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Abstract

Background: Accurate evaluation of the quality of genomic or proteomic data and computational
methods is vital to our ability to use them for formulating novel biological hypotheses and directing
further experiments. There is currently no standard approach to evaluation in functional genomics.
Our analysis of existing approaches shows that they are inconsistent and contain substantial
functional biases that render the resulting evaluations misleading both quantitatively and
qualitatively. These problems make it essentially impossible to compare computational methods or
large-scale experimental datasets and also result in conclusions that generalize poorly in most
biological applications.

Results: We reveal issues with current evaluation methods here and suggest new approaches to
evaluation that facilitate accurate and representative characterization of genomic methods and
data. Specifically, we describe a functional genomics gold standard based on curation by expert
biologists and demonstrate its use as an effective means of evaluation of genomic approaches. Our
evaluation framework and gold standard are freely available to the community through our website.

Conclusion: Proper methods for evaluating genomic data and computational approaches will
determine how much we, as a community, are able to learn from the wealth of available data. We
propose one possible solution to this problem here but emphasize that this topic warrants broader
community discussion.

Background

Recent advances in experimental methods have enabled
the development of functional genomics, a genome-wide
approach to understanding the inner workings of a cell.
While such large-scale approaches will undoubtedly be
instrumental in extending our knowledge of molecular
and cellular biology, they produce enormous amounts of
heterogeneous data of varying relevance and reliability. A

key challenge in interpreting these data is separating accu-
rate, functionally relevant information from noise.

Here we focus on using noisy genomic datasets to associ-
ate uncharacterized genes or proteins with biological
processes. Recent literature on protein function prediction
focuses on integrating multiple sources of evidence (e.g.
physical interactions, genetic interaction, gene expression
data) to assign proteins to processes [1-4] or to predict
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functional associations or interactions between related
proteins [5-10]. Individual high-throughput datasets are
typically noisy, but effective integration can yield precise
predictions without sacrificing valuable information in
the data. All of these methods require a gold standard,
which is a trusted representation of the functional infor-
mation one might hope to discover. Such a standard, cou-
pled with an effective means of evaluation, can be used to
assess the performance of a method and serves as a basis
for comparison with existing approaches. Beyond meth-
ods for predicting protein function or interactions, evalu-
ation against gold standards can be used to directly
measure the quality of a single genomic dataset, a neces-
sary step in developing and validating new experimental
technology.

We have undertaken a study of proposed standards and
approaches to evaluation of functional genomic data and
highlight a number of important issues. We find that cur-
rent approaches are inconsistent, making reported results
incomparable, and often biased in such a way that the
resulting evaluation cannot be trusted even in a qualita-
tive sense. One specific problem we identify is substantial
functional biases in typical gold standard datasets. We
demonstrate this problem by evaluating several func-
tional genomic datasets using the Kyoto Encyclopedia of
Genes and Genomes (KEGG)[11] as a gold standard (Fig.
1), as is commonly employed in the literature (e.g.
[7,12]). A naive evaluation in this manner identifies co-
expression data as by far the most sensitive and specific
genome-scale functional genomic data type (Fig. 1a).
However, this apparent superior performance is due to
characteristics of a single pathway; when the ribosome (1
out of 99 total KEGG pathways) is removed from the gold
standard, co-expression becomes one of the least inform-
ative datasets (Fig. 1b). In addition to such substantial
functional biases, we find that commonly used gold
standards are highly inconsistent even for comparative
evaluations and that most current evaluation methodolo-
gies yield misleading estimates of accuracy.

