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Abstract
Background: Alzheimer's disease (AD) is a complex disorder that involves multiple biological
processes. Many genes implicated in these processes may be present in low abundance in the
human brain. DNA microarray analysis identifies changed genes that are expressed at high or
moderate levels. Complementary to this approach, we described here a novel technology designed
specifically to isolate rare and novel genes previously undetectable by other methods. We have
used this method to identify differentially expressed genes in brains affected by AD. Our method,
termed Subtractive Transcription-based Amplification of mRNA (STAR), is a combination of
subtractive RNA/DNA hybridization and RNA amplification, which allows the removal of non-
differentially expressed transcripts and the linear amplification of the differentially expressed genes.

Results: Using the STAR technology we have identified over 800 differentially expressed
sequences in AD brains, both up- and down- regulated, compared to age-matched controls. Over
55% of the sequences represent genes of unknown function and roughly half of them were novel
and rare discoveries in the human brain. The expression changes of nearly 80 unique genes were
further confirmed by qRT-PCR and the association of additional genes with AD and/or
neurodegeneration was established using an in-house literature mining tool (LitMiner).

Conclusion: The STAR process significantly amplifies unique and rare sequences relative to
abundant housekeeping genes and, as a consequence, identifies genes not previously linked to AD.
This method also offers new opportunities to study the subtle changes in gene expression that
potentially contribute to the development and/or progression of AD.
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Background
Recent advance in molecular biology have introduced
new high-throughput tools for the analysis of differential
gene expression in complex diseases, such as Alzheimer
(AD), providing simultaneous overviews of the genes or
proteins associated with multiple cellular pathways. The
most commonly used technology for the assessment of
gene expression changes in postmortem brain is the DNA
microarray [1-5] This approach has not only confirmed
the involvement of genes implicated in AD by conven-
tional methods, but also revealed changes in additional
genes, not previously associated with AD [6,7]. However,
as this method requires a priori knowledge of gene
sequences, it cannot be applied as a discovery tool for
novel transcripts. Furthermore, the expression levels of
low abundance genes cannot be readily assessed by DNA
microarray hybridization, since reliable results are usually
obtained only for genes that are expressed in high or mod-
erate levels. This is a significant limitation since many
transcripts expressed preferentially in brain (e.g., neuro-
transmitter receptors and their regulatory factors) are
present at very low levels [8,9].

Differential display and conventional subtractive hybridi-
zation approaches are capable of detecting expression
changes in both known and novel genes. Differential dis-
play uses arbitrarily primed PCR to fingerprint differences
(from first strand cDNA) in gene expression between two
samples, with the results being determined by the intensi-
ties of bands on a polyacrylamide gel [10]. The major dis-
advantages of this method include its lack of sensitivity
for the detection of rare RNA species, the high number of
false positives generated during PCR and cloning of the
differentially expressed products from low resolution
polyacrylamide gels, where an apparent single band may
contain multiple cDNA species. Consequently, differen-
tial display is labor intensive and unreliable for this appli-
cation.

Subtractive hybridization, on the other hand, permits the
isolation of target sequences from one single-stranded
DNA population, referred to as "tester", from another
DNA population, referred to as "driver" by using an excess
of sequences. The two populations are mixed and put
through iterative rounds of subtraction of cross-hybrid-
ized products. Earlier subtractive methods required phys-
ical removal of hybridized driver and tester sequences,
which contributed to the loss of low abundance tester
sequences. Suppression subtractive hybridization (SSH) is
a newer method [11] which couples hybridization-based
de-selection of common cDNAs to PCR amplification
which enriches differentially expressed transcripts from
two mRNA sources. In contrast to differential display, the
primers for PCR amplification are clearly defined, thus
avoiding problems associated with random primers. The

main disadvantage of this procedure is its higher detection
threshold. According to the kit manufacturer's recommen-
dation (Clontech Palo Alto, CA), the difference in mRNA
levels needs to be at least 5 fold to allow reliable detec-
tion.

Here, we have developed a novel approach to the identifi-
cation of differentially expressed rare sequences through a
combination of subtractive hybridization and RNA ampli-
fication, termed a Subtractive Transcription-based Ampli-
fication of mRNA (STAR). In our method, the expressed
RNAs from two source are used for the preparation of spe-
cialized cDNA libraries, from which single stranded (+)
sense tester RNA and single stranded (-) sense driver DNA
are generated. Subtraction is accomplished by the hybrid-
ization of single-stranded driver DNA to the complemen-
tary single-stranded tester RNA, followed by RNase H
digestion. This process not only eliminates the necessity
for physical removal of hybridized common sequence,
but also eliminates the self-annealing step of the tester
nucleic acids that is required by the SSH method for the
amplification of target sequences. The self-annealing step
usually imposes kinetic limitations and requires lengthy
hybridization in order to recover rare cDNA sequences.
Furthermore, in the STAR method, the tester RNA is
designed with a defined terminal sequence which allows
the unhybridized tester RNA to be amplified in a linear
RNA amplification process, rather than exponential PCR
amplification, thereby minimizing biased sequence
amplification [12,13] Since the tester RNA remains
unchanged in the process, the products of one round of
STAR are used directly in subsequent rounds to provide
further enrichment of the unique sequences.

In this study, we applied the STAR method to an investi-
gation of changes in gene expression in port-mortem AD
brain. We show that, indeed, the STAR process signifi-
cantly increases the levels of unique and rare sequences
relative to abundant housekeeping genes and identified
changes in the expression of genes not previously linked
to the AD. We also performed extensive literature mining
to provide a basis for considering their likely involvement
in neurodegenerative processes.

Results
Characterization of the subtracted AD cDNA libraries
Two subtracted cDNA libraries, using either the 3' cDNA
of the control sample (C-AD) or the 3' cDNA of the AD
sample (AD-C) as tester, were prepared using the STAR
method (Fig 1). It was expected that they would contain
genes that were down regulated (C-AD) and up regulated
(AD-C) in AD brain, respectively. To isolate these genes,
three rounds of STAR subtraction were performed, and the
remaining 3' biased cDNA tester fragments were linearly
amplified, ligated into a pUC-modified vector and trans-
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formed into E. Coli DH10B cells. Approximately 5000 col-
onies were obtained for each STAR library. Subsequently,
PCR and DNA sequencing were performed on amplified
cDNA inserts from 600 individual colonies for each sub-
tracted library. Data analysis indicated that this number of
colonies was sufficient to represent the entire subtracted
library since many genes, including some of low abun-
dance, appeared to be represented by more than one col-
ony. The results summarizing the genes found in the C-
AD and AD-C libraries are listed in Tables 1 and 2, respec-
tively.

