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Abstract

Background: Dermatophytes are the primary causative agent of dermatophytoses, a disease that
affects billions of individuals worldwide. Trichophyton rubrum is the most common of the superficial
fungi. Although T. rubrum is a recognized pathogen for humans, little is known about how its
transcriptional pattern is related to development of the fungus and establishment of disease. It is
therefore necessary to identify genes whose expression is relevant to growth, metabolism and
virulence of T. rubrum.

Results: We generated 10 cDNA libraries covering nearly the entire growth phase and used them
to isolate 11,085 unique expressed sequence tags (ESTs), including 3,816 contigs and 7,269
singletons. Comparisons with the GenBank non-redundant (NR) protein database revealed
putative functions or matched homologs from other organisms for 7,764 (70%) of the ESTs. The
remaining 3,321 (30%) of ESTs were only weakly similar or not similar to known sequences,
suggesting that these ESTs represent novel genes.

Conclusion: The present data provide a comprehensive view of fungal physiological processes
including metabolism, sexual and asexual growth cycles, signal transduction and pathogenic
mechanisms.
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Background

Dermatophytes, consisting of organisms in the Trichophy-
ton, Epidermophyton, and Microsporum genera, are the pri-
mary etiologic pathogens of various dermatophytoses,
such as tinea capitis, tinea corporis, tinea inguinalis, tinea
manus, tinea unguium and tinea pedis. These infections
are widespread and increasing in prevalence on a global
scale. Indeed, in some geographic regions, dermatophyte
infection is now considered a major public health con-
cern.

Unlike other fungi, dermatophytes can cause infections in
healthy, immune-competent individuals. Estimates sug-
gest that 30 to 70% of adults are asymptomatic carriers of
these fungi [1]. T. rubrum is the most common superficial
fungus, accounting for at least 60% of all superficial fun-
gal infections in humans. This organism may remain via-
ble in the environment for over six months, thus
accounting for widespread infections. Transmission
occurs most often from person to person [2], for example,
by shedding of infected skin cells and hair and by direct
body contact [3].

Diagnosis of dermatophyte infections relies on clinical
presentation, requiring successful isolation and culture
and microscopy. It will take 2 to 4 weeks to culture and
pleomorphic growth can lead to misidentification. Some-
times the morphological phenotype is not very stable.
Rapid diagnostic tests using current molecular methodol-
ogies have been slow to develop for the dermatophytes

[4].

Furthermore, despite the availability of new systemic anti-
fungal therapies, nail infections are particularly difficult to
eradicate, presenting a 25 to 40% recurrence rate [5].
Another increasing problem in clinical treatments is grow-
ing resistance to antifungal drugs. In the past decade,
more and more cases of azole- and terbinafine-resistant
fungal infections have been reported [6-8]. Ryder et al
[9,10] characterized at the molecular level the cause of the
resistant phenotype of some clinical isolates, considering
the resistance in some T. rubrum clinical isolates to terbin-
afine appears to be due to a single amino acid substitution
in the gene squalene epoxidase.

T. rubrum is anthropophilic, specialized to infect humans,
but rare animal infections have been reported. It is urease
negative and vitamins independent. On the Bromcresol
purple-(BCP)-milk solids glucose media, it shows
restricted growth, no indicator color change for 10 to 14
days, then profuse growth with indicator change to purple
(alkaline). Its teleomorph has not yet been found. Arthro-
conidia and mycelial fragments are the infectious agents.
Excreted extracellular proteinase, alkaline serine protein-
ase, plays a role in dermatophytes growth and multiplica-
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tion as well as in the inflammatory reaction [2,11-13].
Thus, they are considered to be critical virulence factors
for dermatophytes. There are many reports of the isola-
tion and characterization of one or two proteases from an
individual species of dermatophyte [14-18]. In T. rubrum,
Some keratinases have been isolated and a subtilisin gene
family were identified at the genetic level [19-22]. Jousson
et al isolated a five-member secreted metalloproteases
(MEP) family from genomic libraries of T. rubrum, T. men-
tagrophytes and M. canis. Further phylogenetic analysis
revealed that the metalloproteases secreted by the three
species in vitro are encoded by orthologous genes,
strongly suggesting that the multiplication of an ancestral
metalloprotease gene occurred prior to the dermatophyte
species divergence [23]. However, only a small number of
proteases from dermatophytes have been characterized at
the genetic level.

Taken together, the lack of effective diagnostic and treat-
ment strategies, the large number of individuals that expe-
rience dermatophyte infections, and the economic
consequences highlight deficiencies in the research efforts
aimed at understanding dermatophyte. T. rubrum is the
most common superficial fungus, inducing dermatophy-
toses in various parts of the human skin, and can also
cause deeper infections such as kerions, abscesses and
granulomas. Research examining the pathogenesis of T.
rubrum in numerous skin infections is needed in order to
develop novel therapeutic agents and identify potential
drug targets.

In the present study, we constructed various T. rubrum
c¢DNA libraries and obtained 11,085 unique expressed
sequence tags (ESTs). By analyzing these ESTs, we were
able to further elucidate the physiological activities in
metabolism, signal transduction, sexual life cycle, patho-
genesis and cell wall composition of T. rubrum. These
sequences provide an unparalleled resource for the future
understanding of this remarkable fungus. Furthermore T.
rubrum represents an attractive model species with which
to study dermatophytes and other pathogenic filamen-
tous fungi.

Results and discussion

Expressed sequence tags sequence determination

EST sequences were produced from 10 different cDNA
libraries. After trimming for the vector and poor quality
segments, a total of 34,670 sequences were identified and
11,085 unique ESTs were isolated. Isolated ESTs included
3,816 contigs and 7,269 singletons. All the constructed
libraries, culture conditions and sequencing statistics
employed in this study are summarized in table 1. The
average sequence length of these unique ESTs was 586
nucleotides (nt). Approximately 8,639 (78%) of the
unique ESTs were longer than 400 nt.
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Table I: Libraries, culture times, and sequencing statistics for ESTs generated in this study

ID Library Description EST No. GenBank Acc No. Total Reads in contigs Reads in singletons
0 Sporesincubated in YPG medium  EST001692-EST004492 DW678211-DWé681011 2801 1865 936
for 12 hours
I 10 days EST004493-EST010729 DW&681012-DW687248 6237 5208 1029
2 |4 days ESTO10730-ESTO15367 DW687249-DW691886 4638 3946 692
3 7 days ESTOI15368-ESTO17321 DW&691887-DW693840 1954 1621 333
4 7,10, 15, 20 and 28 days culture, ESTO17322-ESTO19168 DW693841-DW695687 1847 1645 202
Subtracted library
5 7,10,16,22,26 and 28 days ESTO19169—-EST020693 DW695688-DW697212 1525 1207 318
6 16,20 and 22 days EST020694-EST023912 DW&697213-DW700431 3219 2267 952
7 26 and 28 days EST023913-EST030936 DW700432-DW707455 7024 5562 1462
8 34 and 36 days EST030937-EST034670 DW707456-DW711189 3734 2912 822
9 Spores ESTO00001-ESTO01691 DW405580-DW407270 1691 1168 523

In the synthesis of the cDNA first strand, incomplete
cDNA synthesis and/or 5' truncation of mRNA transcripts
could lead to an overestimation of the gene number iden-
tified from our analysis. Accuracy of the estimation abso-
lutely depends upon the quality of the library. Among the
7,764 matched ESTs, 1,439 could be matched to reference
genes if the subjected starting site was set to be the first
coding amino acid; meanwhile 2,325 matching genes
could be found if the subjected starting site was allowed
to be any of the first 10 amino acids. These data confirm
that the quality of the libraries is reliable.