In this paper, we describe these problems with current
evaluation standards with the hope of instigating a com-
munity dialog on proper approaches to comparing
genomic data and methods. As noted above, there are two
typical approaches to using genomic data for analyzing
protein function: methods that directly associate proteins
with particular processes or functional classes, and meth-
ods that focus on predicting functional associations or
interactions between pairs of proteins. We focus our atten-
tion toward standards for the latter, evaluating pairwise
associations between genes produced by either experi-
mental or computational techniques. Many of the prob-
lems we describe, however, apply to both approaches, and
we suggest an alternative standard for evaluation that is
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appropriate in both settings. We provide both a trusted set
of functional associations between proteins as well as a
specific set of biological processes that maps proteins to
well-defined functional classes. Both standards are based
on curation by a panel of biological experts. Furthermore,
we propose several guidelines for using these standards to
perform accurate evaluation of methods and data. The
resulting evaluation framework can be used to directly
measure and compare the functionally relevant informa-
tion present in raw high-throughput datasets as well as to
evaluate or train computational genomics methods.

Our gold standard and evaluation methodology have
been implemented in a web-based system [13] to facilitate
community use for comparison among published data-
sets or methods. We demonstrate the use of our approach
on genomic data from Saccharomyces cerevisiae. Accurate
evaluation methods are particularly critical for this model
organism, because yeast is widely used as a platform for
the development of both high-throughput experimental
techniques and computational methods. However, the
weaknesses we identify in existing evaluation methodolo-
gies as well as the solution we propose are applicable to
data from other model organisms and humans.

Results and discussion

We first discuss commonly used gold standards and sev-
eral fundamental issues with current approaches to evalu-
ation of functional genomic data and methods. To
address these problems, we propose a new gold standard
based on expert curation and recommend appropriate
uses of the standard that ensure accurate evaluation.
Finally, we describe a web-based implementation of our
evaluation framework, which is available for public use by
computational and experimental biologists.

Challenges to effective functional evaluation

Existing gold standards

A number of different gold standards for evaluating yeast
functional genomic data or methods have been proposed
in the literature. Each standard generally consists of sets of
gene or protein pairs grouped as either "positive" or "neg-
ative" examples. This is due in large part to the fact that
some high throughput data takes the form of associations
between genes or gene products (e.g. physical or genetic
interactions). Furthermore, a pairwise approach to analy-
sis is a natural way to view biological systems, which are
composed of networks, or groups of interactions between
gene products. Although this is a commonly adopted
approach, others have trained classifiers for specific func-
tional classes where individual proteins or genes are
directly associated with functional classes or processes
[1,4]. While we focus on data and methods for pairwise
associations between proteins here, many of the issues
described are equally problematic for such non-pairwise
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Inconsistencies in evaluation due to process-specific variation in performance. (a and b) Comparative functional
evaluation of several high-throughput datasets based on a KEGG-derived gold standard. The evaluation pictured in (b) is iden-
tical to that in (a) except that one of ninety-nine KEGG pathways was excluded from the analysis ("Ribosome," sce03010).
Gold standard positives were obtained by considering all protein pairs sharing a KEGG pathway annotation as functional pairs,
while gold standard negatives were taken to be pairs of proteins occurring in at least one KEGG pathway but with no co-anno-
tation. Performance is measured as the trade-off between precision (the proportion of true positives to total positive predic-
tions) and true positive pairs. For the evaluation in (b), both precision and sensitivity drop dramatically for co-expression data.
(c) Composition of correctly predicted positive protein-protein relationships at two different choices of precision-recall. Of
the 0.1% most co-expressed pairs, 99.3% of the true positive pairs (842 of 848) are due to co-annotation to the ribosome
pathway (left pie chart). This bias is less pronounced at lower precision but still present. Of the |% most co-expressed pairs,
86% of the true positive pairs (8500 of 9900) are due to co-annotation to the ribosome pathway (right pie chart).

approaches, and we propose an alternative gold standard
appropriate for both settings (see details in "Defining a
new gold standard" in Methods).