Of the 600 colonies analyzed from each library, over 500
contained inserts and produced readable sequences after
PCR. Sequence annotation grouped the genes into three
categories: (i) known genes, (ii) ESTs and (iii) novel
genes, whose sequences either only match a fragment of
genomic DNA or the database search did not hit any exist-
ing known sequence. The known genes were represented

by multiple colonies (Table 1, 183/266, i.e., out of 266
colonies sequenced from the C-AD library 183 were
unique sequences of known genes; Table 2, 187/277 in
the AD-C library) far more often than the novel genes
(113/131 and 109/119), indicating that known genes are
relatively more abundant than the novel genes, explaining
why they are more easily identified by traditional
approaches. Sequence annotation also revealed that genes
involved in maintenance of neuronal cell structure and
function, the ubiquitin pathway and energy metabolism
were predominant in the C-AD library, indicating that
they were down regulated in AD brains. Whereas in the
AD-C library, genes involved in inflammation, protein
translation, cytoskeleton/cell adhesion and apoptosis/
neurodegeneration were up-regulated in AD. Over 55% of
the sequenced fragments in each subtracted library repre-
sented unknown genes, of which one half were not previ-
ously described as cDNA sequences. Representative data
from these libraries is shown below.

Schematic diagram of the STAR procedureFigure 1
Schematic diagram of the STAR procedure. The solid red line represents tester specific RNA (+). The solid green line 
indicates driver specific DNA (-). The solid black line shows newly synthesized tester specific first strand cDNA (-). Short-
dashed lines show the common tester RNA (+). The long and short mixed dashed line denotes the common driver DNA (-).
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Validation of changes from the subtracted libraries
More than 40 genes from the C-AD library were randomly
selected for analysis by qRT-PCR using the pools of con-
trol and AD mRNAs as input. The results confirmed
down-regulation of over 80% of them, consistent with the
results of the subtracted library (Table 3). The data also
confirmed that a majority of these genes (over 90%) were
less abundant than β-actin. Furthermore, all novel tran-
scripts were expressed at extremely low levels, some of
them at only 0.0001–2% of the abundance of β-actin
(Table 3). Taken together these results indicated that the
STAR method permitted the isolation of differentially
expressed genes, including very rare ones. This approach
also revealed the existence of large number of previously
unidentified genes expressed in the human brain which
appear to have a disease association.

Nearly 40 randomly selected genes from the AD-C library
were also analyzed by qRT-PCR in order to further validate
the library data. In this case, less than 50% of the selected
transcripts were found to be up regulated, with a lower
percentage of novel genes (Table 4). This might be indic-
ative of a higher content of false positive in this library,
pointing out to the necessity of independent validation
prior to gene selection for down stream functional studies.
One possibility for the relatively low confirmation rate of
the data from the AD-C library is that the increases in the
expression of unconfirmed transcripts were small and,
therefore, might also be difficult to validate by qRT-PCR,
although this wasn't evident in the qRT-PCR validation of
down regulated genes from the C-AD library. Despite this,

the technique clearly identifies novel sequences that are
up regulated in AD brain.

Supporting evidence for gene association with AD
An additional approach to increase confidence in the
identified genes as likely disease candidates was to mine
knowledge pertaining to gene function in AD in the exist-
ing literature using a custom built literature mining tool,
LitMiner. Using this approach, we generated short lists of
genes whose association with AD could be further ration-
alized (Tables 5 and 6).

The data mining analysis identified 12 genes (Table 5
items 1–12), whose down-regulation in AD has been pre-
viously reported, in agreement with our results as these
genes were present in the C-AD subtractive library. Fur-
thermore, down-regulation of synuclein alpha was also
confirmed by qRT-PCR analysis (Table 5, item 12). The
remaining genes on this list (items 13–37) have never
been formally linked to AD, but their possible involve-
ment could be either inferred from the literature or from
the results of the present study. For example, mutations in
A2M, BRI3, EEF1A1, EIF2S2, MAPT and UBB (items 13–
18) have been linked to various other neurodegenerative
diseases [14-19] (Similarly, ATB2B1, CDK5R1, CPLX1,
NES, RAD21, ST13 and TAGLN3 (items 19–25) have been
shown to be down-regulated in some brain disorders [20-
26] The down-regulation of 12 genes from the C-AD
library (items 26–37) was validated by qRT-PCR (Table 3)
and a similar literature analysis further supports the
potential involvement of RELN, PRKCE and SYT4 (items

Table 2: Summary of sequenced clones from the AD-C subtracted cDNA library

Sequence type Number of colonies sequenced Number of unique genes Library representation (%)

Known 267 187 44.2

Unknown 261 236 55.8
• ESTs 142 127 30.0

• Genomic DNA or no hit 119 109 25.8

Total 528 423 100.0

Table 1: Summary of sequenced clones from the C-AD subtracted cDNA library

Sequence type Number of colonies sequenced Number of unique genes Library representation (%)

Known 266 183 44.7

Unknown: 261 226 55.3
• ESTs 131 113 27.6

• Genomic DNA or no hit 130 113 27.6

Total 527 409 100.0
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Table 3: Summary of qRT-PCR analysis of the selected genes from the C-AD library