Comparison to Non-redundant and Clusters of
Orthologous Groups databases

Identified ESTs were compared with the GenBank non-
redundant (NR) protein database. This comparison ena-
bled us to assign putative functions to or find homologs
from other organisms for 7,764 (70%) of the ESTs. The
remaining 3,321 (30%) ESTs were only weakly similar or
not similar to known sequences (E = 1E-05), suggesting
that they represent novel genes.

The comparative results for the ESTs with respect to the
Clusters of Orthologous Groups (COGs) database, and its
eukaryotic counterpart termed the KOGs database, are
summarized in table 2. The ESTs identified herein con-
tained a broad range of genes, predominantly encoding
putative proteins involved in primary metabolism, gene
expression, post-translation processes and cell structure. A
significant proportion of the identified ESTs were
matched to genes involved in transcription and signal
transduction, suggesting that T. rubrum has an elaborate
regulation system.

The COG collection currently consists of 138,458 pro-
teins, which form 4873 COGs and comprise 75% of the
185,505 (predicted) proteins encoded in 66 genomes of
unicellular organisms, including 3 Eukaryota, Saccharomy-
ces cerevisiae, Schizosaccharomyces pombe and Encephalito-

zoon cuniculi. The eukaryotic orthologous groups (KOGs)
include proteins from 7 eukaryotic genomes: three ani-
mals (Caenorhabditis elegans, Drosophila melanogaster and
Homo sapiens), one plant, Arabidopsis thaliana, two fungi
(Saccharomyces cerevisiae and Schizosaccharomyces pombe),
and the intracellular microsporidian parasite Encephalito-
zoon cuniculi. The current KOG set consists of 4852 clusters
of orthologs, which include 59,838 proteins, or ~54% of
the analyzed eukaryotic 110,655 gene products [24].
Because the RNA processing in eukaryotic cells is more
elaborated, and eukaryotic cells have some structures that
prokaryotic cells lack, for example, nuclear and mitochon-
dria, more genes involved in RNA processing and modifi-
cation [A], chromatin structure and dynamics [B], cell
cycle control, cell division, chromosome partitioning [D],
nuclear structure [Y], cytoskeleton [Z] and intracellular
trafficking, secretion, and vesicular transport [U] were
identified in KOGs than COGs. The difference between
gene number of class energy production and conversion
[C] was mainly due to the mitochondrial related genes.
On the contrary, more genes involved in cell motility [N],
mainly encoding secretory pathway and cell motivity
related proteins, were identified in COGs than KOGs.
Meanwhile, the COG/KOG result was also affected by the
subtle difference in functional classification to function
similar proteins, especially transporters.

Comparison of ESTs to those already available in GenBank
To date 3,749 T. rubrum ESTs have been released to Gen-
Bank by other research groups, most of which (3,711)
were obtained in condition mimicking virulence by Zaugg
and Monod et al. When we compared these 3,749 previ-
ously reported ESTs to the NR database and to our EST
pool, we found that 3,112 of the previously described
ESTs in GenBank had matching homologs in other organ-
isms in the NR database (E <1E-05) and that 637 ESTs
were only weakly similar or did not match known
sequences. Among the 3,749 ESTs identified previously,
2,738 ESTs matched 1,325 unique ESTs in our data (E
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Table 2: The comparative results of ESTs to COGs and KOGs
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Functional Classification

Numbers in COG Percents in COG Numbers in KOG Percents in KOG

Information storage and processing

J Translation, ribosomal structure and 413 3.73% 408 3.68%
biogenesis
A RNA processing and modification 21 0.19% 165 1.49%
K Transcription 378 3.41% 131 1.18%
L DNA replication, recombination and repair 213 1.92% 85 0.77%
B chromatin structure and dynamics 32 0.29% 48 0.43%
Cellular Processes and Signaling
D Cell cycle control, cell division, chromosome 49 0.44% 86 0.78%
partitioning
Y Nuclear structure 3 0.03% 19 0.17%
\ Defense mechanisms 70 0.63% 17 0.15%
T Signal transduction mechanisms 240 2.17% 209 1.89%
M Cell wall/membrane/envelope biogenesis 152 1.37% 37 0.33%
N Cell motility 64 0.58% | 0.01%
z Cytoskeleton 45 0.41% 95 0.86%
w Extracellular structures 4 0.04%
V] Intracellular trafficking, secretion, and vesicular 153 1.38% 244 2.20%
transport
(e} Posttranslational modification, protein 345 3.11% 424 3.82%
turnover, chaperones
Metabolism
C Energy production and conversion 365 3.29% 315 2.84%
G Carbohydrate transport and metabolism 409 3.69% 188 1.70%
E Amino acid transport and metabolism 669 6.04% 343 3.09%
F Nucleotide transport and metabolism 120 1.08% 110 0.99%
H Coenzyme transport and metabolism 179 1.61% 118 1.06%
| Lipid transport and metabolism 256 2.31% 219 1.98%
P Inorganic ion transport and metabolism 402 3.63% 118 1.06%
Q Secondary metabolites biosynthesis, transport 188 1.70% 131 1.18%
and catabolism
Poorly characterized
R General function prediction only 844 7.61% 530 4.78%
S Function unknown 219 1.98% 154 1.39%
Total 11085

<1E-05, identity ranges from 72% to 100%), suggesting
these data be somewhat redundant. The remaining 1,011
did not have matching homologs in our EST database,
including 263 ESTs which had no homology whatsoever
in the NR database. Meanwhile, 748 of the 1,011 ESTs
obtained only in their research had some homology with
sequences in the NR database (E <1E-05), while 620 ESTs
appeared to be hypothetical proteins, predicted proteins
or unnamed protein. Some secreted proteinases that were
identified by Monod et al. were not identified in our study
(i.e. subtilisin-like protease SUB4, dipeptidyl-peptidase

IV, leucine aminopeptidase 1, leucine aminopeptidase 2
and a putative secreted metalloprotease 4), suggesting that
the condition in their research may be a more suitable
environment to induce expression of these proteins. The
proteinases subtilisin-like protease SUB1 and subtilisin-
like protease SUB5 were expressed not only in the condi-
tion they mimicked but also in YPD media (see Addi-
tional file 1). By comparison with previous released ESTs,
our data supply the information about gene expression in
different conditions, advancing the current knowledge of
T. rubrum transcriptome.
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Metabolism and secondary metabolism

Metabolic overview

A large percentage of T. rubrum genes were annotated in
glycolysis and oxidative phosphorylation systems, as
expected from what is known from other aerobic filamen-
tous fungi. Genes corresponding to the citrate cycle
enzymes and to components of complexes I (NADH-CoQ
reductase), II (Succinate-CoQ reductase), III (CoQ-Cyto-
chrome C reductase), and IV (Cytochrome C oxidase)
were identified. The presence of these genes reflects the
fungus' ability to perform complete aerobic pyruvate deg-
radation and oxidative phosphorylation.

The pathways involved in metabolizing mono- and disac-
charides, such as glucose, fructose, mannose, and sucrose,
as well as polysaccharide starch, were best represented in
the identified ESTs. There were also a large number of
membrane transporters for saccharides such as xylose and
fucose. Among the identified ESTs, all aminoyl-tRNA syn-
thases have been previously described with the exception
of cyseine-tRNA synthase, of which only one contig was
found to exhibit weak homology (C3495-Contigl, E
value 0.00008). Comparison of our ESTs data to KEGG
revealed that these proteins were probably involved in
many amino acid metabolism pathways, including gluta-
mate metabolism, alanine and aspartate metabolism, gly-
cine, serine and threonine metabolism, methionine
metabolism, cysteine metabolism, valine, leucine and iso-
leucine biosynthesis, lysine biosynthesis, arginine and
proline metabolism, histidine metabolism, phenyla-
lanine, tyrosine and tryptophan biosynthesis. Analysis of
these pathways indicated that T. rubrum could itself syn-
thesize lysine. It could synthesize some amino acids via
amino acid synthetase including glutamate, glutamine,
asparagine, cysteine, tryptophan and threonine, and it can
also synthesize some other amino acids via amino transfer
reactions. The primary lipids in T. rubrum are sterol and
phospholipid. Our analysis of the metabolic pathways in
T. rubrum revealed that it can also synthesize co-enzymes
such as riboflavin, nicotinate, nicotinamide, coenzyme A,
ubiquinone, and folate. The genes probably involved in
the synthesis of thiamine included: NMT1 protein, THI4
protein, ThiC protein and a putative ThiG protein.
Because T. rubrum's vitamin independence serves to sepa-
rate it from species such as Trichophyton violaceum that
have vitamin requirements, identification of the ESTs
involved in vitamin synthesis is of great significance for
molecular diagnosis. Some ESTs probably involved in
metabolism are included in additional files (see Addi-
tional file 2).

