. 0)
BIVIC Genomics Biomed Centa

Research article

Cis-regulatory variations: A study of SNPs around genes showing
cis-linkage in segregating mouse populations

Debraj GuhaThakurta*!, Tao Xie!, Manish Anand!#, Stephen W Edwards!,
Guoya Li2, Susanna S Wang3 and Eric E Schadt*!

Address: 'Genetics, Rosetta Inpharmatics LLC, a wholly owned subsidiaryof Merck & Co., Inc. 401 Terry Avenue North, Seattle, WA 98109, USA,
2[nformatics, Rosetta Inpharmatics LLC, a wholly owned subsidiary of Merck & Co., Inc. 401 Terry Avenue North, Seattle, WA 98109, USA,
3Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1679, USA and *Microsoft
Corporation, One Microsoft Way, Redmond, WA 98052-6399, USA

Email: Debraj GuhaThakurta* - debraj_guhathakurta@merck.com; Tao Xie - tao_xie@merck.com;
Manish Anand - manish__anand@hotmail.com; Stephen W Edwards - stephen_edwards@merck.com; Guoya Li - guoya09 @yahoo.com;
Susanna S Wang - sueming@ucla.edu; Eric E Schadt* - eric_schadt@merck.com

* Corresponding authors

Published: |5 September 2006 Received: 07 June 2006
BMC Genomics 2006, 7:235  doi:10.1186/1471-2164-7-235 Accepted: 15 September 2006
This article is available from: http://www.biomedcentral.com/1471-2164/7/235

© 2006 GuhaThakurta et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Changes in gene expression are known to be responsible for phenotypic variation
and susceptibility to diseases. Identification and annotation of the genomic sequence variants that
cause gene expression changes is therefore likely to lead to a better understanding of the cause of
disease at the molecular level. In this study we investigate the pattern of single nucleotide
polymorphisms (SNPs) in genes for which the mRNA levels show cis-genetic linkage (gene
expression guantitative trait loci mapping in cis, or cis-eQTLs) in segregating mouse populations.
Such genes are expected to have polymorphisms near their physical location (cis-variations) that
affect their mRNA levels by altering one or more of the cis-regulatory elements. This led us to
characterize the SNPs in promoter (5 Kb upstream) and non-coding gene regions (introns and 5
Kb downstream) (cis-SNPs) and the effects they may have on putative transcription factor binding
sites.

Results: We demonstrate that the cis-eQTL genes (CEGs) have a significantly higher frequency of
cis-SNPs compared to non-CEGs (when both sets are taken from the non-IBD regions, i.e. regions
not identical by descent). Most CEGs having cis-SNPs do not contain these SNPs in the
phylogenetically conserved regions. In those CEGs that contain cis-SNPs in the phylogenetically
conserved regions, enrichment of cis-SNPs occurs both within and outside of the conserved
sequences. A higher fraction of CEGs are also seen to harbor cis-SNP that affect predicted
transcription factor binding sites, a likely consequence of the higher cis-SNPs density in these genes.

Conclusion: This present study provides the first genome-wide investigation of the putative cis-
regulatory variations in a large set of genes whose levels of expression give rise to cis-linkage in
segregating mammalian populations. Our results provide insights into the challenges that exist in
identifying polymorphisms regulating gene expression using bioinformatic sequence analysis
approaches. The data provided herein should benefit future investigations in this area.
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Background

Single nucleotide polymorphisms (SNPs) in the genomic
sequence underlie susceptibility to or protection from dis-
eases by affecting biological processes at the molecular
level, such as protein structure, transcription, alternative
splicing etc [1]. There are a number of examples in which
polymorphisms in the promoter regions, and those caus-
ing expression changes in the corresponding genes, have
been found to be associated with disease [2-5]. In addi-
tion, genetic variation of gene expression has been uti-
lized to identify causal genes for complex diseases [6-8].
However, the pattern of polymorphisms that underlie her-
itable variation of gene expression in segregating mamma-
lian populations, as well as bioinformatic sequence
analysis methods for identifying these regulatory poly-
morphisms, have not yet been investigated in a systematic
way. Here we characterize the pattern of cis-SNPs that
could cause quantitative genetic variations in mRNA lev-
els in two mouse intercross populations.

We investigated the frequency and the potential role of
the cis-SNPs for disrupting transcription factor binding
sites (TFBS) around the genes whose expression levels in
murine intercross populations gave rise to strong cis-act-
ing eQTL. We focused on this set of genes for the follow-
ing reasons: 1) a sizable fraction of genes whose
expression varies in a segregating population show cis-
linkage [9-12], 2) evidence for the medical importance of
cis-regulatory variation has been demonstrated by posi-
tional cloning studies in which SNPs in susceptibility
genes that were not located in the protein coding or splice-
site regions were nevertheless shown to be associated with
complex human diseases such as stroke, type 2 diabetes
etc. [4,13,14], 3) the polymorphisms that affect the
expression levels of these genes are either in the genomic
region of the gene or in the nearby upstream or down-
stream region (cis-regulatory variation [4]), which signifi-
cantly restricts the search space for these causal variations.

We found a significantly higher number of ¢is-acting eQTL
genes (CEGs) were in regions that were not identical by
descent (IBD) between the parental inbred mouse lines
used to construct the mouse crosses. In considering the
genes that fall outside of these IBD regions, we found that
a significantly higher number of CEGs have cis-SNPs in
their promoter (i.e. immediate 5' upstream sequence) and
non-coding regions (i.e. introns and immediate 3' down-
stream sequences) compared to genes that do not give rise
to cis-acting eQTLs (non-CEGs). The density of SNPs in
these regions is also significantly higher in the CEGs com-
pared to non-CEGs. In addition, the enrichment of cis-
SNPs is not limited to the highly conserved sequences
between mouse and human, and in fact in a majority of
the CEGs the cis-SNPs do not overlap any conserved
sequences in the promoter or non-coding regions, sug-
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gesting that the cis-SNPs in these genes do not perturb the
highly conserved sequences in the immediate vicinity. A
higher fraction of CEGs have cis-SNPs that perturb pre-
dicted transcription factor binding sites (TFBS) in non-
coding regions, likely a consequence of the higher cis-SNP
density in these regions resulting in an increased number
of intersections between cis-SNPs and the TFBSs.

The implications of the above findings on the challenges
related to the identification and annotation of genomic
regulatory  polymorphisms through bioinformatic
sequence analysis methods are discussed. Our results sug-
gest that the approaches that are commonly employed in
identification of putative regulatory variants, such as
searches for polymorphisms in the immediate upstream
regions and cross-species conserved sequences, are
unlikely to elucidate a significant fraction of the cis-regu-
latory variations responsible for causing changes in gene
expression in genetically segregating mammalian popula-
tions.

Results

Mouse intercross populations and cis-acting eQTL genes
mRNA expression data for multiple tissues in F, animals
from two mouse intercrosses constructed from C57BL/6]
and DBA/2J (referred here as the BXD cross) [10,15], and
from C57BL/6] and C3H/He] inbred lines (referred here
as the BXH cross) [16], were available for analysis (for
details see methods). The BXD F, population [10,15] con-
sisted of 111 female mice and comprehensive mRNA
expression profiles were available for liver, while the BXH
F, population [16] contained 334 mice (169 female, 165
male) and expression profiles were available for four tis-
sues, namely liver, white adipose, whole brain, and skele-
tal muscle. All of the expression data from the two crosses
we have used here for analyses were generated and
described previously [6,10,16].

In the same manner as classic phenotypic trait data, QTLs
for gene expression levels can be computationally
mapped using genetic linkage mapping strategies [10].
mRNA levels of genes were treated as continuous variables
and mapped to the genome using a standard interval
mapping procedure [17] to identify expression QTLs
(eQTLs). From the linkage results CEGs were defined as
follows: 1) eQTL LOD score > 4.3 (the threshold in an F,
mouse intercross for achieving a genome-wide p-value of
0.05, and a point-wise significance of 0.00005), 2) eQTL
is near the physical location of the gene itself (within 10
Mb, equivalent to roughly 5 cM), 3) the eQTL explains
more than 10% of the genetic variation of expression for
the gene in the respective F, populations.