Name Acc # Gene Description % Down Abundance relative to β-actin*

AF498312 integrin-linked kinase1 (ILK) 29% 19.00%

ANK2 NM_020977 ankyrin2, transcript varient 2 no change 11.00%

GABRB3 CR749803 Gamma-aminobutyric acid A receptor, beta 3 no change 98.00%

UBE2B NM_003337 ubiquitin-conjugating enzyme E2B 45% 33.00%

AY339422 NADH dehydrogenase sububit 3 30% 475.00%

TPI1 BC017917 triosephosphate isomerase 41% 208.00%

BCAS1 NM_003657 breast carcinoma sequence 1 20% 71.00%

E46L AK095309 Ataxin-10 no change 58.00%

SCA1 NM_000332 spinocerebellar ataxia 1 68% 3.00%

DEAF1 BC053322 transcriptional regulator protein, suppressin 24% 7.00%

HLF M95585 hepatic leukemia factor(HLF) no change 0.70%

CKIP-1 BC010149 TNF intracellular domain-interacting protein 35% 2.00%

SNCA NM_000345 synuclein, alpha SNCA 68% 0.20%

CRI1 AL357456 CREBP/EP300 inhibitory protein 1or RBP21 19% 170.00%

SYT4 BC036538 synaptotagmin IV 58% 74.60%

ARF6 BC030291 ADP-ribosylation factor 6, Arp6 59% 0.82%

PRKCE BC054052 protein kinase C, epsilonY 15% 16.90%

BC000143 ELMO2 engulfment and cell motility 2 55% 0.07%

SV2A BC045111 synaptic vesicle glycoprotein 2A 19% 2.00%

RELN NM_005045 reelin 82% 1.20%

BC042904 hypothetical protein DKFZp564A176 15% 22.20%

NM_152722 hypothetical protein FLJ25530 no change 225.00%

AK056024 EST 49% 10.60%

DR005162 EST 21% 1163.00%

AL162511 genomic DNA 49% 26.00%

AC096861 genomic DNA 19% 16.00%

AC145098 genomic DNA 41% 12.00%

AL590482 genomic DNA 86% 0.150%

AL121908 genomic DNA 18% 0.0050%

AL513318 genomic DNA 47% 0.0002%

AC099787 genomic DNA 100% 0.0012%

AL354884 genomic DNA 100% 0.0012%

AC119800 genomic DNA 50% 0.0003%

AC092631 genomic DNA 40% 0.0002%

AL138753 genomic DNA 74% 0.0002%

AL356608 genomic DNA 76% 0.0020%

AC106856 genomic DNA 17% 0.0001%

AC012071 genomic DNA no change 0.0290%

AC112717 genomic DNA 39% 0.0019%

AP002803 genomic DNA 64% 0.0140%

AL158212 genomic DNA no change 0.0002%

* Abundance relative to β-actin was calculated using a relative quantitation formula : 2-∆Ct x%, where ∆Ct is the qRT-PCR cycle number of target 
gene minus the qRT-PCR cycle number of β-actin at threshold in the same round of qRT-PCR experiment using cDNA from control brains.
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Table 4: Summary of qRT-PCR analysis of the selected clones from the AD-C library

Name Acce # Description of matched genes % Up Abundance relative to β-actin

USP10 NM_005153 ubiquitin specific protease 10 38% 12.50%

FNBP2 XM_059095 formin binding protein 2 19% 1.10%

LMNA NM_170708 lamin A/C 36% 6.0%

RPS20 NM_001023 ribosomal protein S20 23% 12%

PREPL AB007896 prolyl endopeptidase-like 25% 21.90%

SKP1A NM_170679 cyclin A/CDK2-associated protein p19 41% 67%

MARK2 BC008771 ELKL motif kinase 32% 0.84%

AHCTF1 AB059277 AT hook containing transcription factor 1 60% 10.90%

PLRG1 BC020786 pleiotropic regulator 1 32% 0.34%

APRIN NM_015032 androgen-induced proliferation inhibitor 32% 19.80%

CENTG2 NM_014914 centaurin, gamma 2 41% 6.60%

SCARB2 NM_005506 scavenger receptor class B, member 2 42% 416%

SPTBN2 NM_006946 spectrin, beta, non-erythrocytic 2 47% 34.50%

SEPT6 NM_015129 septin 6 27% 59%

SAFB NM_002967 scaffold attachment factor B 42% 7.10%

DRD1IP NM_015722 dopamine receptor D1 interacting protein 40% 26%

ARHGAP1 NM_004308 Rho GTPase activating protein 1 26% 241%

KNS2 NM_005552 kinesin 2 60/70kDa, transcript variant 1 no change 4.10%

KIAA1078 NM_203459 calmodulin regulated spectrin-associated protein 1-like 1 no change 25%

ANKMY2 BC035353 ankyrin repeat and MYND domain containing 2 no change 17%

FBXO33 BC053537 F-box protein 33, mRNA no change 0.78%

KLHDC2 NM_014315 kelch domain containing 2 no change 100%

RPRC1 NM_018067 arginine/proline rich coiled-coil 1 no change 28%

HSPH1 NM_006644 heat shock 105kD no change 48%

C21orf33 NM_004649 chromosome 21 open reading frame 33 no change 48%

MBD1 AF120981 methyl-CpG binding domain protein 1 no change 0.49%

STXBP1 NM_003165 syntaxin binding protein 1 no change 93.00%

NEK1 AF155113 NY-REN-55 antigen no change 12.30%

ASB1 NM_016114 ankyrin repeat and SOCS box-containing 1 no change 9.10%

CCNI NM_006835 cyclin I no change 49%

AL109709 EST no change 22%

BC035832 EST 17% 521%

AP002833 genomic DNA no change 6.30%

AC104964 genomic DNA no change 33%

AP002833 genomic DNA 35% 0.06%

AL138718 genomic DNA 50% 0.0032%

AC091609 genomic DNA no change 0.01%

AL953889 genomic DNA no change 1.60%
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AP002833
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC104964
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AP002833
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AL138718
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC091609
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AL953889


BMC Genomics 2006, 7:286 http://www.biomedcentral.com/1471-2164/7/286

Page 7 of 16
(page number not for citation purposes)

Table 5: A short list of down regulated genes and supporting evidence for their involvement in AD