Secondary metabolism

Secondary metabolites are a remarkably diverse class of
cellular products that often exhibit taxonomic specificity.
Secondary metabolites are generally considered "nones-
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sential" for organismal growth in culture. In addition to
the metabolic pathways mentioned above, there are also
several secondary metabolic pathways present in T.
rubrum. It has long been known that dermatophytes can
survive in toxic environments, presumably through the
production of biological tools to resist these toxins.
Indeed dermatophytes have even been isolated from
sewer water and polluted soil containing organic com-
pounds such as aromatic compounds. The pathways
implicated by the EST analysis are consistent with T.
rubrum's capability to enzymatically degrade various tox-
ins such as phenanthrene, dibenzofuran, ethylbenzene,
styrene, fluorene, and 1,1,1-Trichloro-2,2-Bis-(4'-Chlo-
rophenyl)Ethane(DDT) (see Additional file 3).

Similar to other pathogenic filamentous fungi, such as
Magnaorthe grisea [25] and Aspergillus fumigatus [26], sev-
eral important secondary metabolic products, were also
found in T. rubrum; these included non-ribosomal peptide
synthases, polyketide synthases, two putative dimethylal-
lyl tryptophan synthases, a putative arsenate reductase
and a hydrophobin. These gene products may be related
to T. rubrum growth and pathogenicity. Polyketides
(derived from polyketones) are a class of secondary
metabolites produced by most organisms, but they have
been most extensively examined in bacteria and fungi. In
fungi, numerous functions have been proposed for
polyketides, including the production of toxins [27,28]
and spore pigments [29,30]. Although it is well known
that T. rubrum can produce pigments, the relationship
between secondary metabolic pathways and pigments
production remains unresolved. The various identified
ESTs involved in secondary metabolism are listed in addi-
tional files (see Additional file 3).

Interestingly, T. rubrum harbors a putative sterigmatocys-
tin biosynthesis monooxygenase StcW (C1113-Contigl),
and a probable sterigmatocystin biosynthesis P450
monooxygenase STCL (Cytochrome P450 60B,
EST000637, [GenBank:DW406216]), suggesting that it
very likely may produce sterigmatocystin. However, con-
firmation of this possibility will require further investiga-
tion. Sterigmatocystin is of particular significance in
evaluating the toxicity of T. rubrum products because prior
evidence indicates that it is probably toxic to the human
liver.

Although it is suspected that Trichophyton mentagrophytes
can produce a penicillin-like substance [31], we did not
find any evidence suggesting that T. rubrum generates anti-
biotic-like by-products.

Signal transduction
We also identified a variety of signal transduction systems
in T. rubrum, such as MAPK, cAMP-dependent pathways,
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G-protein pathways, Ras pathways, and a large number of
serine/threonine protein kinase/phosphatases and signal
histidine kinases. Although the first four systems are gen-
erally conserved among fungal and mammalian species,
the numbers and functions of signal transduction of histi-
dine kinases vary between fungi. For example, in S. cerevi-
siae there exists only one, but in Neurospora crassa [32]
there are 11 different histidine kinases. Indeed, there are
many differences in the numbers and types of histidine
kinases between filamentous fungi and yeast. Some exper-
imental results [33-36] obtained with Candida albicans
and Aspergillus fumigatus suggest that histidine kinases are
related to fungal pathogenesis. In T. rubrum many ESTs are
homologous to histidine kinases, some of which may be
related to osmotic and nutrient responses. Several identi-
fied histidine kinases contain PAS/PAC domains, suggest-
ing that they are involved in oxygen and light responses.

In addition to histidine kinase-related ESTs, we also iden-
tified Calcium-Calmodulin homologues and related pro-
teins, suggesting that Ca-CaM pathways may be utilized
by T. rubrum, similar to the model organism Neurospora
crassa. Commonly, Ca2+ release from internal stores is
mediated by the second messengers inositol-1, 4, 5-tri-
sphosphate (InsP3) and cADP ribose, or by CaZ*-induced
Ca?* release [37]. Although InsP3 is present within Neu-
rospora hyphae [38] and T. rubrum, Neurospora lack recog-
nizable InsP3 receptors, ADP ribosyl cyclase and
ryanodine receptor proteins, which are principal compo-
nents of Ca?+ release mechanisms in plant and animal
cells. These observations raise the question of whether
there may be other second messenger systems that are
responsible for Ca2+ release from internal stores that
remain to be discovered in filamentous fungi. InsP3
receptors, ADP ribosyl cyclase or ryanodine receptor pro-
teins were also not found in our EST data (the existence of
these genes can only be determined after the whole
genome is sequenced). Thus the mechanism of T. rubrum
Ca-CaM pathways remains to be determined. The various
identified ESTs involved in signal transduction are listed
in additional files (see Additional file 4).

Sexual and asexual development

Although the sexual life cycle has been described for Tri-
chophyton mentagrophytes, Trichophyton ajelloi and Microspo-
rum canis [2,39], which are all heterothallic species, the
sexual cycle of T. rubrum remains to be elucidated. We
compared sexual-cycle related genes with those in other
fungi, and our findings suggest that T. rubrum may be
capable of sexual reproduction.

Sexual reproduction in ascomycete filamentous fungi is
governed, in part, by two different mating-type genes that
establish sexual compatibility: one gene encodes a protein
with a high mobility group (HMG) domain, and the other
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encodes a protein with an alpha box domain (MAT). Such
MAT containing genes are termed alpha mating-type
genes. Homothallic fungi typically possess both mating-
type genes and are self-fertilizing. Heterothallic fungi pos-
sess only one mating-type gene and require a partner with
a different complementary mating-type gene. Although
the MAT locus has not yet been found in T. rubrum, HMG
is present (4 ESTs: EST000702, [GenBank:DW406281];
EST001404, [GenBank:DW406983]; EST004330, [Gen-
Bank:DW680849]; EST004146, [GenBank:DW680665]),
and a large number of meiosis-related genes were identi-
fied in the ESTs, many of which were also found in
Aspergillus niduluns and/or A. fumigatus. An analysis of 215
genes implicated in the fungal mating process, pherom-
one response, meiosis and fruiting body development
revealed that many genes present in A. nidulans [26,40,41]
are also present in T. rubrum, including several genes for
which the only known function is related to sexual repro-
duction (see Additional file 5). These results suggest that
T. rubrum may also possess sexual cycles. However more
in-depth exploration will be required in order to deter-
mine whether they indeed possess sexual cycles.

The current research on the fungal asexual development
cycle primarily involves studies of Neurospora crassa and
Aspergillus niduluns, and the literature contains two dis-
tinct models. Our comparison of the identified T. rubrum
ESTs with the NR protein database, revealed a key enzyme
(FIbD, EST023258, [GenBank:DW699777], E value 5E-
52) that is present in A. niduluns [41], but no key enzymes
present in Neurospora crassa. Because in A. nidulans four
proteins (FIbC, BrlA, AbaA and WetA) besides FIbD are
also required in macroconidiation pathway, it is still
unclear whether T. rubrum is more similar to A. niduluns or
N. crassa with regards to asexual development.