Using the specific conditions described above, a total of

3,769 distinct CEGs were identified (roughly 20% of the
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Determining nIBD-BXH regions from IBD blocks
between mouse strains. B6 refers to C57BL/6), DBA
refers to DBA/2J, and C3H refers to C3H/He). Horizontal
bars represent genomic sequence. Regions that are in the
same color between two or more strains represent the IBD
blocks between those strains. nIBD-BXH (indicated with a
box) are regions that are IBD between C3H/He] and DBA/2),
but nIBD between C3H/He) and C57BL/6), and nIBD
between C57BL/6J and DBA/2], as explained in the text.

genes represented on the array) over all four tissues in the
BXH cross, and 338 CEGs were identified in BXD cross.
Reasons for identification of significantly fewer CEGs in
the BXD cross relative to the BXH cross include: 1) availa-
bility of mRNA profiles from only one (liver) tissue com-
pared to four tissues in the BXH cross, and 2) a lower
number of animals (111 in BXD compared to 334 in
BXH) resulting in a reduced power to detect QTLs. The
number of CEGs for the BXD cross given here is less than
previously reported for this same cross [10,11], given we
employed a more conservative definition of cis-eQTLs in
this preset study for the purpose of minimizing the false
positive calls and working with the highest confidence
CEGs. The CEGs from all tissues in both crosses are pro-
vided in the supplementary materials (Additional files 1
and 2). Later we have described how we have prepared a
common set of CEGs and non-CEGs for analysis by com-
bining the data from the two crosses.

IBD regions between parental strains and the distribution
of CEGs with respect to the IBD status

Genomic segments in different mouse strains that are
inherited from a common ancestor are referred to as iden-
tical by descent or IBD. The IBD regions can be considered
to be largely homologous sequence blocks between two
strains, while the non-IBD (nIBD) regions can be consid-
ered as polymorphic blocks. Most of the polymorphisms
between mouse strains exist in sequence regions that are
not in IBD [18], and reported variations that are in the
IBD regions either represent sequencing errors or muta-
tions that occurred in the strains after sub-speciation.

So that the readers can focus on the key findings of the
manuscript, we present the details of the IBD map we
have used here [19] and the reason for its selection in the
Data and Methods section. However, it is worth mention-
ing here briefly that a very significant enrichment of CEGs
was observed in the regions that were not in IBD (nIBD)
(with the Fisher exact test p = 8.87 x 10-28 for CEGs from
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the BxD cross, and 4.08 x 10-296 for CEGs from the BxH
cross). The analyses described in subsequent sections were
performed with the set of genes that are not in IBD regions.
This is because genes in IBD regions would be expected to
have significantly fewer SNPs if any, in the surrounding
regions, and therefore the comparison of patterns of pol-
ymorphisms in those genes with the CEGs, most of which
contain cis-SNPs and are in nIBD, would not be appropri-
ate.

Since the C3H strain has not yet been sequenced, a com-
plete set of SNPs between the B6 and C3H parental strains
used to construct the BXH cross was not available from
public sources or the Celera mouse SNP database [20].
Only a small number of SNPs (25,064) that mapped
uniquely to the mouse genome were available between
these two strains (from the public dbSNP database [21]
(build 120)). Therefore, we used the set of SNPs that were
polymorphic between B6 and DBA for analysis of the cis-
SNPs around CEGs in the BXH cross as described below,
imputing the regions of shared haplotypes between
strains using the IBD map. Genomic sequence blocks that
were IBD between C3H and DBA, but nIBD between B6
and C3H and nIBD between B6 and DBA (see Figure 1),
were identified. These regions are called nIBD-BXH for ref-
erence. The nIBD-BXH regions identified in this way are
expected to be homologous between C3H and DBA, but
polymorphic between B6 and DBA as well as between B6
and C3H. In the nIBD-BXH regions, SNPs occurring
between B6 and DBA should thus be the same as those
occurring between B6 and C3H. Of the 492,250 SNPs pol-
ymorphic between B6 and DBA identified as falling in
non-repeat regions, 274,908 (55.4%) were nIBD-BXH.
Genes and SNPs contained in the nIBD-BXH regions were
used for analysis of data from the BXH cross.

Creating a common set of CEGs and non-CEGs from the
BXD and BXH crosses

To characterize the frequency and location of c¢is-SNPs in
genes, we constructed a common set of CEGs and non-
CEGs from the BXD and BXH crosses. Given the number
of CEGs identified in the BXD cross was small (~10% of
the total available from both crosses), these data on their
own would not be as highly powered to identify cis-SNP
patterns of interest in the CEGs. Therefore, we combined
the CEGs from the BXD and BXH crosses to carry out all
subsequent analyses. Combining the 338 CEGs from BXD
cross with the 3,769 CEGs from the BXH cross, and only
considering the CEGs within the nIBD-BXH regions,
resulted in a set of 2,047 distinct CEGs (see Additional file
2). The inclusion CEGs from the BXD cross added 75 dis-
tinct CEGs into the BXH data set. For the purpose of com-
parison with the CEGs, we created a set of non-CEGs by
considering genes that did not give rise to any cis-eQTL in
either cross. To be consistent with the CEG set, only non-
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Table I: Genes containing SNPs in promoters (Prom) and non-coding regions (NCR)

Region Number of Total Number of Total Genes CEGs Containing P-value (FET) Ratio of Over-
Genes (CEGs+Non- CEGs Containing SNPs SNPs representation
CEGs)

NCR 4752 2047 3514 1769 6.03E-12 1.169
Prom 2 Kb 1569 863 2.48E-12 1.277
Prom 5 Kb 2260 1220 3.50E-12 1.253
Cons NCR 1476 782 4.20E-12 1.230

Cons Prom 2 Kb 236 122 2.60E-03 1.200
Cons Prom 5 Kb 388 196 8.79E-04 1.173

CEG and non-CEG sets are defined in the text. Data for genes containing SNPs in non-coding region (NCR), 2 Kb upstream (Prom 2 Kb) and 5 Kb
(Prom 5 Kb) upstream regions are given. Data on genes containing SNPs in conserved regions between mouse and human are indicated by 'Cons'".
p-values less than 0.01 are in bold. All p-values are based on the Fisher exact test (FET). The ratio of over-representation (ROR) is defined as: ratio
of the fraction of CEGs containing cis-SNPs to the fraction of all genes (CEGs+non-CEGs) containing cis-SNPs.

CEGs falling in the nIBD-BXH were considered. Thus, a
combined set of 2,705 distinct non-CEGs was created by
taking the intersection of the genes that did not show cis-
acting eQTLs in either of the two crosses. It is of note that
some of the non-CEGs defined here may show up as CEGs
in other segregating mouse populations, in other tissues,
or in other F, populations constructed from B6, DBA, and
C3H mice (increased number of mice in a F, population
would have higher power to detect eQTLs). As additional
comprehensive sets of CEGs become available, the sets of
CEGs and non-CEGs can be refined to produce more accu-
rate positive as well as negative sets.

Fraction of CEGs containing cis-SNPs is significantly higher
compared to non-CEGs

CEGs by definition are expected to contain genetic varia-
tions near their physical location on the genome which
give rise to variations of their mRNA levels in a segregating
population. We have therefore studied the frequency and
density of SNPs in the promoters and non-coding regions
(for definitions see below) of the CEGs and compared
them to non-CEGs. These studies are described below.

In defining the promoters and non-coding regions, the
gene boundaries and exons were first determined based
on clustering of all mRNAs and ¢cDNAs (including ESTs)
aligning to a common genomic locus as described in
detail earlier [22,23] (see Methods). The promoter regions
were then defined to be the 5 Kb or 2 Kb sequence
upstream of the gene start coordinates. The non-coding
regions comprised of the introns and 5 Kb sequence
downstream of the genes. SNPs in the promoter and non-
coding regions of genes are referred to here as cis-SNPs.

Although transcriptional regulatory elements are often
found to be concentrated in the immediate promoter
region, they are also located in the introns and down-
stream regions [24]. On one hand examining only the
promoter sequence would clearly be insufficient; on the

other hand including the introns and down-stream
sequences could dilute the density of regulatory elements
(if in fact they were enriched in the immediate promoter
regions of most genes under consideration in our study),
thereby making it difficult to identify any relationship
between SNPs and these elements. Therefore we analyzed
the promoter and non-coding regions (NCR) separately.
In addition to the immediate vicinity of the genes, regula-
tory elements such as enhancers or silencers can also be
present at distances that are far away from the genes them-
selves [25]; we have not addressed these in our present
study.