Item Name Acce # Gene Description Evidence for Down Regulation

1 APP BC065529 amyloid beta (A4) precursor protein literature, [2], Down regulation in DS, [65]

2 CAST NM_015576 CAZ-associated structural protein literature, [40]

3 CD59 BC001506 CD59 antigen p18-20 literature, [66]

4 CDC10 BX648365 cell division cycle 10 literature, [67]

5 HK1 NM_033500 hexokinase 1 literature, [68]

6 PFKP BC002536 phosphofructokinase literature, [37]

7 PTPN11 NM_002834 protein tyrosine phosphatase, non-receptor type 11 literature, [69]

8 RPIP8 BC013240 RaP2interacting protein 8 literature, [3]

9 SCD NM_005063 stearoyl-CoA desaturase literature, [70]

10 SERPINE2 NM_006216 serine (or cysteine) proteinase inhibitor, clade E, member 2 literature, [41]

11 UCHL1 BC000332 ubiquitin thiolesterase, UCHL1 literature [71,72].

12 SNCA NM_000345 synuclein, alpha qRT-PCR, literature, [2]

13 A2M BC040071 alpha-2-macroglobulin mutation of A2M is linked to AD, [16]

14 BRI3 BC018737 Brain protein I3 mutation of BRI2 is liked to 
neurodegeneration[19]

15 EEF1A1 BC009875 Eukaryotic translation elongation factor 1 alpha 1 mutation, mutant mice exhibit 
neurodegeneration, [14]

16 EIF2S2 BC000461 Eukaryotic translation initiation factor 2, subunit 2 beta mutation, mutations causing childhood ataxia, 
[15]

17 MAPT BC032572 microtubule-associated protein tau, long splice form mutation, mutation in exon 9–13 cause 
neurodegenerative diseases including AD, [18]

18 UBB BC038999 ubiquitin B mutation, frame shift mutation fund in AD, [17]

19 ATP2B1 AK024895 ATPase, Ca++ transporting, plasma membrane 1 inferred, expression is repressed by stress, [21]

20 CDK5R1 BC035448 cyclin-dependent kinase 5, regulatory subunit 1 inferred, [73], and in ethanol induced 
neurodegeneration, [23]

21 CPLX1 BC002471 complexin 1 inferred, Down regulated in schizophrenia, [24]

22 NES AF086454 nestin inferred, decreased in injured aged hippocampus, 
[20]

23 RAD21 NM_006265 RAD21 homolog inferred, Down regulated by hypoxia, [26]

24 ST13 BC052982 suppression of tumorigenicity 13 inferred, rescue phosphorylated tau-induced cell 
death [25]

25 TAGLN3 AF303058 transgelin 3 inferred, down regulated in schizophrenia, [22]

26 ARF6 BC030291 ADP-ribosylation factor 6 qRT-PCR

27 BCAS1 NM_003657 Breast carcinoma amplified sequence 1 qRT-PCR

28 CKIP-1 BC010149 CK2 interacting protein 1 qRT-PCR

29 CRI1 AL357456 CREBP/EP300 inhibitory protein 1 qRT-PCR

30 DEAF1 BC053322 deformed epidermal autoregulatory factor 1 qRT-PCR

31 SCA1 NM_000332 spinocerebellar ataxia 1 qRT-PCR

32 SV2A BC045111 synaptic vesicle glycoprotein 2A qRT-PCR

33 TPI1 BC017917 triosephosphate isomerase qRT-PCR

34 UBE2B NM_003337 ubiquitin-conjugating enzyme E2B qRT-PCR

35 RELN NM_005045 reelin qRT-PCR and inferred, down regulation or 
mutation cause autistic disorder, [27]

36 PRKCE BC054052 protein kinase C, epsilonY qRT-PCR and inferred, suppresses Aβ 
production, [28]

37 SYT4 BC036538 synaptotagmin IV qRT-PCR, inferred, SYT(unspecified isoform) is 
down regulated in CA1 of AD brains, [2]

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC065529
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_015576
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC001506
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BX648365
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_033500
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC002536
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002834
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC013240
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005063
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006216
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC000332
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000345
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC040071
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC018737
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC009875
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC000461
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC032572
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC038999
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK024895
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC035448
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC002471
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF086454
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006265
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC052982
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF303058
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC030291
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003657
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC010149
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AL357456
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC053322
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000332
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC045111
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC017917
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003337
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005045
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC054052
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC036538
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Table 6: A short list of up regulated genes and supporting evidence for their involvement in AD

Item Name Acce # Gene Description Evidence for Down Regulation

1 CLU NM_001831 clusterin literature, [30,34]
2 GFAP NM_002055 glial fibrillary acidic protein literature, [29]
3 CP NM_000096 ceruloplasmin literature, [53]
4 DYRK1A NM_001396 dual-specificity tyrosine-(Y) phosphorylationregulated kinase 1A literature, [74]
5 FKBP1A NM_000801 FK506 binding protein 1A literature, [57]
6 FTL BC058820 ferritin, light polypeptide literature [3,34,52]
7 M6PR NM_002355 mannose-6-phosphate receptor literature, [75]
8 MAP2 NM_031846 microtubule-associated protein 2 literature, [3]
9 MBP BC008749 myelin basic protein literature, [49]
10 MT1F NM_005949 metallothionein 1F literature, [31]
11 RPL23 BC010114 ribosomal protein L23 literature, [3]
12 RPS27 NM_001030 ribosomal protein S27 literature, [76]
13 VDAC2 NM_003375 voltage-dependent anion channel 2 literature, [77]
14 YWHAE BC001440 tyrosine 3-monooxygenase/tryptophan-5-monooxygenase activation 

protein, epsilon polypeptide
literature, [78]