Extracellular proteinases

The most evident dermatophyte feature is the ability to
digest keratin. Dermatophytes can degrade human and
other animal keratin protein and utilize it. This represents
the pathogenic feature that differentiates dermatophytes
from other fungi. The secreted proteinases of dermato-
phytes play an important role in the process of infection
and are thus considered the primary virulent factors.
However, only a few proteinase sequences have been
identified thus far in T. rubrum [19-22,42-45]. In our data,
secreted proteins were firstly analyzed by the NR compar-
ison result. To the putative secreted protein identified in
NR database, all of the corresponding ESTs were further
subjected to SignalP prediction analysis. As to the ESTs
listed in the Additional file 6, 48 of them were predicted
to contain a signal peptide. Among the T. rubrum ESTs,
identified secretory systems include type I, II, III and V,
with type 1II, III being the most heavily represented. We
also identified a large number of putative secretion related
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pathways and putative secreted proteinase, including
some serine proteinases, aspartic protease, alkaline protei-
nase, peptidases and metalloprotease. (see Additional file
6). Among the serine proteinases, 10 unique ESTs were
homologous to the known dermatophyte subtilisin-like
serine protease family members SUB1, SUB5, and SUB6
[22]; meanwhile no identified ESTs were homologous to
SUB2, SUB3, SUB4, or SUB7. The identity of the 6 serine
protease ESTs with highest homology to T. rubrum serine
proteinases varied from 80% to 93%, suggesting that the
genes may be selectively spliced, and/or the family may
have other members, and/or that these genes have many
copies in the genome.

Secreted metalloproteases are thought to be associated
with lesion extension [15]. Recent reports [46] have iden-
tified a nitrogen regulating factor response region located
upstream of the Microsporum canis MEP1 gene, consistent
with the finding that, at the beginning of infection, there
are only a few urea molecules, amino acids and glucose
molecules available as a nutrient resource in sweat. Aspar-
tic protease is an acid proteinase whereas secreted metal
proteinase and subfamily members are neutral or basic
proteinases. The presence of these proteinases supports
the finding that initially T. rubrum can grow in either
acidic or basic pH environments.

These proteinase and peptidase findings suggest that they
may also be related to amino acid transportation. During
T. rubrum infection, extracellular proteins are hydrolyzed
into peptides by secreted proteinases then are further
degraded into amino acids or dipeptides by peptidases
and finally transported into cells. The identification of
these proteinases and peptidases increases our under-
standing of the pathogenic mechanism underlying T.
rubrum infection.

These secreted proteinases can not only degrade proteins
such as keratin, elastin and collagen to supply nutrients to
the fungi, but can also induce delayed-type hypersensitiv-
ity (such as with the SUB family and Tri r4) [1,22]. How-
ever, although the T. rubrum allergen Tri r4 EST shares
98% homology with that in Trichophyton mentagrophytes, it
is clear that the inflammation mediated by T. rubrum is
not as severe as that induced by T. mentagrophytes . This is
probably due, at least in part, to the presence of multiple
inflammatory factors in T. mentagrophytes. When compar-
ing the putative virulence factors present in T. rubrum with
those in A. fumigatus [26] we also observed that many
known virulence factors in A. fumigatus were not present
in the identified T. rubrum ESTs. Likewise, many putative
T. rubrum virulence factors were not found or were diver-
gent in A. fumigatus. For example, the mep1 gene exists in
both A. fumigatus (Afu8g07080) and dermatophytes, but
the two sequences were highly divergent (E value 5e-26).

http://www.biomedcentral.com/1471-2164/7/255

Cell wall

The cell wall is a structure that humans lack but that fungi
have. Therefore, the cell wall represents an ideal target for
novel anti-fungal drugs. Many cell wall-related proteins
were found among the presently identified ESTs, includ-
ing chitin synthesis, chitinase, $1,3-glucan synthase, $1,6-
glucan synthase, and 1,4-alpha-glucan branching enzyme.
By analyzing the pathways involved in cell wall synthesis,
it can be inferred that T. rubrum is probably capable of
synthesizing peptidoglycan, the primary component of
gram-positive bacteria. The principle enzymes involved in
the peptidoglycan synthesis pathway UDP-N-acetyl-
muramoylalanyl-D-glutamyl-2,  6-diaminopimelate-D-
alanyl-D-alanine ligase (EST020893, [Gen-
Bank:DW697412], GO:0008766) and phospho-N-acetyl-
muramoyl-pentapeptide-transferase (EST009048,
[GenBank:DW685567], EC:2.7.8.13) were identified in
our EST data. But it is still to be determined by experimen-
tal confirmation. We also identified some putative pro-
teins that are likely to be involved in sterol synthesis,
which is a primary target for clinically-available drugs. The
components of the identified ESTs that are involved in cell
wall synthesis are listed in table 3.

Conclusion

The estimated T. rubrum genome size is at least 22.05 Mb
[47]. And we estimate that a significant proportion of the
gene content of T. rubrum is represented in this collection
of sequences. Although ESTs can only represent genes that
are actively expressed in particular phases, they comple-
ment the value of genomic sequencing through the func-
tional identification of novel genes and provide
information about gene structure and expression patterns
[48-53]. Thirty percent of the 11,085 contigs and single-
tons identified in our analysis represent unique genes.
Our Blast searches revealed that 33% of the 11,085
unique sequences possess matches in the yeast genome
(<e-5), suggesting that there are clear distinctions (~67%)
between yeast and filamentous fungi. These findings high-
light the need for additional research on filamentous
fungi.

In summary, although superficial fungi are the primary
human pathogenic fungi, our knowledge about these
organisms remains limited. T. rubrum represents an ideal
model for the study of superficial fungi; our work in iden-
tifying ESTs in T. rubrum cDNA libraries will facilitate a
greater understanding of the molecular mechanisms
underlying its growth, metabolism, pathogenesis and
drug resistance. In addition, our work may aid in the iden-
tification of novel effective drug targets and anti-fungal
agents.
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Table 3: Cell-wall related genes in Trichophyton rubrum expressed sequence tags

Contig/EST Number GenBank Acc No. E_value Product

CO0133-Contigl 9.00E-08  chitin binding protein [Magnaporthe grisea]

C0210-Contigl I.00E-31  |,3-beta-glucan biosynthesis protein, putative [Aspergillus fumigatus Af293]

C0792-Contigl 4.00E-80  chitin synthase class VI [Coccidioides immitis]

C0963-Contigl I.00E-117 glucan synthase [Paracoccidioides brasiliensis]

C0974-Contigl 2.00E-67  chitin biosynthesis protein (Chs5), putative [Aspergillus fumigatus Af293]

C1036-Contigl |.00E-08 beta-1,6-glucan boisynthesis protein (Knhl), putative [Aspergillus fumigatus Af293]

C1088-Contigl 6.00E-19  vegetative cell wall protein gp| [Aspergillus fumigatus Af293]

C1127-Contigl 2.00E-95 class V chitinase, putative [Aspergillus fumigatus Af293]

C1192-Contigl 8.00E-28  chitin biosynthesis protein (Chs7), putative [Aspergillus fumigatus Af293]

C1439-Contigl I.00E-41  chitin biosynthesis protein (Chs7), putative [Aspergillus fumigatus Af293]

C1503-Contigl 8.00E-72  cell wall glucanase, putative [Aspergillus fumigatus Af293]

C1548-Contigl 4.00E-29  beta-I,3-glucanosyltransferase 3 [Paracoccidioides brasiliensis)

C1553-Contigl I.00E-73  chitinase [Ajellomyces capsulatus]

