes dif-
ferentially expressed per tissue. Significance values were
calculated using a right-tailed Fisher's Exact Test. The one-
tailed version of Fisher's Exact Test is identical to the cor-
responding test based on the hypergeometric distribution.

Comparison between the malaria transcriptome and
interactome

To explore whether there is a relation between the malaria
expression profiles obtained in this work and protein-pro-
tein interaction (PPI) data, we compared the PPI network
of P. falciparum described by Lacount, DJ et al. [23] with
the cluster graph shown in Figure 2. Enrichment of pro-
tein-protein interactions in clusters was determined by
random permutation of gene labels in the interaction net-
work. There are 216 interacting protein pairs belonging to
the same cluster among the 602 P. falciparum genes in the
PPI network with a PbA homologue in the array. This
intersection is significantly higher than expected by
chance (P-value < 0.0008) when compared with the inter-
section obtained with 10,000 random networks. To deter-
mine whether any of the clusters were enriched for
interacting proteins from any of the sub-networks [23], we
used the hypergeometric distribution and selected those
sub-networks with a p-value < 0.05.

Quantitative real-time RT-PCR (qPCR)

cDNA was synthesized from 0.5 pug of mRNA using Super-
script II reverse transcriptase with Oligo (dT),,_;¢ primers
(Invitrogen). Serial dilutions of mouse or PbA genomic
DNA purified from blood (Qiagen) were used as stand-
ards. gDNA standards or cDNA were added to the qPCR
reaction containing 1X Power Sybr Green Master Mix
(Applied Biosystems, Streetsville ON) and 0.5 uM primers
in a final volume of 10 pl. qPCR was performed using the
ABI Prism® 7900HT Sequence Detection System (Applied
Biosystems). PCR primer sequences are posted on the
website (below). Copy numbers were normalized to 5
mouse housekeeping genes (mouse) [54] or to cDNA con-
centration (PbA). qRT-PCR data and microarray data
(normalized intensities) were compared by calculating
the overall correlation of all organs at all time points in
both mouse strains for each gene.

Supplementary information
Detailed protocols, probe sequences and mappings, gene
annotations, all microarray data, and information about
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the microarray hybridizations are posted on the project
website [55]. The microarray platform (GPL4220 [NCBI
#15193528]) and data series (GSE5672 [NCBI tracking
system #15195573]) have been submitted to the Gene
Expression Omnibus (GEO).

Abbreviations
CM: Cerebral Malaria

PbA: Plasmodium berghei ANKA
B6: C57BL/6 mouse strain

GO-BP:Gene Ontology Biological ProcessPPI: Protein-
Protein Interaction
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qRT-PCR: quantitative real-time RT-PCR

Authors' contributions

FEL carried out the animal studies, organ and RNA isola-
tion, performed microarray hybridizations, qRT-PCR and
prepared the manuscript. LP-C performed all data analysis
including probe annotation, normalization and statisti-
cal/functional analysis; and prepared the figures. NM
wrote the software used for probe design, designed micro-
array probes and performed microarray hybridizations.
WCL assisted with data interpretation. TRH conceived the
"combination array" concept, designed microarrays and
contributed to study design and coordination. KCK con-
ceived the study, and contributed to its design and coordi-
nation. All authors helped to draft and approved the final
manuscript.

Additional material

Additional file 1

Significant protein-protein interaction networks associated with Figure 2B
(PbA organ-specific gene expression clusters) Analysis of organ-specific
clusters of expressed genes found in P. falciparum Protein-Protein Inter-
action (PPI) networks. Several gene pairs in the PPI network were signif-
icantly over-represented in lung-expressed PbA genes (pink cluster, P <
0.001), including some associated with cell invasion (P < 0.05).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-295-S1.doc]
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Additional file 2

Significant pathways enriched with genes selected by the linear model.
Additional analysis of the genes selected by the linear model, using the
Ingenuity pathways analysis program, identified pathways enriched in the
expression data and therefore likely to be important in CM pathogenesis.
Pathways shown are significantly associated (right-tailed Fisher's Exact
Test, p < 0.05) with all selected genes, all genes and organ-specific genes
differentially responding to infection, or all genes and organ-specific genes
differentially expressed at baseline (Day 0).

Click here for file

|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-295-S2 xls]|

Additional file 3

Correlation between qRT-PCR results and microarray intensity data. R2
values for each gene, comparing gRT-PCR results and microarray inten-
sity data at all time points in all tissues and both mouse strains.

Click here for file

|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-295-S3.doc]

Additional file 4

Microarray data for gene groups previously implicated in host response to
malaria. Intensity values (median-subtracted, normalized, 10g2 scale) are
shown for mouse genes (rows) represented on the microarray, in several
functional categories thought to be associated with malaria infection.
Samples (columns) are chronologically ordered by organ. Left, heat maps
showing relative intensity (%-tile Int.), and significance levels at day 0
(D0) or responding to infection (R.1.), which shows whether the corre-
sponding gene was expressed significantly different between resistant and
susceptible mice prior to infection, over infection or both. Categories exam-
ined included cell adhesion, toll-like receptors, immune response
(cytokines, chemokines and their receptors), interferon responsive genes,
acute phase proteins, erythroid-associated transcripts, complement activa-
tion, glycolysis and hemostasis. The final digits of its GO identifiers in
parenthesis indicate GO-BP categories. Genes in each group were ordered
using cosine-angle correlation and hierarchical clustering on the log-
ratios. The hypergeometric distribution was used to determine whether
there was significant overlap between genes in these categories and those
chosen by the linear model. This analysis supports the role of toll-like
receptors; cytokines, chemokines and their receptors; interferon responsive
genes; acute phase proteins and complement activation in the PbA CM
model.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-295-S4.ps]|

Additional file 5

Microarray data for PbA gene groups potentially involved with malaria
pathogenesis. Intensity measurements (median-subtracted, normalized,
log2 scale) are shown for PbA genes (rows) represented on the microarray,
for BIR-related transcripts (BIR; BIR protein; BIR protein, putative; BIR
protein, pseudogene, putative), merozoite-related transcripts (merozoite
capping protein-1, merozoite surface protein 8, merozoite surface protein
1, precursor), sequestrin and genes in the entry into host cell GO-BP cat-
egory. Samples (columns) are chronologically ordered by organ. Left, heat
maps showing relative intensity (%-tile Int.), and significance levels
responding to infection (Resp. Inf.), which shows whether the correspond-
ing gene was expressed significantly different between resistant and sus-
ceptible mice over infection.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-295-S5.eps]
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