15 AGT NM_000029 angiotensinogen literature, [34,79]
16 STXBP1 NM_003165 syntaxin binding protein 1 literature, [3,32], qRT-PCR did not show significant change
17 KNS2 BC008881 kinesin 2 60/70kDa inferred, up regulated in injured optic nerve, [33], qRT-PCR did not show significant change
18 C21orf33 NM_004649 chromosome 21 open reading frame 33 inferred, elevated in fetal Down syndrome brain, [80]
19 FKBP2 NM_057092 FK506 binding protein 2 inferred, [57]
20 FREQ NM_014286 frequenin homolog inferred, up in Schizophrenia, [81]
21 GRM3 NM_000840 glutamate receptor, metabotropic 3 inferred, GRM2 and 4 increased in ischemic neurodegeneration, [82]
22 NPTX1 NM_002522 neuronal pentraxin I inferred, short pentraxins are upregulated in AD, [50]
23 PDE8A NM_002605 phosphodiesterase 8A inferred, family member of PDE8B, is upregulated in AD, [83]
24 AHCTF1 AB059277 AT hook containing transcription factor 1 qRT-PCR
25 APRIN NM_015032 androgen-induced proliferation inhibitor qRT-PCR
26 CENTG2 NM_014914 centaurin, gamma 2 qRT-PCR
27 LMNA NM_170708 lamin A/C qRT-PCR
28 PLRG1 BC020786 pleiotropic regulator 1 qRT-PCR
29 PREPL AB007896 prolyl endopeptidase-like qRT-PCR
30 RPS20 NM_001023 ribosomal protein S20 qRT-PCR
31 SAFB NM_002967 scaffold attachment factor B qRT-PCR
32 SPTBN2 NM_006946 spectrin, beta, non-erythrocytic 2 qRT-PCR
33 SRGAP2 XM_059095 SLIT-ROBO Rho GTPase activating protein 2 qRT-PCR
34 USP10 NM_005153 ubiquitin specific protease 10 qRT-PCR
35 ARHGAP1 NM_004308 Rho GTPase activating protein 1 (CDC42GAP) qRT-PCR, inferred, CDC42 is upregulated in AD, [60]
36 DRD1IP NM_015722 dopamine receptor D1 interacting protein qRT-PCR, inferred, up regulated in schizophrenia, [84]
37 MARK2 BC008771 MAP/microtubule affinity-regulating kinase 2 qRT-PCR, inferred, [85]
38 SCARB2 NM_005506 scavenger receptor class B, member 2, CD36 antigen qRT-PCR, Inferred, inflammation increases CD36 mRNA, thus induceCD36 antigen, [51]
39 SEPT6 NM_015129 septin 6 qRT-PCR, inferred, increased in motor deficient mice,[86]
40 SKP1A NM_170679 S-phase kinase-associated protein 1A qRT-PCR, inferred, overexpression of SKP1A together with APP increase the production of 

Aβ, [87]

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001831
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002055
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000096
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001396
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000801
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC058820
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002355
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_031846
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC008749
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005949
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC010114
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001030
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003375
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC001440
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000029
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003165
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC008881
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004649
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_057092
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_014286
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000840
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002522
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002605
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB059277
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_015032
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_014914
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_170708
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC020786
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB007896
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001023
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002967
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006946
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XM_059095
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005153
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004308
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_015722
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC008771
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005506
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_015129
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_170679
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35–37) [2,27,28] Therefore, it is likely that the down-reg-
ulation and the loss of these gene functions could play a
role in AD.

Table 6 contains a short list of genes cloned from AD-C
subtractive library and supporting evidence for their role
in AD. Sixteen of these genes (Table 6, items 1–16) have
been previously associated with AD. For example, up-reg-
ulation of CLU, GFAP, MT1F (items 1, 2 and 10, respec-
tively) have often been reported in AD brains [29-31] This
is consistent with our data from the AD-C library. Two
separate groups, Takahashi et al 2000 [32] and Loring et
al 2001 [3], reported up-regulation of STXBP1 (item 16)
in AD and the transcript of KNS2 (item 17) was reported
elevated in injured optic nerve [33]. Both genes were
found in the AD-C library and KNS2 was represented by
multiple clones; however, we could not validate these
changes by qRT-PCR (Table 5). Seven genes from this list
(Table 6, items 17–23), have been shown to be elevated in
other neurological disorders such as Schizophrenia,
Down syndrome and ischemic neurodegeneration.
Changes in the additional 17 genes (Table 6, items 24–
40) were validated by qRT-PCR, six of which (items 35–
40) could be also inferred from the literature.

Possible associations between the 37 down-regulated
(Fig. 2) and 40 up-regulated (Fig. 3) genes from the sub-

tracted libraries were mapped by additional literature
mining. We imported the Unigene names of each group of
genes into LitMiner and used "Alzheimer" and "neurode-
generation" as knowledge terms. All articles containing a
gene name, or alias and the knowledge terms, in either
title, MeSH terms or abstract were reported in a graphic
format. Any two given genes or a gene and one of the
knowledge terms appearing in the same article were con-
sidered to constitute an association. The frequencies of
these associations are represented by the number adjacent
to the connecting lines. Within LitMiner, we could rapidly
retrieve and manually scan articles to eliminate false asso-
ciation due to the misuse of gene aliases in the database.
The graphs in Figs 2 and 3 contain genes that exhibited
actual association to the knowledge terms or to other
genes. Some genes summarized in Table 5 and 6 are not
included in Figs 2 and 3 because the current software finds
only associations identified in the title, abstract or MeSH
terms. Nevertheless, the LitMiner output gives a high level
overview of the relationships of these differentially
expressed genes that is not obtainable from a simple gene
list.

Discussion
With the advent of high throughput genomics and pro-
teomics technologies, the involvement of new genes in
AD continues to emerge, indicating clearly that the full

Association of down regulated genes with AD and neurodegenerationFigure 2
Association of down regulated genes with AD and neurodegeneration. The associations between genes or between 
genes and knowledge term (Alzheimer or Neurodegeneration) are represented as a graph with the frequency indicated by 
numbers on the links. A red box or line indicates a knowledge term or a link between a gene and a knowledge term, respec-
tively. A blue box and line shows a gene that is associated with both knowledge terms. A black box and line denotes a gene that 
is associated with only one knowledge term or another gene.
Page 9 of 16
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extent of molecular and functional aberrations responsi-
ble for the etiology of AD is not yet understood. The cur-
rent high throughput methods are mainly designed to
identify changes in relatively abundant genes, whereas
weakly expressed genes or proteins are still overlooked.
For example, cDNA microarrays, although widely used,
are limited to known mRNA sequences or ESTs, thus it is
not suitable for the identification and isolation of novel
rare transcripts. Complementary to microarray technol-
ogy, subtractive hybridization is capable of detecting
changes of both known and novel genes. The existing SSH
method enriches the differentially expressed genes by
selectively suppressing the amplification of non-differen-
tially expressed transcripts in the PCR reaction, resulting
in the enrichment of differentially expressed transcripts.
An annealing step is necessary for PCR amplification and
subsequent cloning and since rare sequences re-anneal
more slowly, this process reduces their chances of discov-
ery. The STAR technology uses single strand RNA/DNA
hybridization to remove non-differentially expressed
genes. Rare sequences are enriched by slower hybridiza-
tion and the non-hybridized RNA is recovered and ampli-
fied by a linear RNA amplification procedure, which
minimizes the biased exponential amplification of sub-
sets of genes in a mixture. These features make the STAR
method attractive for examining changes of gene expres-
sion in normal and diseased brain tissues, where many