Cl612-Contigl 5.00E-87  beta (1-3) glucanosyltransferase 2 [Paracoccidioides brasiliensis]

C1924-Contigl 7.00E-66  cell wall glucanase (Scwl I), putative [Aspergillus fumigatus Af293]

C1945-Contigl 1.00E-124 |,4-alpha-glucan branching enzyme [Aspergillus fumigatus Af293]

C1994-Contigl I.00E-103 beta-1,6 glucan synthetase (Kre6), putative [Aspergillus fumigatus Af293]

C2050-Contigl 4.00E-77  beta-|,3-glucanosyltransferase 3 [Paracoccidioides brasiliensis]

C2307-Contigl 1.00E-106 COGI215: Glycosyltransferases, probably involved in cell wall biogenesis

[Pseudomonas fluorescens PfO-1]

C2459-Contigl 5.00E-12  potential cell wall glycosidase [Candida albicans SC53 14]

C2572-Contigl 1.00E-120 cell wall biogenesis protein phosphatase Ssd |, putative [Aspergillus fumigatus Af293]

C2766-Contigl 2.00E-24 COG3179: Predicted chitinase [Pseudomonas fluorescens PfO-1]

C2907-Contigl I.00E-51  related to ECM4 protein (involved in cell wall biogenesis and architecture)

[Neurospora crassa]

C3226-Contigl 0 glucan synthase [Coccidioides posadasii]

C3315-Contigl I1.00E-19  I,3-beta-glucanosyltransferase, putative [Aspergillus fumigatus Af293]

C3319-Contigl 3.00E-91  chitin synthase class VI [Coccidioides immitis]

C3366-Contigl 2.00E-88 cell wall glucanase, putative [Aspergillus fumigatus Af293]

C3375-Contigl 2.00E-68 |,3-beta-glucanosyltransferase Bgt| [Aspergillus fumigatus Af293]

C3486-Contigl I.00E-156 glucanosyltransferase GEL-1 [Coccidioides posadasii]

C3510-Contigl 3.00E-12  GPI anchored cell wall protein, putative [Aspergillus fumigatus Af293]
EST000306 DW405885 3.00E-44  |,3-beta-glucanosyltransferase Gel2 [Aspergillus fumigatus Af293]
ESTO01651 DWw407230 2.00E-17  chitin synthase activator (Chs3), putative [Aspergillus fumigatus Af293]
EST001838 DWe678357 3.00E-16  cell wall synthesis protein [Penicillium chrysogenum]

ESTO001871 DWé678390 4.00E-98  chitin synthase V [Coccidioides immitis]

EST002199 DWeé78718 5.00E-16  beta-1,6 glucan synthetase (Kre6), putative [Aspergillus fumigatus Af293]
EST002677 DWé679196 9.00E-11  cell wall synthesis protein [Penicillium chrysogenum]

EST003205 DWe679724 2.00E-07 chitin deacetylase [Colletotrichum lindemuthianum]

EST003442 DW679961 6.00E-68  |,4-alpha-glucan branching enzyme [Aspergillus fumigatus Af293]
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Table 3: Cell-wall related genes in Trichophyton rubrum expressed sequence tags (Continued)

EST003782
EST003793
EST005840
EST005855
EST006570
EST006839
EST006926
EST009330
ESTO11701
ESTO12488
ESTO13666
ESTO13760
ESTO15346

ESTO17058

ESTOI7163
ESTO18650
ESTO18654
ESTO18682
ESTOI9188
EST019502
ESTO019827
EST019908
EST019948
ESTO021575
EST021606
EST022805
EST023134
EST024342
EST024896

EST025124

EST027343
EST027819
EST028103
EST029640
ESTO31669
EST033214
EST033337
EST033834

DW680301
DW680312
DW682359
DWeé82374
DW683089
DW683358
DW683445
DW685849
DW688220
DW689007
DW690185
DW690279
DW691865

DW693577

DW693682
DW695169
DWé695173
DW695201
DW695707
DW69602 |
DW696346
DW696427
DW696467
DW698094
DWé698125
DW699324
DW699653
DW700861
DW?701415

DW701643

DW?703862
DW704338
DW704622
DW?706159
DWw708188
DW?709733
DW709856
DW?710353

5.00E-28
4.00E-06
|.00E-39
2.00E-21
7.00E-48
3.00E-59
I.00E-26
2.00E-33
4.00E-35
7.00E-10
I.00E-37
|.00E-14
4.00E-13

9.00E-15

7.00E-42
| .00E-64
2.00E-14
2.00E-09
2.00E-39
5.00E-21
7.00E-55
8.00E-17
5.00E-11
2.00E-60
I.00E-31
|.00E-07
5.00E-13
I.00E-110
2.00E-27

5.00E-62

4.00E-17
8.00E-14
I.00E-55
|.00E-60
| .00E-60
4.00E-87
6.00E-81
7.00E-81

cell wall protein (PhiA), putative [Aspergillus fumigatus Af293]

related to chitinase 3 precursor protein [Neurospora crassa)
vegetative cell wall protein gpl [Aspergillus fumigatus Af293]

class V chitin synthase [Coccidioides posadasii]

chitinase 6 [Coccidioides immitis]

beta-1,6 glucan synthetase (Kreé), putative [Aspergillus fumigatus Af293]
chitinase 3 [Coccidioides immitis]

chitin synthase activator (Chs3), putative [Aspergillus fumigatus Af293]
exo-beta-1,3-glucanase (Exgl), putative [Aspergillus fumigatus Af293]
class V chitinase, putative [Aspergillus fumigatus Af293]

chitinase [Aspergillus fumigatus]

cell wall glucanase, putative [Aspergillus fumigatus Af293]

Glucoamylase precursor (Glucan |,4-alpha-glucosidase) (1,4-alpha-D-glucan
glucohydrolase)

COG0463: Glycosyltransferases involved in cell wall biogenesis [Anabaena variabilis
ATCC 29413]

class V chitin synthase [Coccidioides posadasii]

glucan synthase [Coccidioides posadasii]

class Il chitin synthase [Coccidioides posadasii]

cell wall biogenesis protein phosphatase Ssd|, putative [Aspergillus fumigatus Af293]
exo-beta-1,3-glucanase, putative [Aspergillus fumigatus Af293]

chitin biosynthesis protein (Chs7), putative [Aspergillus fumigatus Af293]
chitinase 6 [Coccidioides immitis]

chitin synthase activator (Chs3), putative [Aspergillus fumigatus Af293]

related to glucan |, 4-alpha-glucosidase [Neurospora crassa]

|,4-alpha-glucan branching enzyme [Aspergillus fumigatus Af293]
endo-1,3(4)-beta-glucanase, putative [Aspergillus fumigatus Af293]

glucan synthase [Paracoccidioides brasiliensis)

beta-1,3-glucanosyltransferase 3 [Paracoccidioides brasiliensis]

COGO0296: |,4-alpha-glucan branching enzyme [Pseudomonas fluorescens PfO-1]

|,4-alpha-glucan branching enzyme [Xanthomonas campestris pv. campestris str.
ATCC 33913]

COG0463: Glycosyltransferases involved in cell wall biogenesis [Microbulbifer
degradans 2—40]

endoglucanase, putative [Aspergillus fumigatus Af293]

GPI anchored cell wall protein, putative [Aspergillus fumigatus Af293]
glucan synthase [Coccidioides posadasii]

class | chitin synthase [Coccidioides posadasii]

chitinase [Aspergillus nidulans]

related to beta-|, 3-glucan binding protein [Neurospora crassa]

class V chitinase, putative [Aspergillus fumigatus Af293]

class V chitinase, putative [Aspergillus fumigatus Af293]