We analyzed cis-SNPs in regions that were most conserved
between the mouse and human genomes. Functional
non-coding sequences are often assumed to be under evo-
lutionary selection pressure, and thereby conserved rela-
tive to the surrounding non-functional sequence.
Consequently, phylogenetic footprinting has been widely
used for the analyses of non-coding regulatory sequences
[26-29]. Although phylogenetic footprinting methods
have limitations (sequences from organisms that are too
distant or too close can be uninformative), the alignments
of rodent-human sequences have been demonstrated in
many studies to be successful in identifying regulatory ele-
ments, and significant enrichment of known regulatory
elements have been found in these regions [26-30]. We
therefore investigated the presence of SNPs in the mouse-
human aligned regions in the promoters and non-coding
regions to see if a higher fraction of CEGs contain cis-SNPs
in these conserved sequences. For this purpose the mouse-
human genome alignments were taken directly from the
UCSC genome annotation project [31], where the two
genomes were aligned using the BLASTZ software [32]
and post-processed to obtain the best alignments for each
region (see Methods for details). These alignments repre-
sent the most conserved sequences between the mouse
and human genomes and cover ~6% of the mouse
genome, which is roughly the percentage of mammalian
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Table 2: SNP density in the promoter or non-coding regions of CEGs and non-CEGs

Gene Set Region Number Number SNP Density SNP Density
of CEGs of Non- (Normalized by total non-coding (Normalized by Conserved or
CEGs or promoter length) Non-Cons region length)
Mean Mean WRST Mean Mean WRST
SNP SNP p-value SNP SNP p-value
Density Density Density Density
CEGs Non- CEGs Non-
CEGs CEGs
Full Combined Set NCR 1769 1745 0.630 0.463 <E-12 NA NA NA
Prom 2 Kb 863 706 1.291 1.172 0.008 NA NA NA
Prom 5 Kb 1220 1040 0.789 0.685 2.70E-06 NA NA NA
Genes with No NCR 987 1051 0.546 0.352 <E-12 NA NA NA
SNPs in Conserved Prom 2 Kb 741 592 1.243 1.106 0.009 NA NA NA
Regions (subset I) Prom 5 Kb 1024 848 0.731 0.620 1.50E-06 NA NA NA
Genes having SNPs All NCR 0.736 0.630 5.00E-10 NA NA NA
in Conserved Non Cons NCR 782 694 0.657 0.554 9.00E-09 0.732 0.620 1.00E-08
Regions (subset 2) Cons NCR 0.091 o.101 0.050 1.359 1.193 2.71E-06
All Prom 2 Kb 1.581 1.513 0.172 NA NA NA
Non Cons 2 Kb 122 114 1.376 1.415 0.498 1.886 2.169 0.482
Cos Prom 2 Kb 0.758 0.706 0.278 5.227 5.721 0.026
All Prom 5 Kb 1.091 0.967 0.036 NA NA NA
Non Cons 5 Kb 196 192 0.910 0.822 0.19 1.139 1.025 0.174
Cons Prom 5 Kb 0.357 0317 0.036 3.763 3.276 0.001
"SNP density (Normalized by total non-coding or promoter length)" = 1000*(total number of SNPs in non-coding or promoter sequence)/(total
non-coding or promoter length). "SNP density (Normalized by Conserved or Non-Cons region length)" = 1000*(the number of SNPs in conserved

or non-conserved regions)/(total length of the conserved or non-conserved sequence in promoters or non-coding regions). "Mean SNP density"
gives the average SNP-density over all the genes in a particular set. The means are only given for reference, and have not been used for calculation
of p-values (which were done using a non-parametric method). p-values of significance with the Wilcoxon rank sum test (WRST) are given. Hy =
CEGs and non-CEGs have equal SNP density, H, = CEGs have higher SNP density compared to non-CEGs. p-values less than 0.01 are in bold.

genome that is estimated to be under purifying selection
[33].

A significantly higher fraction of the CEGs contained cis-
SNPs (at p < 0.01 with Fisher exact test, Table 1) compared
to non-CEGs. When we considered cis-SNPs contained
only within regions that are conserved between mouse
and human, the fraction of CEGs containing cis-SNPs was
still observed to be higher than non-CEGs (p < 0.01, Table
1), but the significances were decreased for the conserved
promoters regions (p ~10-3) compared to all promoter
regions (p ~10-12). A ratio of over-representation (ROR)
for CEGs containing cis-SNPs may be defined as the ratio
of the fraction of CEGs containing cis-SNPs to the fraction
of all genes (CEGs+non-CEGs) containing cis-SNPs (Table
1, last column). The ROR values were decreased when
considering cis-SNPs in the conserved promoter regions
relative to all promoter regions. Therefore the decreased
significance of CEGs containing SNPs in the conserved
regions of the promoters could be explained by the

decreased ROR value. Another reason contributing to the
decreased significance could be the smaller sample size,
given many fewer genes contained cis-SNPs in conserved
regions.

Higher density of SNPs in promoters and non-coding
regions of CEGs

Next, we compared the cis-SNP density in the promoters
and non-coding regions of CEGs to non-CEGs. Genes
with no cis-SNPs in their promoters or non-coding regions
were ignored for this analysis, since the absolute numbers
of genes containing cis-SNPs were already compared ear-
lier (Table 1) (consideration of genes with no cis-SNPs
will only increase the significance of the p-values in Table
1, since a higher fraction of the CEGs contain cis-SNPs
compared to non-CEGs). Cis-SNP densities between the
two sets were compared using the non-parametric Wil-
coxon rank sum test (Table 2). A non-parametric method
was used because the distributions under study were non-
normal. A significantly higher density of cis-SNPs
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(number of SNPs per Kb of total non-coding or promoter
sequence) was observed in CEGs compared to non-CEGs
(p<0.01).

In order to compare the density of cis-SNPs in the con-
served and non-conserved regions, genes were partitioned
into two sub-sets, namely, those with no cis-SNPs in
mouse-human conserved regions (subset 1), and those
containing cis-SNPs in the conserved regions (subset 2)
(Table 2). In subset 1, containing a majority of the CEGs,
higher cis-SNP density was observed in both promoter
and non-coding regions (p < 0.01). In subset 2, a higher
cis-SNP density was observed in non-coding region (p <
0.01) only. Upon normalizing the number of SNPs by the
length of the conserved or non-conserved sequence
(instead of the total promoter or non-coding sequence
length), significantly higher density was observed in both
conserved as well as non-conserved non-coding region (p
<0.01, Table 2, subset 2). In the 5 Kb upstream promoter
regions of genes in subset 2, significantly higher SNP den-
sity was observed only when the number of ¢is-SNPs in
mouse-human aligned sequences was normalized by the
length of these conserved regions.

A higher fraction of CEGs has cis-SNPs that alter predicted
transcription factor binding sites

In an attempt to study what effect the cis-SNPs in CEGs
have on the transcription regulatory machinery, the per-
turbation of transcription factor binding sites (TFBSs) by
cis-SNPs was investigated. All known mouse, rat and
human TFBSs (a total of 2,528 sites) from the TRANSFAC®
database [34] were first mapped to the mouse genome
using BLASTN (for mapping details see Methods). How-
ever, none of the mapped sites overlapped with cis-SNPs
of any of the CEGs. Consequently we investigated the
overlap of predicted TFBSs with cis-SNPs.