Most functional genomics evaluations derive gold stand-
ard positives from functional classification schemes that
capture associations of genes or proteins with specific bio-
logical processes as reported in the literature [7,10,12,14-
18]. Such classifications are available from multiple

sources including the Gene Ontology (GO)[19] (and
associated annotation repositories such as the Saccharomy-
ces Genome Database)[20], KEGG [11], the Munich Infor-
mation Center for Protein Sequences (MIPS) [21], and the
Yeast Protein Database (YPD) [22]. A common source of
gold standard negatives is cellular localization data
[6,7,23,24]. Most of these methods utilize a localization
study in which 75% of the yeast proteome was GFP-tagged
and classified into 22 different cellular compartments
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[25] and they assume that two proteins localizing to dis-
tinct compartments do not interact. Random pairs of pro-
teins sampled from the proteome provide another
common gold-standard negative, relying on the assump-
tion that the expected number of functionally related or
interacting pairs is much less than the total number of
possible  pairwise  protein-protein  combinations
[5,26,27].

Inconsistencies among and within different standards

Perhaps the most apparent issue with functional genomic
evaluation arises from the diversity of possible standards
and lack of agreement among them. It has been noted that
gold standard positive pairs derived from KEGG, MIPS,
and GO biological process ontology show little overlap
[28]. We find even less agreement among gold standards
for physical interactions predictions, which are usually
based on small interaction datasets obtained from pro-
tein-protein interaction databases such as the Database of
Interacting Proteins (DIP)[29], the General Repository for
Interaction Datasets (GRID)[30], or the Biomolecular
Interaction Network Database (BIND) [31]. However, the
more alarming problem is that even the relative perform-
ance of methods or datasets evaluated against these stand-
ards is not consistent. For example, using both the
biological process GO and the KEGG pathways gold
standard to evaluate the relative performance of com-
monly used data sets produces strikingly different results
(Fig. 2). This difference is likely due to the nature of the
biological relationships each standard is trying to capture
or simply variation in which specific proteins are present
in the classification scheme or interaction dataset.
Although each standard is correctly evaluating some
aspect of the data, without a common, representative eval-
uation framework, the community cannot assess the rela-
tive performance of novel methods or high-throughput
techniques.

In addition to substantial inconsistencies among existing
gold standards, variation in biological specificity within
each standard has also impaired previous evaluation
methods. Standards based on biological ontologies (e.g.
GO or the MIPS Functional Catalogue) classify proteins at
a broad range of resolutions (e.g. metabolism vs. carbohy-
drate metabolism). Although these ontologies can pro-
vide a powerful framework for defining a gold standard,
there are a few caveats. A typical approach for using GO
has been to pick a particular depth in the hierarchy below
which term co-annotations imply gold standard positives.
However, terms at the same level can vary dramatically in
biological specificity [32] (Fig. 3 and Table 1). For exam-
ple, at a depth of 5 in the biological process GO, the term
"regulation of sister chromatid cohesion" (GO:0007063)
with a single indirect gene product annotation appears
alongside a much more general term "cellular protein

http://www.biomedcentral.com/1471-2164/7/187

metabolism" (GO:0044267), which has 1381 annota-
tions. Widely varying degrees of specificity in a gold stand-
ard not only complicate evaluation methods but can also
appear as inconsistencies in the data when training
machine learning algorithms, which can result in poor
performance.

Functional biases in prediction performance

The majority of current evaluation approaches are per-
formed without regard to which biological processes are
represented in the set of true positives (correctly predicted
examples), and thus they are often unknowingly skewed
toward particular processes. We illustrate this bias with an
example using the KEGG pathways gold standard to eval-
uate genomic data (Fig. 1). In this evaluation, the esti-
mated reliability of microarray co-expression drops
dramatically when a single pathway ("Ribosome" or
sce3010) is excluded from the analysis. The substantial
drop in precision suggests that a large fraction of the true
positives predicted by co-expression are exclusively ribos-
ome relationships. In fact, of the positive examples in the
1% most co-expressed pairs, 86% (~8500 of 9900) are
due to co-annotation to the ribosome pathway. This bias
becomes even more pronounced at higher co-expression
level cutoffs: of the 0.1% most co-expressed positive pairs,
99% (842 of 848) are from the ribosome pathway. We
find a similar bias in evaluations using the GO and MIPS
gold standards.