Page 9 of 13

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW680301
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW680312
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW682359
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW682374
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW683089
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW683358
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW683445
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW685849
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW688220
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW689007
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW690185
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW690279
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW691865
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW693577
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW693682
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW695169
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW695173
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW695201
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW695707
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW696021
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW696346
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW696427
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW696467
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW698094
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW698125
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW699324
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW699653
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW700861
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW701415
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW701643
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW703862
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW704338
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW704622
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW706159
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW708188
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW709733
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW709856
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW710353

BMC Genomics 2006, 7:255

Methods

Preparation of strains and materials

T. rubrum (strain BMU01672) and medium have been
described previously [54].

Preparation of cell cultures

Preparation of hyphae cultures

A few hyphae of T. rubrum were inoculated on potato glu-
cose agar and incubated at 27.5°C for 2~3 weeks. In order
to get cDNAs covering the entire growth phases, the
hyphae were inoculated in liquid YPG medium (10 g/L
yeast extract, 20 g/L peptone, 10 g/L D-glucose) and incu-
bated in a 27.5°C bath shaker for 7, 10, 14, 15, 16, 20, 22,
26, 28, 34 and 36 d, respectively. Combine the mycelium
from (7,10, 15, 20, 28) (7, 10, 16, 22, 26, 28), (16, 20,
22), (26, 28), and (34, 36) days, thus get 8 samples (or
mixtures) from 7, 10, 14, (7, 10, 15, 20, 28), (7, 10, 16,
22, 26, 28), (16, 20, 22), (26, 28),(34, 36) day. All the
samples or mixtures were used to construct unnormalized
cDNA libraries except the mixture (7, 10, 15, 20, 28),
which was used to prepare the tester cDNA of a subtracted
cDNA library. A large number of sequenced plasmids in 7,
10, and 14 days libraries were in vitro transcripted (Ribo-
probe® in vitro Transcription Systems, Promega) and the
RNA products were further reverse transcripted into the
driver cDNA (Clontech PCR-Selected cDNA Subtraction
Kit). The fungal samples (or mixtures) were centrifuged
and the supernatant were discarded. The pelleted myc-
elium were washed twice with PBS.

Preparation of spore cultures

A few hyphae of T. rubrum were inoculated on potato glu-
cose agar and incubated at 28°C for 2~3 weeks. The
spores were then washed by liquid YPG medium and fil-
tered by cell filter to get rid of the hyphae. Part of the
spores obtained were incubated in YPG medium at 28°C
for 12 hours. Finally we got two samples, spores and incu-
bated spores, respectively.

Isolation and purification of total RNA and mRNA
Total RNA and mRNA were isolated and purified as
described previously [54].

Construction of the cDNA library

Construction of the unnormalized cDNA library

The 9 cDNA libraries (7 representing mycelium and 2 rep-
resenting spores) were constructed following the proto-
cols of the SUPERSCRIPT™ Plasmid System with
GATEWAY™ Technology for cDNA Synthesis and Cloning
(Invitrogen).

Construction of the subtracted cDNA library

The subtracted library was constructed following the pro-
tocols of the Clontech PCR-Selected cDNA Subtraction
Kit. According to the instruction of the Kit, driver cDNA
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will be subtracted from the tester cDNA therefore a nor-
malized library is constructed.

Isolation and purification of plasmids, and sequencing of
clones

The cDNA plasmids were isolated as described previously
[54]. Sequencing was performed with a generic T7 primer
located 5' upstream of the inserted segments, following
the protocol of the PRISM Big Dye Terminator Kit on an
ABI3700 or MEGABACE automated sequencer.

Bioinformatic analysis

Sequence data processing, EST clustering and re-assembly

The processing method has been described previously
[54].

EST analysis and construction of the metabolic pathway

The clustered EST consensus sequences were assigned
with potential functions through homologous compari-
sons by BLASTX searches of the GenBank non-redundant
(NR) protein database (07/2005), Gene Ontology (GO,
11/2005) and Yeast Genome Database (YGD, 11/2005).
ESTs were further classified according to the NCBI Clus-
ters of Orthologous Groups of Proteins database (COGs,
06/2005) and the Eukaryotic Orthologous Groups
(KOGs, 06/2005). The metabolic pathways of T. rubrum
were partially reconstructed by searching for known path-
way homologs found in the Kyoto Encyclopedia of Genes
and Genomes database (KEGG, 11/2004). Secreted pro-
teins were analyzed by comparison to NR. All the thresh-
old cutoff were E<1E-05. As to the putative secreted
protein identified in NR database, all of the correspond-
ing ESTs were further subjected to SignalP prediction anal-
ysis.

Accession numbers

The sequences have been submitted to GenBank (acces-
sion numbers from [GenBank:DW405580] to [Gen-
Bank:DW407270] and from [GenBank:DW678211] to
[GenBank:DW711189]). All the information about Gen-
Bank numbers, contigs assembly, and ESTs annotation
could be obtained form our Trichophyton rubrum database
[55].

Authors' contributions

LW performed construction of the cDNA gene libraries,
clone isolation, plasmids sequencing, data analysis and
drafted the manuscript. LM, WL performed construction
of the cDNA gene libraries, clone isolation, and plasmids
sequencing. TL, LY participated in the construction of the
cDNA libraries and the isolation of clones. JY carried out
the bioinformatics analysis and constructed the T. rubrum
database. LY, WZ, QZ, JD, YX, YZ and XX participated in
the library construction, clone isolation and plasmids
sequencing. ZW and RL were responsible for the strain

Page 10 of 13

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW405580
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW407270
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW678211
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW711189

BMC Genomics 2006, 7:255

identification, culture and growth conditions design. GD,
FY, KT and YL participated in bioinformatics analysis. QJ
designed the project, supervised the research and revised
the manuscript. SY cooperated with QJ and implemented
the project and supervise the research in the center of Chi-
nese National Human Genome Center. All authors read
and approved the final manuscript.

Additional material

Additional File 1

ESTs Comparison.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-255-S1.xls]

Additional File 2

metabolism overview.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-255-82 xls]

Additional File 3

secondary metabolism.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-255-S3.xls]

Additional File 4

signal transduction.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-255-S4 xls]

Additional File 5

Sexual and asexual development.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-255-S5xls]

Additional File 6

secreted proteins.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-255-S6.xs]

Acknowledgements

The work was supported by The National High Technology Research and
Development Program of China (Accession number: 2001AA223021) and
National Key Technologies R&D Programme (Accession Number:
2002BA711A14).

References

Woodfolk JA, Wheatley LM, Piyasena RV, Benjamin DC, Platts-Mills
TE: Trichophyton antigens associated with IgE antibodies and
delayed type hypersensitivity. Sequence homology to two
families of serine proteinases. J Biol Chem 1998,
273:29489-29496.

20.

21.

22.

23.

http://www.biomedcentral.com/1471-2164/7/255

Kane J, Summerbell R, Sigler L, Krajden S, Land G: Laboratory Hand-
book of Dermatophytes Star Publishing Company; 1997.

Kwon-Chung K], Bennett JE: Medical Mycology Lea & Febiger, Philadel-
phia; 1992.

Kac G: Molecular approaches to the study of dermatophytes.
Med Mycol 2000, 38:329-36.

Hay R]: The future of onychomycosis therapy may involve a
combination of approaches. Br | Dermatol 2001, 145(Suppl
60):3-8.

Mukherjee PK, Leidich SD, Isham N, Leitner |, Ryder NS, Ghannoum
MA: Clinical Trichophyton rubrum Strain Exhibiting Primary
Resistance to Terbinafine. Antimicrob Agents Ch 2003, 47:82-86.
Fernandez-Torres B, Carrillo AJ, Martin E, Del Palacio A, Moore MK,
Valverde A, Serrano M, Guarro J: In Vitro Activities of 10 Anti-
fungal Drugs against 508 Dermatophyte Strains. Antimicrob
Agents Ch 2001, 45:2524-2528.