The rationale and caveats for using predicted TFBSs are
discussed below. It has been shown through experiments
that the score of a transcription factor (TF) binding site, as
computed from a position weight matrix (PWM) built
from a collection of its known sites, can give a fairly accu-
rate estimate of the in vitro DNA binding affinity of the
transcription factor to that site (e.g. [35-37]). This obser-
vation and the thermodynamic principles behind it forms
the basis of most of the generic bioinformatic methods
that are in use today to predict TFBSs in genomic DNA
(Reviewed in [36,38]). Compared to in vitro, the TE-DNA
binding events are definitively more complicated in vivo
since TF binding to DNA in eukaryotes is context depend-
ant (e.g. dependant on other TFs which bind nearby DNA
sites, local DNA structure), and influenced by factors like
chromatin remodeling and concentration of the TF. But
such contextual and other relevant information are avail-
able only in rare cases and cannot be generally leveraged
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in the prediction of TFBSs [38]. Therefore, although the
change in TFBS score may not be accurately predictive of
the binding of a transcription factor to its target DNA site
(and of the change to the target gene's expression) in vivo,
in the absence of other specific information such as chro-
mosomal regions that are open for the regulatory proteins
to bind, the DNA binding partners for a given TF, concen-
tration of TF etc., the approach we have taken here (i.e.
looking for base changes that lead to perturbation of the
binding sites predicted with models built out of previ-
ously known sites for TFs) is a reasonable strategy (and the
only generic strategy at this time) that one can use to exam-
ine how SNPs may affect TF binding to putative TFBSs.
This is a common strategy that has also been used by oth-
ers for the prediction of TFBSs as well as prediction of
putative regulatory SNPs that could perturb TF-DNA bind-
ing and cause changes to expression of the target gene [39-
42].

In our study TFBS predictions were made with PWMs rep-
resenting the transcription factor DNA binding sites avail-
able from the TRANSFAC® (v. 6.3) database [34] using the
MATCH™ software [43]. Only PWMs generated from the
collections of vertebrate DNA binding sites were used. 30
bp regions were taken around all cis-SNPs (a total 61 bp
including the SNP nucleotide) and scored with the PWMs
(for details see Methods). Both the B6 and DBA alleles
were scored, since as explained earlier, these were the var-
iants that were used in the analysis of data from both
crosses. If a cis-SNP location overlapped with a predicted
binding site, and a difference was observed in the pre-
dicted binding site score due to the two alleles, the change
in score was noted, and the predicted TFBS was considered
to be perturbed by the SNP.

Since the TFBSs are typically short and degenerate, predic-
tions using PWMs are known to contain a large percentage
of false positives [28,36,44]. Therefore, orthogonal data
such as co-regulation of the target genes with the tran-
scription factors or phylogenetic footprinting, are com-
monly used to increase the specificity of these predictions
[28,44,45]. Although the transcription factors and their
target genes may not co-regulate at the mRNA level, it is
generally assumed that genes that do co-regulate across a
diverse set of conditions may belong to the same regula-
tory pathway [46-48]. To reduce the number of false pos-
itive predictions for TFBSs we employed a similar strategy,
requiring that the transcript levels of the TFs and their
putative target genes (based on the TFBS predictions) be
significantly correlated across a diverse set of mRNA pro-
filing experiments (see Additional files 3 and 4). Using
expression profiles available from a set of 145 diverse
mouse tissues and cell-lines [49,50] (referred to here as
the 'body-atlas' data set), we determined the Spearman
rank-order correlation (with p < 0.01) between all genes
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and the 282 distinct vertebrate transcription factors in the
TRANSFAC® (v. 6.3) database which have known gene
symbols as well as PWM models for their DNA binding
sites. It is of note that the body-atlas expression data set
was used instead of the BXD and BXH F, populations
given others have shown that significant correlation
between any two genes in a segregating population can
result from closely linked eQTLs as opposed to biologi-
cally relevant co-regulation [11]. These effects can be
amplified in cases where genes give rise to strong cis-
eQTLs.

We found that a higher fraction of CEGs have cis-SNPs
affecting predicted TFBS scores in non-coding regions (p =
4.23 x 104, as determined by the Fisher exact test) (Table
3), when correlations were required between TFs and their
target genes (based on TFBS predictions, see Figure 2 for
an example). Significance was not observed when the
TFBS predictions were not filtered by correlations (data
not shown), which may be due to the large false positive
rate in the predicted TFBS set. Interestingly, the p-value of
the hypothesis that more CEGs harbor cis-SNPs that dis-
rupt predicted TFBSs (p = 4.23 x 10-4) is much larger com-
pared to the p-value of hypothesis that more CEGs
contain cis-SNPs in the promoter and non-coding region
(p ~10-12, Table 1). Possible reasons for this observation
include: 1) DNA binding sites for most vertebrate TFs can-
not be predicted since PWM models for their binding sites
are not available, 2) a large fraction of the cis-SNPs are
neutral with respect to their effects on the transcriptional
levels [51], and 3) cis-SNPs could perturb regulatory ele-
ments other than TFBSs (see Discussions for more
details).

In order to determine whether the cis-SNPs in CEGs per-
turb predicted TFBSs with an increased frequency relative
to the non-CEGs, we compared the fraction of cis-SNPs
affecting TFBSs in CEGs versus non-CEGs using the Fisher
exact test. The fraction of cis-SNPs in CEGs affecting pre-
dicted TFBSs was not observed to be higher (at the 0.01
significance level), suggesting that a higher rate of TFBS
perturbation by SNPs in CEGs is likely due to the
increased density of cis-SNPs in these genes relative to
non-CEGs.

An example cis-eQTL and putative regulatory cis-SNP

To illustrate how high-density SNP data may be inter-
sected with eQTL data to identify putative candidate
quantitative trait nucleotide (QTN) underlying the eQTLs
(and also to illustrate the different types of data we have
used in our analyses), we highlight one example of a CEG
with a cis-SNP in its promoter region perturbing a pre-
dicted TFBS (Figure 2). The gene Casc4 (cancer suscepti-
bility candidate 4) gives rise to a strong cis-acting eQTLs
(LOD score > 10) in a number of tissues in the BXH cross
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(Figure 2a). As Casc4 is in a nIBD-BXH region, the poly-
morphisms between B6 and C3H in this region should be
identical to those between B6 and DBA. There are five
SNPs in the promoter (upstream 5 Kb) of this gene; only
one SNP (mCV23866990), which is located close to the 5'
end of Casc4 (-701 bp), perturbs the predicted binding-
site for a transcription factor, Hand1 [52], whose mRNA
level is correlated with that of the gene. The
mCV23866990 SNP genotype shows a significant associa-
tion with the expression level of Casc4 (p < 0.0001 using
a standard one-way ANOVA) (Figure 2b). A conserved
position in the binding site for the Hand1 is perturbed by
mCV23866990 (Figure 2c). By affecting the Hand1 bind-
ing site in the promoter, this cis-SNP could be responsible
for differential expression of Casc4 in the BXH F, popula-
tion.

Isolating the specific causative regulatory mutations
underlying eQTLs that are responsible for variation of
gene expression in a segregating mouse population is dif-
ficult. This is especially true in an F, population, where
regions of linkage disequilibrium are very large in any
given region (given an F, population is constructed from
intercrossing a single F, founder). Determination of the
actual functional role of the causative polymorphisms is
even more challenging, since there are several different
molecular mechanisms through which mRNA levels in
cells can be regulated. Although such challenges exist,
putative candidate polymorphisms that affect transcrip-
tion of a given gene may be prioritized for experimental
validation, and hypotheses can be generated for the possi-
ble biological roles of candidate regulatory cis-SNPs based
on examination of the data, as illustrated by the example
above. For such candidates the gold standard is to intro-
duce the polymorphism in question onto the background
of a wild-type mouse and then compare changes in the in
vivo activity of the gene and phenotypes to the wild-type
mouse.