mRNAs are present in low abundance. In the present
study, we used the STAR method to identify genes that are
not only novel in human brains, but also differentially
expressed in AD. Our subtracted cDNA libraries con-
structed by the STAR technology contained genes whose
relative differences in expression levels ranged from 25%
to 100%, illustrating the fidelity of this method. Although
there has been little, and in some cases, no overlap in
identified genes between different microarray studies of
AD samples, due to experimental variability, different
sources of microarray bearing different sets of genes and
different areas of brain tissues used, STAR has identified a
number of known, moderately abundant genes, whose
alternation in AD was in agreement with previous micro-
array analyses. Of these APP and SNCA were found down
regulated [2], AGT [34], CLU [34], FTL [3,34], MAP2 and
STXBP1 [3] were reported up-regulated. More than 55% of
clones in each subtracted library contain cDNA of
unknown function and more then 25% are novel
sequences only matching genomic DNA in database
searches. These novel genes can now be vigorously pur-
sued to identify their function and precise role in AD
pathology.

Similar to other high throughput approaches, the changes
in gene expression identified by the STAR method need to
be validated by qRT-PCR. This is especially true for the

Association of up regulated genes with AD and neurodegenerationFigure 3
Association of up regulated genes with AD and neurodegeneration. The associations between genes or between 
genes and knowledge term (Alzheimer or Neurodegeneration) are represented as a graph with the frequency indicated by 
numbers on the links. A red box or line indicates a knowledge term or a link between a gene and a knowledge term, respec-
tively. A blue box and line shows a gene that is associated with both knowledge terms. A black box and line denotes a gene that 
is associated with only one knowledge term or another gene.
Page 10 of 16
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rare and novel sequences, for which there is no informa-
tion available in the literature. Combinations of PCR-
selected cDNA subtraction and cDNA microarray analysis
of the subtracted clones, or using probes generated by
PCR-selected subtraction to screen Affymetrix GeneChips
have been attempted [35,36]. The clones produced by
STAR can be printed on microarray slides for hybridiza-
tion with labeled cDNAs from individual brains samples,
however, the rare RNA species must be enriched by ampli-
fication in order to give reliable hybridization signals.
This method, currently under development, could be a
high throughput approach to eliminate false positives
before qRT-PCR validation on individual genes. We have
measured changes in nearly 40 genes from each sub-
tracted cDNA library by qRT-PCR. However, there was a
difference in the confirmation rate between the two sub-
tracted libraries. Besides the fact that there seemed to be
more down- than up- regulated genes in the AD brains
where neurodegeneration was already evident [2,3]., we
cannot offer an definite explanation why some genes,
such as, Syntaxin binding protein 1 and kinesin 2 found
up-regulated by STAR procedure, consistent with the
results obtained by others [3,32,33], yet not confirmed by
qRT-PCR. Further investigations with different fine-tuned
qRT-PCR primers and conditions and by using individual
brain samples may offer insight on this issue.

While identification of novel genes functions in neurode-
generation remains to be our ongoing objective, the cur-
rent study was focused on the association of some of the
known genes with AD. Among the down regulated genes
in Table 5, those belonging to two major functional cate-
gories are noteworthy. The first group contains genes
involved in maintenance of neuronal cell function,
including CAST, PFRK, SERPINE2, SNCA, SV2A and SYT4
[2,37-41] Their roles in normal brain are to promote neu-
rite outgrowth and to regulate synaptic vesicle transport or
trafficking at the synapse. Their down regulation is con-
sistent with the compromised synaptic transmission
observed in AD brain. This undoubtedly contributes to
the impairment of memory and cognitive function. Our
findings support the current view that AD is a disease of
synaptic failure [42].

The second group of genes consists of members of the
ubiquitin pathway involved in protein degradation.
Although only UBB, UBE2B and UCHL1 passed our cur-
rent screening criteria, several other ubiquitin pathway-
related genes also appeared in the C-AD library. A straight-
forward interpretation of this result would be that the
decreased ability of protein degradation caused by the
down regulation of ubiquitin pathway genes, resulted in
the accumulation of unwanted proteins in the senile
plaques and neurofibrillary tangles. However, studies of
individual ubiquitin pathway genes, such as UCHL1, sug-

gest other mechanisms. For example, UCHL1 is sensitive
to redox changes and is oxidized in AD brain [43,44].
indicating that its function under stressed conditions is
more than "house keeping" [45]. Elevated expression of
other ubiquitin pathway proteins in response to oxidative
stress has also been documented. [46,47] However, a bet-
ter understanding of the role of individual ubiquitin path-
way genes in AD pathology requires comprehensive study.

Extensive evidence suggests that inflammation plays a
major role in AD [48]. It is therefore not surprising to find
genes, such as MBP, NPTX1 and SCARB2 involved in neu-
roinflammation [49-51], to be up regulated in AD brains
(Table 6). We also found several genes related to the cel-
lular distribution of iron (FTL), transport of copper (CP)
and metal-binding (MT1F) that were up-regulated in AD
(Table 6). [31,52,53] These data strongly suggest a disrup-
tion of metal homeostasis and a potential metal neurotox-
icity component in AD. The increase of these proteins may
indicate an acute phase-type reaction and/or a compensa-
tory response to stress conditions.