Pujol I, Capilla J, Ferna'ndez-Torres B, Ortoneda M, Guarro J: Use of
the Sensititre Colorimetric Microdilution Panel for Antifun-
gal Susceptibility Testing of Dermatophytes. | Clin Microbiol
2002, 40:2618-2621.

Osborne CS, Leitner |, Favre B, Ryder NS: Amino Acid Substitu-
tion in Trichophyton rubrum Squalene Epoxidase Associated
with Resistance to Terbinafine. Antimicrob Agents Ch 2005,
49:2840-2844.

Osborne CS, Leitner |, Hofbauer B, Fielding CA, Favre B, Ryder NS:
Biological, Biochemical, and Molecular Characterization of a
New Clinical Trichophyton rubrum lIsolate Resistant to Ter-
binafine. Antimicrob Agents Ch 2006, 50:2234-2236.

Sanyal AK, Das SK, Banerjee AB: Purification and partial charac-
terization of an exocellular proteinase from Trichophyton
rubrum. Sabouraudia 1985, 23:165-178.

Collins JP, Grappel SF, Blank F: Role of keratinises in dermato-
phytosis. Il. Fluorescent antibody studies with keratinase Il
of Trichophyton mentagrophytes. Dermatologica 1973,
146:95-100.

Grappel SF, Blank F: Role of keratinases in ermatophytosis. I.
Immune responses of guinea pigs infected ith Trichophyton
mentagrophytes and guinea pigs immunized with eratinases.
Dermatologica 1972, 145:245-255.

Brouta F, Descamps F, Fett T, Losson B, Gerday C, Mignon B: Puri-
fication and characterization of a 43.5 kDa keratinolytic met-
alloprotease from Microsporum canis. Med Mycol 2001,
39:269-275.

Brouta F, Descamps F, Monod M, Vermout S, Losson B, Mignon B:
Secreted metalloprotease gene family of Microsporum canis.
Infect Immun 2002, 70:5676-5683.

Tsuboi R, Ko IJ, Takamori K, Ogawa H: Isolation of a keratinolytic
proteinase from Trichophyton mentagrophytes with enzy-
matic activity at acidic pH. Infect Inmun 1989, 57:3479-3483.
Descamps F, Brouta F, Monod M, Zaugg C, Baar D, Losson B, Mignon
B: Isolation of a Microsporum canis gene family encoding
three subtilisin-like proteases expressed in vivo. | Invest Der-
matol 2002, 119:830-835.

Pierard G, Gerday C, Losson B: Purification and characteriza-
tion of a 31.5 kDa keratinolytic subtilisin-like serine protease
from Microsporum canis and evidence of its secretion in atu-
rally infected cats. Med Mycol 1998, 36:395-404.

Apodaca G, McKerrow JH: Purification and characterization of
a 27,000-Mr extracellular proteinase from Trichophyton
rubrum. Infect Inmun 1989, 57:3072-3080.

Asahi M, Lindquist R, Fukuyama K, Apodaca G, Epstein WL, McKer-
row JH: Purification and characterization of major extracellu-
lar proteinases from Trichophyton rubrum. Biochem | 1985,
232:139-144.

Lambkin |, Hamilton AJ, Hay RJ: Purification and characterisation
of a novel 34,000-Mr cell-associated proteinase from the der-
matophyte Trichophyton rubrum. FEMS Immunol Med Microbiol
1996, 13:131-140.

Joussona O, Le'chennea B, Bontemsa O, Mignonb B, Reichardc U,
Barbland J, Quadronid M, Monod M: Secreted subtilisin gene fam-
ily in Trichophyton rubrum. Gene 2004, 339:79-88.

Jousson O, Le' chenne B, Bontems O, Capoccia S, Mignon B, Barblan
J, Quadroni M, Monod M: Multiplication of an ancestral gene
encoding secreted fungalysin preceded species differentia-
tion in the dermatophytes Trichophyton and Microsporum.
Microbiology 2004, 150:301-310.

Page 11 of 13

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2164-7-255-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-7-255-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-7-255-S3.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-7-255-S4.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-7-255-S5.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-7-255-S6.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9792655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9792655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9792655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11092379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11777262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11777262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12089289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12089289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12089289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3895469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4576226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4124876
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11446530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12228297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2478474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2478474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12406327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12406327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10206750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10206750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2674015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3910025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8731021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15363848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14766908

BMC Genomics 2006, 7:255

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

Tatusov RL, Fedorova ND, Jackson ]D, Jacobs AR, Kiryutin B, Koonin
EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS,
Smirnov S, Sverdlov AV, Vasudevan S, Wolf Y1, Yin JJ, Natale DA: The
COG database: an updated version includes eukaryotes.
BMC Bioinformatics 2003, 4:41.

Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach M),
Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone |,
Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S,
Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH,
Bohnert H, Coughlan S, Butler ], Calvo S, Ma LJ, Nicol R, Purcell S,
Nusbaum C, Galagan JE, Birren BW: The genome sequence of the
rice blast fungus Magnaporthe grisea. Nature 2005, 434:980-986.
Nierman WC, Pain A, Anderson M}, Wortman JR, Kim HS, Arroyo |,
Berriman M, Abe K, Archer DB, Bermejo C, Bennett ), Bowyer P,
Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedor-
ova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A,
Garcia JL, Garcia MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones
S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Hum-
phray S, Jimenez ], Keller N, Khouri H, Kitamoto K, Kobayashi T,
Konzack S, Kulkarni R, Kumagai T, Lafon A, Latge JP, Li W, Lord A,
Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M,
Monod M, Mouyna |, Mulligan S, Murphy L, O'Neil S, Paulsen |, Penalva
MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E,
Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD,
Rodriguez de Cordoba S, Rodriguez-Pena JM, Ronning CM, Rutter S,
Salzberg SL, Sanchez M, Sanchez-Ferrero |C, Saunders D, Seeger K,
Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, Vazquez de
Aldana CR, Weidman ), White O, Woodward ], Yu JH, Fraser C,
Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW:
Genomic sequence of the pathogenic and allergenic filamen-
tous fungus Aspergillus fumigatus. Nature 2005, 438:1151-1156.
Yu JH, Leonard TJ: Sterigmatocystin biosynthesis in Aspergillus
nidulans requires a novel type | polyketide synthase. | Bacteriol
1995, 177:4792-4800.

Feng GH, Leonard TJ: Characterization of the polyketide syn-
thase gene (pksLl) required for aflatoxin biosynthesis in
Aspergillus parasiticus. | Bacteriol 1995, 177:6246-6254.
Linnemannstons P, Schulte |, del Mar Prado M, Proctor RH, Avalos J,
Tudzynski B: The polyketide synthase gene pks4 from Gib-
berella fujikuroi encodes a key enzyme in the biosynthesis of
the red pigment bikaverin. Fungal Genet Biol 2002, 37:134-148.
Mayorga ME, Timberlake WE: The developmentally regulated
Aspergillus nidulans wA gene encodes a polypeptide homolo-
gous to polyketide and fatty acid synthases. Mol Gen Genet
1992, 235:205-212.

Fischer |B, Kane J: The detection of contamination in Tricho-
phyton rubrum and T. mentagrophytes. Mycopathol Mycol Appl
1971, 43:169-180.

Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, Fit-
zHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R,
Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, lanakiev P, Bell-Ped-
ersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kin-
sey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W,
Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor |, Stange-
Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli
E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzen-
berg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D,
Li W, Pratt R}, Osmani SA, DeSouza CP, Glass L, Orbach M), Berglund
JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap ], Radford A,
Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole D], Freitag M,
Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B: The genome
sequence of the filamentous fungus Neurospora crassa. Nature
2003, 422:859-868.