Discussion

Cis-SNPs in genes showing cis-acting linkage in segregating
mouse populations

SNPs are often used as markers for disease, and as noted
earlier, there are now several examples where cis-regula-
tory  variants are  associated  with  disease
[5,13,14,42,53,54]. Computational approaches for iden-
tifying the cis-regulatory polymorphisms would therefore
be useful in prioritizing the candidate polymorphisms
that a play causative role in disease, reducing the labori-
ous experimental process of testing multiple candidate
variants in vivo, selecting biologically meaningful SNPs for
association studies, and ultimately in generating testable
hypotheses for elucidating the molecular basis of a given
disease. However, little bioinformatics research has been
done in a systematic way to build predictors of variations
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An example of a putative candidate cis-regulatory SNP affecting transcription in mouse F, population. A. cis-
acting LOD scores for Casc4 on chromosome 2 in multiple tissues and sample sets (male, female or combined/all) in the BXH
cross. x-axis — genomic location in Mb, y-axis — LOD score from interval mapping. Physical location of the gene is indicated
with a red arrow-head. Only LODs scores >10 are shown. B. Association of expression levels of Casc4 with genotypes of the
promoter SNP, mCV23866990. The distribution of the expression levels in brain (left) and adipose (right) is shown according
to the genotypes of this SNP in the F, animals. A_A represents the DBA and C3H allele, and C_C the B6 allele. C. A binding
site for transcription factor Hand| is affected by SNP mCV23866990. The polymorphism changes a highly conserved base in
the binding site (T—>C change on the reverse strand, boxed and shaded). The frequency matrix and a sequence logo of the pro-
file representing the binding site are shown. D. Scatter plot of Casc4 (x-axis) versus Hand| expression levels in the body atlas
data set [49, 50]. Hand| expression is correlated to that of Casc4 with a p-value of < 10-¢ (Spearman rank order correlation -

0.58).

that are likely to affect gene-expression in segregating
mammalian populations [39-42,55]. In this study we
have investigated the frequency and potential biological
role of the polymorphisms underlying genes whose
expression give rise to strong cis-linkage in segregating
mouse populations. The study provides the first investiga-

tion of putative regulatory SNPs around genes showing
cis-linkage, and insight into the challenges associated with
identifying the causative regulatory variants in such popu-
lations through bioinformatic sequence analyses meth-
ods. In addition, the data we provide here (CEGs from
four different tissues in two crosses, cis-SNPs, and pre-
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Table 3: Perturbation of TFBSs by cis-SNPs and summary gene counts where TFBS predictions are affected by cis-SNPs

Region Total Genes CEGs Containing Total Genes with CEGs with TFBS P-value (FET)
Containing SNPs SNPs TFBS Score Score Changed by
Changed by SNPs SNPs
NCR 3514 1769 610 344 4.23E-04
Prom 2 Kb 1569 863 94 6l 0.0174
Prom 5 Kb 2260 1220 193 Il 0.1346
Cons NCR 1476 782 129 66 0.6338
Cons Prom 2 Kb 236 122 12 8 0.0852
Cons Prom 5 Kb 388 196 27 15 0.2293

The total gene-set consisted of the combined set of CEGs and non-CEGs as described in the text. All p-values are based on the Fisher exact test

(FET); p-values less than 0.0l are in bold.

dicted TFBSs affected by those cis-SNPs) should benefit
further investigations in this area.

There have been a few previous studies surveying the role
of cis-polymorphisms and haplotypes in promoter
regions of sets of human genes, and identifying those that
change expression [5,40,51,53,56-58]. These studies con-
sidered a relatively small sampling of genes (<300) and
assessed the promoter SNPs that affected the expression in
a limited number of cell lines with reporter gene assays
[51,57-59]. Since the changes in expression due to the
polymorphisms were tested in cell-lines, it is not known if
the SNPs that caused expression changes in the in vitro
assays are responsible for varying levels of expression in
vivo in genetically segregating populations. We started
with large-scale genetic linkage data of gene expression
and investigated the frequency of polymorphisms in the
genes showing cis-linkage. Therefore the work we present
here (namely, investigation of SNPs in the vicinity of
genes with cis-expression linkage in segregating popula-
tions in as many as four different tissues), is complemen-
tary to the previous work, and provides a different
approach to investigating cis-regulatory SNPs with murine
populations.

One recent study reports the mapping of cis-regulatory
variants in a small set of genes to haplotype blocks in
human samples [60], and another recent study reports the
investigation of cis-regulatory variations in 3' UTRs of a set
of genes showing cis-acting regulation in a panel of mouse
recombinant congenic strains [61]. However, to the best
of our knowledge, the present study represents the first
large scale genome-wide survey of cis-SNPs in genes that
give rise to strong cis-eQTL in a mammalian population,
and an investigation of their potential role in disrupting
putative cis-regulatory elements. We observe a signifi-
cantly higher fraction of CEGs to contain cis-SNPs com-
pared to non-CEGs, and that the density of these SNPs is
significantly higher in the CEGs. We have not conclusively
proven the functional role of any polymorphism in regu-
lating the expression of CEGs through in vitro or in vivo

experimental validation, and many of the SNPs in the
vicinity of the CEGs could be neutral (i.e. have no conse-
quence on the expression levels). However, CEGs by defi-
nition should have variations near the genes themselves
affecting their expression in a segregating population, and
based on earlier work on human genes with promoter
polymorphisms, it has been estimated that a sizable frac-
tion of cis-variants (about one third of the SNPs in the
promoters) may alter gene-expression [5,51]. Therefore, it
is reasonable to infer that the higher density of ¢is-SNPs in
CEGs is associated with changes in expression of those
genes, and one or more of the cis-SNPs would be respon-
sible for causing variation of expression in a large fraction
of the CEGs in the mouse F, populations, although we do
not exactly know how many causal regulatory cis-SNPs are
in this set of CEGs.

We investigated the effect of a few other relevant biologi-
cal factors which could give rise to cis-eQTLs in our data-
set instead of (or in addition to) ¢is-SNPs in the promoters
and non-coding regions, such as non-sense mediated
decay (NMD), polymorphisms in exons, and genomic
segmental duplications. We estimated that a very small
fraction of our set of CEGs may arise due to NMD and seg-
mental duplications (see Methods section for details). A
higher fraction of CEGs was seen to contain SNPs in their
exons (1081 out of 2047, p = 2.5 x 10-12with Fisher exact
test) relative to the non-CEGs. But an increased fraction of
the CEGs that contained exonic SNPs also contained pro-
moter and non-coding cis-SNPs relative to non-CEGs (p <
10-4 with Fisher exact test). Therefore, we did not exclude
these genes from the analyses presented here (the purpose
of which was to investigate potential regulatory SNPs in
the non-coding and promoter regions). It is worth noting
however that our analyses with the set of CEGs and non-
CEGs which did not contain any exonic SNPs yielded
results that were very similar to those obtained from the
full set of CEGs and non-CEGs.

One of our objectives was to investigate the challenges

involved in identification of the causative cis-regulatory
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SNPs through bioinformatic sequence analysis
approaches. To that end, we have examined the propensi-
ties of the SNPs in potentially functional non-coding
sequences (namely, mouse-human conserved sequences)
and predicted transcription factor biding sites. A few
recent studies have suggested the use of mouse-human
alignments to identify putative candidate regulatory SNPs
[40,41], and although SNPs falling in these conserved
regions have been shown to affect transcription [40], it is
unclear whether a majority of the regulatory variants lie in
these regions. In our analyses we find that the sequence
variations around the CEGs are not specifically enriched
in evolutionarily conserved non-coding and promoter
sequences, and in fact in the majority of the CEGs all of
the SNPs are outside of these highly conserved regions. It
is possible that the causative regulatory SNPs lie further
away in these CEGs (sequences that are > + 5 Kb away
from the genes) where they alter conserved regulatory ele-
ments (such as silencers or enhancers). However, the
higher cis-SNP density in the immediate vicinity of these
CEGs (relative to non-CEGs) suggests that a significant
fraction of cis-regulatory SNP could lie outside of regions
that are most conserved in mammalian evolution. As
comparative genomics and phylogenetic footprinting
approaches are frequently utilized in the searches for func-
tional regulatory elements in mammalian genomes, and
computational prediction of transcriptional regulatory
elements is a difficult problem [28,36,44], the above
observations imply that the identification of cis-regulatory
variations in genetically segregating populations is likely
to be difficult using sequence-driven bioinformatic
approaches alone. Since the information for transcrip-
tional regulatory networks is in part hard-wired in the
genomic DNA itself through the array of regulatory ele-
ments [62], one can hypothesize that for CEGs where the
cis-regulatory SNPs are not present in the highly conserved
promoter or non-coding sequences, variations of expres-
sion may not cause a significantly perturbation of the
transcriptional networks that have been conserved in the
mammals. Experimental validation of a set of SNPs affect-
ing putative regulatory sites in conserved and non-con-
served regions (both in the immediate vicinity of the
genes, and also some distances away), will be ultimately
required to fully understand how the in cis-SNPs affect
gene expression in segregating populations. This would
consequently lead to a better understanding of the bioin-
formatic approaches that would be effective in identifying
cis-regulatory variants.