We did not find any typical cytoskeletal proteins, such as
members of the actin or tubulin families, to be signifi-
cantly up-regulated in AD brain. However, we did identify
three clusters of genes related to cytoskeletal organization
(Table 6). The first group contains organelle membrane
skeletal proteins such as SAFA, LMNA and SPTBN2 [54-
56] The second group encodes skeletal binding proteins,
including FKBP2, interacting with erythrocyte membrane
cytoskeletal protein [57], KNS2 and MAP2, all associated
with microtubules [58,59] The third group contains
GTPase activating proteins, ARHGAP1, CENTG2
(AGAP1), SRGAP2, which regulate membrane trafficking
and actin remodeling [60-62] SEPT6 can also be catego-
rized into this group since it is a polymerizing GTPase
required for cytokinesis and cortical organization [63]. It
is intriguing that so many cytoskeleton related genes are
up regulated in the degenerating brains. It is currently
unclear whether these changes were the causes or the con-
sequences of neurodegeneration. One possibility is that
these genes might be up regulated in activated microglia
or astrocytes, which triggered signals that mediate
cytoskeletal reorganization and vesicular trafficking dur-
ing glial cell migration.

Conclusion
We have used a proprietary subtractive hybridization tech-
nology (STAR) to identify differentially expressed genes in
AD brains, extending existing gene profiling and subtrac-
tion methods, such as DNA or protein microarray analy-
ses to identify rare sequences. 55% of the identified
differentially expressed genes have no known function, of
which, 25% had no matching ESTs in the databases. These
sequences represented novel and newly discovered tran-
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scripts in the brain and were also differentially expressed
in AD brains. Using literature mining tools we have estab-
lished (Figs. 2 and 3) many new gene associations, not yet
reported to be involved in AD. This information will facil-
itate future efforts aimed at establishing alterations in
molecular pathways involved AD pathology.

Methods
Brain tissues and RNA extraction
Poly A+ RNA was isolated from the frontal cortex of frozen
post mortem human brains from the same 4 AD and 5
age-matched control subjects as used in our previous
study using the same the extraction procedure [34]. Equal
amounts of mRNA were taken from each brain and subse-
quently combined to generate separate pools of AD RNA
and normal RNA. Five micrograms of the mixed mRNA
from each pool was converted to double-stranded cDNA
(ds-cDNA) and used to prepare full-length tester and
driver cDNA libraries.

Subtractive Transcription-based Amplification of mRNA 
(STAR)
The STAR subtraction procedure was performed as illus-
trated in Figure 1. Briefly, single stranded (+) sense tester
RNA and single stranded (-) sense driver DNA were gener-
ated from specialized tester and driver cDNA libraries (see
below), respectively. Subtraction was accomplished by
hybridization of single-stranded driver cDNA to the com-
plementary single-stranded tester RNA, followed by
RNase H digestion. The unhybridized tester RNA
remained active when subjected to a linear RNA amplifi-
cation process comprising the steps of (i) reverse tran-
scription, to synthesize cDNA from the tester RNA; (ii)
DNA conversion, to append a promoter to the cDNA; and
(iii) in vitro transcription, to synthesize additional copies
of tester RNA.

Construction of full length tester and driver cDNA libraries
Double-stranded cDNA (ds-cDNA) was synthesized from
5 µg of mRNA from each pool of brains using a modified
ThermoScript™ ds-cDNA synthesis kit (Invitrogen, Burl-
ington, ON) and a locking-dT19V oligonucleotide com-
prising a Not I restriction enzyme site. An Asc I adaptor
was then ligated to the 5' terminus of the ds-cDNA. Fol-
lowing digestion with Asc I and Not I enzymes (NEB, Pick-
ering, ON), the ds-cDNA was directionally ligated into
pUC18-derived vectors, p17+ for the production of driver
DNA and p14 for the production of tester RNA. Both vec-
tors contained a T7 promoter and specific oligonucleotide
sequences (OGS302: 5'-GCCTGCACCAACAGTTAACA, in
the case of p17+, and OGS77: 5'-CGAGAGCACCTGGAT-
AGGTT, in the case of p14), immediately upstream of the
cDNA inserts. These plasmids were then transformed into
E. coli DH10B cells to generate the full length cDNA librar-
ies.

Construction of 3'-UTR tester and driver cDNA libraries
Subtraction using STAR was performed using only the
more variable 3'-UTR regions of mRNA sequences in order
to minimize losses of gene family members that share
homologous 5'-UTR and coding regions. Thus, 3'-UTR
tester and driver libraries were subcloned from the origi-
nal full-length p14 and p17+ cDNA libraries as follows.
Plasmid DNA (2 µg) from each library was digested with
Not I restriction enzyme and purified using Qiaquick
(Qiagen, Mississauga, ON) and 1 µg of each was used to
in vitro transcribe (IVT) full-length RNA copies of the
cDNA inserts with T7 RNA polymerase, according to the
manufacturer's instruction (USB, Cleveland, OH). The
plasmid DNA template was digested with 2U RNase-free
DNase I (Promega, Madison WI) and the RNA was puri-
fied with RNeasy kit (Qiagen). The newly synthesized
RNA from each library now contained specific oligonucle-
otide sequences OGS77 and OGS302 at its 5' terminus,
which were initially carried by p14 and p17+ plasmid vec-
tors, respectively. Twenty micrograms of each IVT RNA
were converted to first-strand cDNA (as described above)
and purified by Qiaquick (Qiagen). Second-strand cDNA
synthesis was then accomplished in a reaction containing
Klenow DNA polymerase and specific oligonucleotide
primers, OGS77 or OGS302, according to the manufac-
turer's instruction (NEB, Pickering, ON). The resulting
full-length ds-DNA for each library was purified by
Qiaquick (Qiagen). To prepare the 3'-UTR tester and
driver libraries for STAR, 6 µg of the full-length ds-DNA
for each library was divided into 1 µg aliquots and each
aliquot was digested with one of six restriction enzymes
(Bsh 1236 I, HinP1 I, Mse I, Msp I, Rsa I or Sau3A I) (NEB
and MBI Fermentas, Burlington, ON). Following diges-
tion, each set of 6 reactions was extracted with phenol,
pooled and desalted. Each pooled DNA sample was blunt-
ended using T4 DNA polymerase (NEB) and ligated to 2.5
µg Asc I linker (NEB) in a 10 µL reaction. Each linker-
adapted DNA sample was then digested with Asc I and
Not I enzymes (NEB) and purified using Qiaquick (Qia-
gen). The digested DNA samples were then ligated into
Asc I-Not I digested p14 and p17+ plasmid vectors respec-
tively and transformed into E. coli DH10B cells. The result-
ing transformants for each library were pooled to produce
the 3'-UTR p14-tester and p17-driver libraries.