Clemons KV, Miller TK, Selitrennikoff CP, Stevens DA: A putative
histidine kinase as a virulence factor for systemic aspergillo-
sis. Med Mycol 2002, 40:259-262.

Pott GB, Miller TK, Bartlett JA, Palas S, Selitrennikoff CP: The isola-
tion of FOS-I, a gene encoding a putative two-component
histidine kinase from Aspergillus fumigatus. Fungal Genet Biol
2000, 3 1:55-67.

Selitrennikoff CP, Alex L, Miller TK, Clemons KV, Simon MI, Stevens
DA: COSI, a putative two-component histidine kinase of
Candida albicans, is an vivo virulence factor. Med Mycol 2001,
39:69-74.

Torosantucci A, Chiani P, De Bernardis F, Cassone A, Calera JA, Cal-
derone R: Deletion of the two-component histidine kinase

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51,

52.

53.

http://www.biomedcentral.com/1471-2164/7/255

gene (CHKI) of Candida albicans contributes to enhanced
growth inhibition and killing by human neutrophils in vitro.
Infect Immun 2002, 70:985-987.

Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De
Smet P, Travers M, Tovey SC, Seo T, Berridge M], Ciccolini F, Lipp P:
Calcium signalling-an overview. Semin Cell Dev Biol 2001,
12:3-10.

Lakin-Thomas PL: Effects of inositol starvation on the levels of
inositolphosphatesandinositol lipids in Neurospora crassa. Bio-
chem J 1993, 292:805-81 1.

Weitzman |, Summerbell R: The Dermatophytes. Clin Microbiol Rev
1995, 8(2):240-259.

Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto
K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kita-
moto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman
WC, Yu ], Archer DB, Bennett JW, Bhatnagar D, Cleveland TE,
Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M,
Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A,
Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K,
Okada K, Paulsen |, Sakamoto K, Sawano T, Takahashi M, Takase K,
Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H,
Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tan-
aka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H: Genome
sequenceing and analysis of Aspergillus oryzae. Nature 2005,
438:1157-1161.

Galagan JE, Calvo SE, Cuomo C, Ma L), Wortman |R, Batzoglou S, Lee
Sl, Basturkmen M, Spevak CC, Clutterbuck |, Kapitonov V, Jurka J,
Scazzocchio C, Farman M, Butler ], Purcell S, Harris S, Braus GH,
Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell-Peder-
sen D, Griffiths-Jones S, Doonan JH, Yu ], Vienken K, Pain A, Freitag
M, Selker EU, Archer DB, Penalva MA, Oakley BR, Momany M, Tan-
aka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW,
Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS,
Osmani SA, Birren BW: Sequencing of Aspergillus nidulans and
comparative analysis with A. fumigatus and A. oryzae. Nature
2005, 438:1105-1115.

Samdani AJ, Dykes PJ, Marks R: The proteolytic activity of strains
of T. mentagrophytes and T. rubrum isolated from tinea pedis
and tinea unguium infections. | Med Vet Mycol 1995, 33:167-170.
Apodaca G, McKerrow JH: Expression of proteolytic activity by
cultures of Trichrophyton rubrum. | Med Vet Mycol 1990,
28:159-171.

Apodaca G, McKerrow JH: Regulation of Trichophyton rubrum
proteolytic activity. Infect Immun 1989, 57:3081-3090.
Meevootisom V, Niederpruem DJ: Control of exocellular pro-
teases in dermatophytes and especially Trichophyton rubrum.
Sabouraudia 1979, 17:91-106.

Yamada T, Makimura K, Hirai A, Kano R, Hasegawa A, Uchida K,
Yamaguchi H: Isolation of a region of a secreted metallopro-
tease gene from Microsporum canis. Jpn | Infect Dis 2004,
57:25-28.

Cervelatti EP, Ferreira-Nozawa MS, Aquino-Ferreira R, Fachin AL,
Martinez-Rossi NM: Electrophoretic molecular karyotype of
the dermatophytes Trichophyton rubrum. Genet Mol Biol 2004,
27:99-102.

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H,
Galibert F, Hoheisel D, Jacq C, Johnston M, Louis EJ, Mewes HW,
Murakami Y, Philippsen P, Tettelin H, Oliver SG: Life with 6000
genes. Science 1996, 274:546, 563-567.

Posada-Buitrago ML, Frederick RD: Expressed sequence tag anal-
ysis of soybean rust pathogen Phakopsora pachyrhizi. Fungal
Genet Biol 2005, 42:949-962.

Brown DV, Cheung F, Proctor RH, Butchko RA, Zheng L, Lee Y,
Utterback T, Smith S, Feldblyum T, Glenn AE, Plattner RD, Kendra
DF, Town CD, Whitelaw CA: Comparative analysis of 87,000
expressed sequence tags from the fumonisin-producing fun-
gus Fusarium verticillioides. Fungal Genet Biol 2005, 42:848-861.
Sacadura NT, Saville B): Gene expression and EST analysis of
Ustilago maydis germination teliospores. Fungal Genet Biol 2003,
40:47-64.

Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB,
Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW,
Scherer S: The diploid genome sequence of Candida albicans.
Proc Natl Acad Sci 2004, 101:7329-7334.

Braun BR, van Het Hoog M, d'Enfert C, Martchenko M, Dungan J, Kuo
A, Inglis DO, Uhl MA, Hogues H, Berriman M, Lorenz M, Levitin A,

Page 12 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12969510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12969510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15846337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16372009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7642507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7592391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12409099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12409099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1465094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1465094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5107875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12712197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12146755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12146755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12146755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11118135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11270409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11796636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11796636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11162741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11162741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8391257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7621400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16372010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16372000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7666296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7666296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1696313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2476398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2476398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=94467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14985633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16291502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12948513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15123810

BMC Genomics 2006, 7:255

54.

55.

Oberholzer U, Bachewich C, Harcus D, Marcil A, Dignard D, louk T,
Zito R, Frangeul L, Tekaia F, Rutherford K, Wang E, Munro CA, Bates
S, Gow NA, Hoyer LL, Kohler G, Morschhauser ], Newport G, Znaidi
S, Raymond M, Turcotte B, Sherlock G, Costanzo M, Ihmels J, Berman
J, Sanglard D, Agabian N, Mitchell AP, Johnson AD, Whiteway M,
Nantel A: A human-curated annotation of the Candida albi-
cans genome. PLoS Genet 2005, 1:36-57.

Wang L, Ma L, Leng W, Yang J, Zhu |, Dong J, Xue Y, Zhe W, Li R, Jin
Q: Analysis of part of the Trichophyton rubrum ESTs. Sci China
C Life Sci 2004, 47:389-395.

Trichophyton rubrum database [http://www.mgc.ac.cn/Trubrum/
]

http://www.biomedcentral.com/1471-2164/7/255

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Page 13 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16103911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15623150
http://www.mgc.ac.cn/Trubrum/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Expressed sequence tags sequence determination
	Comparison to Non-redundant and Clusters of Orthologous Groups databases
	Comparison of ESTs to those already available in GenBank
	Metabolism and secondary metabolism
	Metabolic overview
	Secondary metabolism

	Signal transduction
	Sexual and asexual development
	Extracellular proteinases
	Cell wall

	Conclusion
	Methods
	Preparation of strains and materials
	Preparation of cell cultures
	Preparation of hyphae cultures
	Preparation of spore cultures

	Isolation and purification of total RNA and mRNA
	Construction of the cDNA library
	Construction of the unnormalized cDNA library
	Construction of the subtracted cDNA library

	Isolation and purification of plasmids, and sequencing of clones
	Bioinformatic analysis
	Sequence data processing, EST clustering and re-assembly
	EST analysis and construction of the metabolic pathway
	Accession numbers


	Authors' contributions
	Additional material
	Acknowledgements
	References