Below we describe the examination of a set of character-
ized human cis-regulatory SNPs that are associated with
inherited diseases. A collection of these rare examples is
available from the rSNP_Guide database [42,63]. From
the examples presented in this database (see [63]) we col-
lected a set of 33 cis-regulatory SNPs in 5 distinct genes
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(PROC, TNF, HGB2, GP1BB, and F7) that are: a) known
to be underlying or associated with inherited human dis-
eases, b) known or predicted to disrupt transcription fac-
tor binding sites, and c) have flanking sequences available
from the Human Gene Mutation Database [64] so that
they could be used for mapping reliably to the human
genome assembly. An examination of the locations of
these regulatory SNPs indicates that 10 SNPs in 2 genes
are in the human-mouse conserved regions, while the
remaining 23 SNPs in 3 genes are in non-conserved
regions. In addition to the above cases that were taken
directly from rSNP_Guide database, from two recent pub-
lications we examined the non-coding SNPs (three in
total) within or around two genes, namely INSIG2 [65]
and TCF7L2 [66], that represent extremely rare examples
of variants associated with complex disease (obesity and
diabetes respectively in this case) that have been validated
across diverse and multiple human cohorts. These causa-
tive SNPs were also outside of human-mouse conserved
regions. This is a small sample of genes to draw concrete
conclusions from; however this observation with the well
characterized human SNPs supports our similar finding
from the mouse data and suggests that a large fraction of
the causative cis-regulatory SNPs, including those that are
associated with inherited disease, could be outside of the
sequences that are highly conserved in mammalian evolu-
tion.

Perturbation of putative transcription factor binding sites
by cis-SNPs

A higher fraction of CEGs had TFBS predictions perturbed
by SNPs in the non-coding region. No significant differ-
ence was observed in the fraction of total SNPs affecting
binding sites between CEGs and non-CEGs, suggesting
that the higher fraction of perturbations of TFBSs in the
CEGs was a consequence of increased cis-SNP density.

Several factors are likely to have confounded our study
with predicted TF binding sites: 1) it is possible that the
false positive rate of TFBS prediction is high, even after
requiring correlations of TFs to putative target genes; 2) at
the time of our analysis binding site models for only ~300
vertebrate TFs were available from the TRANSFAC data-
base, whereas the number of distinct TFs in mammals are
estimated to be around 2,000 [33]; therefore prediction of
DNA binding sites for the majority of TFs was not possi-
ble; 3) although often enriched in the immediate pro-
moter region, transcription regulatory elements in
mammals can be spread over large distances (sometimes
more than 100 Kb [25]) whereas in this present study we
considered only the immediate vicinity of the genes (+ 5
Kb); 4) transcriptional regulatory elements frequently act
in conjunction with others forming regulatory modules
where multiple TFs bind DNA (involving both protein-
DNA as well as protein-protein interactions); conse-
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quently the change in score of one individual binding site
by an overlapping cis-SNP may often fail to reflect the
extent to which transcription is affected by that mutation.
It would clearly be useful to re-analyze the data when sig-
nificantly more experimentally verified murine transcrip-
tion factor binding sites are available in order to obtain a
better understanding of how cis-variations specifically
affect the transcriptional machinery, and whether a larger
fraction of SNPs in the CEGs perturb known binding sites.

It is of note that in a recent study of Saccharomyces cerevi-
siae segregants it was shown that genes having cis-linkage
contained a higher frequency of SNPs in promoters and 3'
UTR sequences [12]. The study also found moderate evi-
dence for enrichment of SNPs in TFBS sequences that were
mapped using the ChIP-chip technology [67]. The yeast
study with TF binding sites was not confounded by some
of the factors mentioned above, since most of the regula-
tory sequences were experimentally determined, and a
comprehensive set of DNA binding sequences for almost
all of the yeast TFs were available [67].

Obviously, in addition to TFBSs, other classes of regula-
tory sequences, e.g. those affecting transport from the
nucleus, mRNA stability or decay, RNA mediated regula-
tion, and those potentially involved in epigenetic regula-
tion of gene expression, could be affected by cis-SNPs,
which we have not studied here. Coding SNPs that cause
changes in the protein structure can act in trans to influ-
ence expression through a feedback loop as shown
recently for the AMN1 gene in S. cerevisiae [12]. Such cases
were also not studied here.

Undetermined factors in our study

The specificity of the identification of cis-acting eQTLs was
unknown. Recently Doss et al. [11], gives a lower bound
estimate of the true positive rate for the BXD cross (64%);
we have used more stringent thresholds for identification
of putative cis-eQTLs in our study to increase the true pos-
itive rate, so we anticipate the true positive rate would be
higher than 64%, but the exact number is not known. The
specificity of TFBS predictions is unknown; moreover
binding sites for the majority of the TFs could not be pre-
dicted because TRANSFAC® PWMs were unavailable. It is
likely that additional SNPs exist between the strains we
studied that had not been identified in the databases we
used in our study [68]. Even with these unknown factors
in our current study, several observations have been made
that shed light on the nature of variation in genes showing
cis-linkage in segregating populations, as well as the bio-
informatic challenges that are involved in characterizing
the non-coding cis-regulatory polymorphisms using com-
putational sequence analysis strategies.

http://www.biomedcentral.com/1471-2164/7/235

Future work

The problem of identifying and annotating the functional
cis-regulatory polymorphisms is a difficult one that will
require various experimental as well as computational
approaches to address. Our understanding of cis-regula-
tory variations and their biological role would benefit
from in-vivo experimental evaluation of the contribution
of polymorphisms around CEGs towards changes in gene
expression, characterization of more regulatory elements
in the genome (which is severely limited at this time),
examination of the multi-species genome alignments, and
more accurate prediction of the (transcriptional and
other) regulatory elements. The data on CEGs and cis-
SNPs that we supply here (supplementary information)
will provide a valuable resource for further exploration in
this area.

Conclusion

The analyses of cis-SNPs in the promoters and non-coding
regions around cis-acting eQTL genes (CEGs) in mouse F,
populations indicate that a significantly higher fraction of
CEGs contain cis-SNPs compared to non-CEGs. CEGs also
contain higher SNP density in the promoters and non-
coding sequences relative to the non-CEGs. Since non-
coding sequences that are conserved in mammalian evo-
lution are often biologically functional, the propensity of
cis-SNPs in the promoter and non-coding regions that are
most conserved between mouse and human was exam-
ined. A majority of the CEGs having cis-SNPs did not con-
tain any cis-SNP in these conserved regions, and in the
CEGs that contained cis-SNPs in conserved regions, the
enrichment of cis-SNPs occurred both in conserved as well
as non-conserved regions. This suggests many of the cis-
regulatory SNPs underlying eQTLs and responsible for
causing gene-expression changes in segregating popula-
tions could lie outside of the sequences that are most
highly conserved in mammalian evolution. To investigate
the possible biological role of the cis-SNPs in disrupting
the transcriptional regulatory elements, we studied the
perturbation of the predicted transcription factor binding
sites (TFBSs) by the cis-SNPs. Relative to non-CEGs, a sig-
nificantly higher fraction of CEGs harbor cis-SNPs that
perturb the predicted TFBSs. However the fraction of cis-
SNPs in the CEGs affecting the binding sites is not higher,
suggesting that the increased incidence of TFBS perturba-
tion in the CEGs is due to the higher cis-SNP density.
These observations imply that the identification and
annotation of cis-regulatory variations in genetically seg-
regating populations is likely to be difficult using
sequence-driven bioinformatic approaches alone.
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Methods

Genomic data: Mouse genome assembly, gene sets, SNP
locations, genomic regions that are IBD between strains,
and mouse-human conserved regions

The UCSC mouse genome assembly mm4 [31] (NCBI
build 32) was downloaded and used for all mapping pur-
poses. All mouse mRNAs, cDNAs and ESTs were aligned
to the mm4 assembly and clustered to produce gene and
exon coordinates as described in detail previously [22,23]
(for gene and exon coordinates see Additional file 5). Cel-
era (release 3.4) [20] and public reference (dbSNP build
120 [21]) mouse SNPs were mapped onto the mm4
assembly using BLASTN as described in [19]. Those SNPs
between the strains C57BL/6] and DBA/2J that mapped
uniquely to the autosomes, had allele count > 1, and allele
frequency > 10%, were used for analysis. SNPs in repeat
regions were removed (repeat coordinates in mm4 were
downloaded from UCSC annotation server), which left a
total of 484,727 Celera and 24,332 dbSNPs. 16,809 SNPs
between the Celera and dbSNP databases were identical in
genomic location, leaving a unique, non-redundant set of
492,250 SNPs. This data set was used for analyses of cis-
SNPs.