Construction of 3' STAR subtracted cDNA libraries
One microgram of plasmid DNA isolated from each 3'-
UTR library was digested with Not I and purified by
Qiaquick (Qiagen), and then in vitro transcribed as
described above to produce RNA. The RNA copies from
the tester library are now ready to be used in STAR. Twenty
micrograms of the p17-3' driver RNA were further con-
verted to single-stranded driver DNA in a first-strand
cDNA synthesis reaction as described above with the
exception that a oligo rU, instead of oligo dT, was used as
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primer for the cDNA synthesis and the rU primer attached
to every first strand cDNA was then digested with RNase
A. The p14-3' tester RNA (10 ng) was then hybridized with
100-fold excess p17-3' single-stranded driver DNA in a
hybridization buffer containing 40 mM Tris-HCl, pH7.5,
0.1 M NaCl, 7.6% D-Trehalose and 40% DMSO. The reac-
tion was carried out in a thermocycler in descending tem-
perature sequence as follows: 65°C, 63°C and 61°C each
for 10 min; 59°C for 30 min; 57°C, 55°C, 53°C, 51°C,
49°C, 47°C and 44.5°C each for 98 min; 42.5°C for 18
hours, followed by RNase H digestion at 40°C for 30 min.
The tester RNA was then converted to cDNA and ampli-
fied by in vitro transcription as described above. After 3-
rounds of STAR (Fig. 1), the remaining tester RNA was
converted to double-stranded DNA, digested with Asc I
and Not I and ligated into a similarly digested pUC-mod-
ified vector. The plasmids containing specific tester DNA
inserts were transformed into E. coli DH10B cells to form
the STAR libraries.

Analysis of STAR cDNA libraries from human brain 
samples
A STAR library, where AD 3' cDNA was used as tester
(termed the AD-C library) which should contain genes
up-regulated in AD brains. Conversely, when control 3'
cDNA was used as tester, we produced a C-AD library,
which should permit the isolation of genes down regu-
lated in AD. Approximately 600 individual colonies from
each subtracted library were picked and the cloned inserts
were amplified by PCR with HotStart Taq polymerase
(Qiagen) using forward and reverse flanking primers on
the vector. The PCR amplicons were purified using the
Corning filter polystyrene 96-well plate system (Fisher
Scientific, Ottawa, ON). One microliter of the purified
PCR product was used for sequencing on the ABI Prism
377 DNA sequencer or 3100 Genetic Analyzer. DNA
sequences were analyzed using Sequencher and batch
BLAST search.

cDNA synthesis, and qRT-PCR
cDNA was synthesized from the same RNA pools used to
construct the original AD and control cDNA libraries
using Superscript II Reverse Transcriptase according to the
manufacturer's instruction (Invitrogen). The reaction was
stopped by adding EDTA to a final concentration of 5
mM. RNA templates were subsequently hydrolyzed in 0.5
M NaOH solution at 65°C for 20 min. The cDNA was fur-
ther purified using a QIAquick PCR purification kit (Qia-
gen) and quantified using the OliGreen ssDNA
Quantitation Kit (Molecular Probe, Hornby, ON). For-
ward and reverse primers for sequences of interest were
designed using Primer Express (Applied Biosystems, Fos-
ter City, CA). Equal amounts of cDNA (2 ng each) were
used for qRT-PCR analysis using the QuantiTect SYBR
Green PCR Kit (Qiagen) according to the manufacturer's

instructions. Fluorescent products were detected using a
GeneAmp 5700 Sequence Detection System (PE Applied
Biosystems). Percentage of changes was calculated accord-
ing to the manufacturer's instruction. The experiments
were performed in triplicate. Only significant differences
(ρ < 0.05; t-test on the qRT-PCR experiments) between AD
and control samples are reported as differentially
expressed genes.

Literature mining
UniGene symbols of the known genes from each sub-
tracted library were obtained from the SOURCE database
using their respective Genbank accession numbers. These
symbols were imported into a literature mining prototype
software, LitMiner [64], developed by the National
Research Council of Canada to identify relationships
among genes and their association with biological proc-
esses. The search uses the standard UniGene symbols and
all possible aliases appearing in the title, abstract or MeSH
terms of publications. The associations amongst genes are
represented as a graph with the frequency indicated by
numbers on the links. Occasionally, the numbers in the
graphs may not accurately represent associations because
some articles might simply mention genes or terms with-
out specifying an association or using incorrect or incom-
plete gene aliases. In practice these errors are manageable,
because within LitMiner, we can rapidly retrieve and man-
ually scan articles to eliminate such false associations. A
knowledge term, such as "Alzheimer" or "Neurodegener-
ation" was added into the search to explore possible asso-
ciation of these genes with AD. The LitMiner tool was used
since it is a much faster than searching for gene relation-
ships manually. In this context, relationship means a co
occurrence between either gene names or gene names and
a biological process.

Every step performed with LitMiner for this study could be
replicated manually using Entrez Gene, PubMed, and
graph drawing tools available in Microsoft Word or simi-
lar sources. The first step of this manual process would be
to find all the gene name aliases available in Entrez Gene
for each known UniGene symbol from each subtracted
library. Second, each such list of aliases would be con-
verted into a disjunctive PubMed query by adding the OR
operator (|) after each alias. As well, any alias that is
longer than a single word would be enclosed in quotation
signs (" "). For example, part of the query for the gene
A2M would be, "A2M" | "alpha 2 macroglobulin" | "alpha2
M". Other manual improvements could be made to this
query, i.e., to remove overly general terms. Third,
researchers would scan the results removing incorrect or
uninformative matches. Fourth, a database or file would
record all the PMIDs that matched each of these gene que-
ries in PubMed. Fifth, queries would be created for biolog-
ical processes and the resulting lists of PMIDs would also
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be included in the database. Using this database, the
researcher could then count how many PMIDs were
shared by any pair of genes or biological process. For
example, there would be tens of PMIDs whose title,
abstract, and MeSH terms mention both A2M and APP.
Once all co occurrence counts are collected, those counts
could be entered into a manually drawn graph. These
steps would require a considerable amount of time, to
remove incorrect matches and to produce graphs of the co
occurrences between gene names and biological proc-
esses.
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