Genomic regions that are identical by descent (IBD)
between mouse strains were taken directly from Cervino
et al. [19]. Cervino et al. used a window of 50 Kb which
was moved through the genome at 10 Kb intervals;
regions in which fewer than five consecutive SNPs were
observed between two strains were identified as blocks
that were IBD. Genes were taken with 5 Kb flanking
regions (+ 5 Kb), and if the gene or its flanking region
overlapped with regions of IBD, the gene was considered
to be in an IBD region.

Mouse (UCSC assembly mm4) and human (UCSC assem-
bly hgl6) genome alignments (axtTight track) were
downloaded from the UCSC mouse-human alignment
download site [69]. In the axtTight track, mouse and
human genomes were aligned using BLASTZ [32] and
post-processed to obtained the best alignments for each
region. The amount of mouse genome covered in axtTight
track is ~6%.

BXD and BXH crosses and mRNA profiling

Both the crosses under study here have been described
earlier [15,16]; we simply describe the key features of
those crosses in brief here for the benefit of the readers. In
the BXD cross, an F, population consisting of 111 mice
was constructed from a cross of two inbred strains of mice,
C57BL/6] and DBA/2J [10,15]. Only female mice were
maintained in this population. At 16 months of age the
mice were euthanized and their livers extracted for gene
expression profiling. The mice were genotyped at 139 mic-
rosatellite markers uniformly distributed over the mouse
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genome to allow for the genetic mapping of the gene
expression and disease traits. The BXH F, mouse popula-
tion was constructed from C57BL/6J ApoE null (B6.ApoE-
/-) and C3H/He] ApoE null (C3H.ApoE-/-) mice [16,19].
F, mice were generated from reciprocal intercrossing
between B6.ApoE-/- and C3H.ApoE-/-, and F, mice were
subsequently bred by intercrossing F, mice. A total of 334
(169 female, 165 male) were bred. Mice were sacrificed at
24 weeks and four tissues (liver, white adipose, whole
brain, muscle) were extracted for mRNA profiling.
Genomic DNA was isolated from kidney. A linkage map
for all 19 autosomes was constructed using 1032 SNPs
markers, giving rise to a genetic map with an average den-
sity of 1.5 cM. Genotyping was conducted by ParAllele
using the molecular-inversion probe multiplex technique
[70].

All of the expression data from the two crosses we have
used here for eQTL analyses were generated and described
previously [6,10,16]. For the BXD and BXH crosses expres-
sion measurements were available for 21,740 and 21,640
transcripts, respectively, representing 18,774 and 19,197
distinct coding genes which mapped uniquely to the 19
autosomal chromosomes. 12,597 genes were common
between the microarrays used to profile each cross.

Although the actual mRNA profiling experiments were
described earlier [10,16], a summary of the method is
given below for the reader's information. Total RNA from
the BXD and BXH samples was purified from 25-mg por-
tions using an RNeasy Mini Kit according to the manufac-
turer's instructions (Qiagen, Valencia, CA, USA), as
previously described for the BXD set [10]. Fluorescently
labeled cRNA (5 mg) from each F, animal in each cross
was hybridized against a pool of RNAs specific to each
cross. The RNA pools for each cross were constructed from
equal aliquots of RNA from all animals in the BXD cross
and 150 randomly selected animals in the BXH cross.
Array images were processed as previously described to
obtain background noise, single-channel intensity, and
associated measurement error estimates [71]. Expression
changes between two samples were quantified as
log,,(expression ratio), where the "expression ratio" was
taken to be the ratio between normalized, background-
corrected intensity values for the two channels (red and
green) for each spot on the array. An error model for the
log ratio was applied as previously described to quantify
the significance of differential expression between two
samples [71].

eQTL mapping and identification of CEGs and non-CEGs
Expression level for each gene was treated as a continuous
variable and mapped to the genome using interval map-
ping. QTL mapping in the BXD cross was done as
described [6,10]. For BXH, QTL mapping was done with
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the QTL-Cartographer suite of programs [72] using the
established interval mapping [17] procedure. Since each
experiment was hybridized in flour reverse pairs, log;, of
the two expression ratios was taken and averaged to get
the expression level (called ml-ratio for mean log ratio)
for a gene. When males and females were treated as one
combined group (in order to increase the power to detect
linkages with increased number of animals), the gender
effect on expression was accounted for by subtracting the
gender-specific mean from each expression value. Specific
thresholds for selecting CEGs are given in the results sec-
tion.

For some genes, the probes on the microarray, when
mapped to the mouse genome (UCSC mm4 [31] or NCBI
build 32), overlapped with SNPs. For these genes (which
consisted roughly 4.6% of the total number of genes rep-
resented on the microarrays), cis-eQTLs could simply arise
due to polymorphisms in the probe sequences influenc-
ing hybridization of the mRNA to the microarray, rather
than non-coding cis-variations influencing their expres-
sion. Such genes were therefore removed from the list, in
order to minimize the false positive calls on CEGs.

Nonsense mediated decay (NMD) is a mechanism of
mRNA surveillance that ensures rapid degradation of tran-
scripts with premature stop codons [73]. Therefore some
CEGs may not have non-coding cis-regulatory variation
but instead contain nonsense mutations that result in
NMD, which is detected as a cis-eQTL event. The Celera
mouse SNP database [20] (from which most of the SNPs
for our analysis of cis-variants were taken) provided the
annotation on SNPs that cause nonsense mutations; 63
distinct genes represented on the microarrays used for the
crosses were annotated as having nonsense mutations.
Only 4 CEGs from the BXH cross (~0.1% of all CEGs from
that cross) and none of the CEGs from the BXD cross were
annotated as having SNPs resulting in nonsense muta-
tions. The enrichment of genes having SNPs annotated as
causing NMD in our list of 2,047 CEGs (Table 1) was not
significant (p = 0.33 with the Fisher exact test). Since this
fraction was small and the p-value not significant, we are
confident that NMD did not introduce any bias in our
results. In addition, the genes containing nonsense SNPs
could still have non-coding cis-variations affecting their
expression. In our analysis we therefore did not exclude
the genes with nonsense SNPs.

In addition to the factors discussed above, variations in
segmental duplications in the genome may affect expres-
sion. A rough map of genomic duplications is available
for the B6 strain [74], however no map of the variations of
genomic duplications between mouse strains used to con-
struct the F, crosses is available, and it is not known
whether significant variations exist between mouse inbred
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strains in terms of genomic duplications. The analysis that
one can do with SNPs (which gives variations between
strains) is therefore not possible with the genomic dupli-
cations. Nevertheless, we looked to see if CEGs contained
an increased number of genes that were in the duplicated
regions using the available map of segmental duplications
from B6 [74]. From the genomic coordinates of the seg-
mental duplications [74, 75], we obtained the list of genes
that were contained within these regions. A total of 123
distinct genes that were represented on our microarrays
were within the duplicated regions. We then checked
whether these genes are over-represented in the CEGs
using the Fisher exact test. Only 11 of the 2,047 CEGs
were in regions that underwent segmental duplications,
and we found no evidence of enrichment of these genes in
our list of CEGs (p = 0.45 with Fisher exact test). Since the
maps of duplications in other mouse strains are not avail-
able, it is not possible to check whether the CEGs are
enriched for genes contained in the duplicated regions of
C3H or DBA. It is of note however, even if the duplicated
regions in the C3H and DBA did not overlap those in the
B6 strain (but the extent of duplications remained roughly
the same between the different mouse strains), we would
still observe a very small fraction of CEGs to be in these
regions.

In addition to checking for the enrichment of genes
known to be located within segmental duplication
regions in our list of CEGs, we employed a different strat-
egy to check whether a significant fraction of CEGs could
arise due to variations in duplications. This analysis was
based on the hypothesis that if a certain region on the
genome, containing multiple CEGs, was duplicated in
one of the parental strains involved in a cross but not the
other (i.e. variations of duplication between parental
strains), and if this duplication was responsible for giving
rise to cis-eQTLs in an F, population, then the CEGs con-
tained in the duplicated region would all show the same
sign of the additive component of their eQTLs. This is
because the F, mice containing the duplicated region
would always be expected to have higher levels of mRNA
(having multiple copies) for all the genes contained
within that region. In other regions of the genome, where
duplication was not responsible for differential mRNA
levels between the parental strains or the F, animals, the
signs of the eQTLs for tandem genes on the genome
would be expected to be random, and follow a simple
Binomial distribution. In the BxH cross, which contained
the majority of CEGs, we observed the instances of 3 or 4
tandem CEGs having the same sign of their cis-eQTLs. If
the signs of the eQTLs for CEGs were completely random,
the probability of 3 tandem CEGs having the same sign of
their eQTLs would be 0.25, the probability of 4 tandem
CEGs having the same sign of their eQTLs would be
0.125. Using a Binomial distribution we did not observe
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any deviation from these probabilities in our data (p >
0.1). This suggests that in our set of CEGs, variations in
long duplication regions between strains (containing 3 or
more CEGs), was not an important factor in giving rise to
a significant fraction of the cis-eQTLs.

Description of the IBD map used for analysis

The IBD map used in this study [19] was constructed by
looking at 50 Kb sequence windows in the different
strains (moving the window through the genome at 10 Kb
steps), and identifying as IBD regions the windows that
had fewer than five consecutive SNPs [19]. Although this
provides a comprehensive IBD map for multiple mouse
strains for which complete genome sequences are not yet
available, the IBD segments defined in this way are coarse
as they have been derived using a ~10,300 SNP genotype
map, whereas there are more than 2.5 million SNPs
reported in the different mouse strains [20]. While exten-
sive genome sequence coverage is available for the B6 and
DBA strains [20,33], allowing for a high-resolution IBD
map to be constructed between these two strains, the BXD
cross provides a small fraction (338 out of 4,107) of the
total CEGs considered in this study. On the other hand,
the BXH cross provides a far richer set of CEGs (3,769 out
of the 4,107 considered in this study), but the complete
C3H (C3H/HeJ) genomic sequence is not available.
Therefore, we chose to leverage one of the previously pub-
lished comprehensive, lower resolution maps based on a
consistent set of SNPs genotyped in the B6, DBA, and C3H
strains [19, 76]. The utility of the IBD map used here [19]
has been demonstrated by its successful application in the
identification of a causal disease gene [19], and we antici-
pate that our conclusions will remain the same (although
some of the specific numbers presented here may change)
with a finer IBD map that will become available at a later
date.

With the IBD map used here [19] (built with a set of
around ~10,300 SNPs), we examined the amount of
genomic sequence, and the numbers of SNPs and genes
falling within and outside of the IBD blocks. Of the 2.5 Gb
mouse genomic sequence [33], 1.14 Gb (~45.6%) fell
within IBD blocks between B6 and DBA, whereas 1.01 Gb
(~40.4%) fell within IBD blocks between B6 and C3H. Of
the 492,250 SNPs compiled largely from the Celera
mouse sequence database [20] that were outside repeat
regions and polymorphic between B6 and DBA, 404,095
(~82.1%) fell in regions that were not in IBD (nIBD). Of
the 18,774 autosomal genes represented on the BXD
microarray, 10,259 (54.6%) were contained within
regions that were nIBD between the two parental strains
B6 and DBA (which is according to expectation, since
100-45.6 or 54.4% of the total genomic sequence is in
nIBD regions between these two strains, as noted above),
whereas 279 of the 338 CEGs (82.5%) were in nIBD (p =
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8.87 x 1028 as determined by the Fisher exact test). Of the
19,197 autosomal genes represented on the microarray
for the BXH study, 11,628 (60.6%) genes were in nIBD
regions between B6 and C3H (again according to expecta-
tion since 100-40.4 or ~59.6% of mouse genomic
sequence is in nIBD regions between these two strains),
whereas 3,219 out of the 3,769 CEGs (85.4%) were nIBD
between these two strains (p = 4.08 x 10-296, by the Fisher
exact test). The significant enrichment of CEGs in nIBD
regions is expected since there should be cis-variants near
the CEGs that result in cis-linkage by altering one or more
regulatory elements, and by definition these variants are
likely to be largely biased towards the nIBD regions.

SNPs perturbing transcription factor binding sites (TFBS)
For finding the overlap of known transcription factor
binding sites with SNPs, 30 bp sequences around the
SNPs (total 61 bp) were taken, and the experimentally
determined human, rat and mouse binding sites from the
TRANSFAC® database [34] were mapped to these
sequences (both B6 and DBA alleles) using BLASTN. Only
sites which mapped with a threshold of 95% identity were
kept. 16 distinct binding sites mapped in this way over-
lapped with SNPs between B6 and DBA. However of
these, none overlapped with cis-SNPs that were in the pro-
moter or non-coding region of any of the genes.

Consequently, transcription factor binding site predic-
tions were made on the 61 bp sequences around the SNPs
as described below. Although TFBSs are often short, we
took a length of 30 bp on either side of the SNPs, since in
the TRANSFAC® database the longest vertebrate position
weight matrix was 30 bp. Site predictions were made with
the vertebrate position weight matrix models (PWMs)
available from the TRANSFAC® database (version 6.3)
[34] using the MATCH™ software [43]. The individual
TFBS prediction cutoff scores were given by TRANSFAC®
(based on an algorithm that minimizes the sum of the
false positive and false negative rates of predictions using
known sites). With the application of the TRANSFAC
thresholds, the scores of individual sites ranged from
0.751 to 1. For each SNP, two sequences were generated
containing the B6 and DBA alleles. Both sequences were
scored and the change in score of the binding site predic-
tion due to a SNP was recorded. In the analyses we have
reported, we did not chose a threshold for the score differ-
ence due to a SNP intersecting with a TFBS prediction.
Once a binding site was predicted with the threshold
given by TRANSFAC, any change to the score of that site
was considered as a potential perturbation that could rep-
resent an alteration of binding of the TF to that site lead-
ing to a change in expression. We also used an increased
threshold of 0.01 for score changes to a site by an SNP,
and that provided very similar results and identical con-
clusions (data not shown).
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Correlations between transcription factors and genes from
mouse body atlas

Expression profiles of all known mouse genes were deter-
mined over 145 tissues and cell lines (called 'Body atlas'
data set) as described previously [49,50]. Spearman (rank
order) correlations were determined between the mRNA
levels of each of the known transcription factors and all
other genes and correlates with p-value < 0.01 were stored
for analysis.

Authors' contributions

DG: Conceived the study, performed analyses and wrote
the paper

TX: Performed analyses and helped in writing the paper
MA: Performed analyses

SWE: Performed some analyses and provided advice

GL: Provided technical support

SSW: Performed experiments and generated data

EES: Conceived the study, performed analyses, helped in
writing of the paper, and secured funding

All authors have read and approved the final manuscript.

Additional material

Additional file 1

All genes showing cis-expression linkage (CEGs) in the two mouse crosses.
The mouse cross, the tissue in which the cis-linkage was observed,
LocusLink identifier, official gene symbol, physical locations of the genes
(UCSC mm4 or NCBI build 32 assembly), and the cis-acting LOD scores
are given.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-235-S1.xls]

Additional file 2

The complete integrated list of CEGs from BxD and BxH crosses. Gene
coordinates are with respect to UCSC mm4 assembly (NCBI build 32).
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promoter (upto 5 Kb upstream gene) of the CEGs, along with their loca-
tion in conserved mouse-human regions (indicated by 'M-H CONS'"in the
CONSERVATION column), the predicted transcription factor binding
sites perturbed by the SNP, and correlation of the gene to the transcription
factors (if p < 0.01) (in cases where there is a transcription factor binding
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Additional file 5

Gene structure of the CEGs. Exons of all 2,047 CEGs mapped to the
UCSC mm4 assembly (NCBI build 32) are given. This data helps in find-
ing where a non-coding cis-SNP is located in the gene.

Click here for file
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