Thus, the traditional approach of using a general ROC
curve (or related measure) without regard to which proc-
esses are represented can be misleading (see Methods for
a discussion of ROC curves). This is particularly true when
the data or computational predictions have process-
dependent reliability as is often the case with genomic or
proteomic data. The problem is magnified when the gold
standard examples themselves are heavily skewed towards
specific functional categories. While the general precision-
recall characteristics such as those portrayed in Figure 1
are technically correct, they generalize poorly to non-
ribosomal protein relationships. Thus, such an evaluation
would be misleading for a scientist hoping to use these
data to generate new hypotheses about proteins unrelated
to the ribosome. We address this problem in our process-
specific evaluation framework.

Gold standard negatives

Another shortcoming of current standards for gene/pro-
tein function prediction is the nature of the gold standard
negative examples. In yeast, one proposed source of gold
standard negatives is based on protein localization data
[23,25] because pairs of proteins localizing to different
cellular compartments are highly enriched for non-inter-
acting proteins. However, localization data is likely not
representative of "typical" unrelated protein pairs. For
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Figure 2

Comparison of functional genomic data evaluation on GO and KEGG gold standards. (a) Comparative functional
evaluation of several high-throughput evidence types based on a typical Gene Ontology (GO) gold standard. Positive pairs
were obtained by finding all protein pairs with co-annotations to terms at depth 8 or lower in the biological process ontology.
Negative pairs were generated from protein pairs whose most specific co-annotation occurred in terms with more than 1000
total annotations. (b) Evaluation of the same data against a KEGG-based gold standard. Gold standard positives were obtained
by considering all protein pairs sharing a KEGG pathway annotation as functional pairs, while gold standard negatives were
taken to be pairs of proteins occurring in at least one KEGG pathway but with no co-annotation. There are several serious
inconsistencies between the two evaluations. In addition to vastly different estimates of the reliability of co-expression data,
other evidence types change relative positions. For instance, transcription factor binding site predictions appear competitive
with both two-hybrid and synthetic lethality in the KEGG evaluation, but are substantially out-performed in the GO evaluation.
These inconsistencies between the two gold standards demonstrate the need for a common, representative evaluation frame-
work.
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Size distribution of depth 5 biological process GO terms (S. cerevisiae). Depth and size are commonly used metrics
for assessing the biological specificity of GO terms, a necessary step in creating a functional gold standard from the ontology.
Here, the number of direct and indirect annotations was counted for each depth 5 GO term and counts were binned to obtain
a histogram of sizes for depth 5 GO terms. This reveals a wide range of sizes for terms at the same depth (from 0 annotations
to 1381 annotations), suggesting size and depth are not capturing the same notion of specificity, and that likely neither is an
appropriate measure for true biological specificity. A sampling of the largest and smallest depth 5 GO terms is shown in Table

instance, Ben-Hur and Noble found the performance of
SVM classifiers trained with localization negatives artifi-
cially inflated because this negative set is composed
entirely of high-confidence pairs [5,33]. Using such a non-
representative "easy" set of negatives will overestimate
prediction accuracy, and the resulting classifier will gener-
alize poorly to real biological problems.

Thus, although protein localization data is a strong nega-
tive indicator of functional relationships or interactions,
we caution against its use as a general negative gold stand-
ard. This is particularly problematic for higher-level ques-
tions such as function prediction, because proteins co-

involved in some biological processes span cellular com-
partments. Perhaps a safer role for localization data is as
the input to computational approaches. We suggest an
alternative negative standard based on the biological
process Gene Ontology that can provide representative
negative examples (see "Suggestions for representative
functional evaluation of data and methods").

Relative size of gold standard positive/negative sets

A final issue common among many evaluation standards
in the literature is the relative size of the positive and neg-
ative example sets. The expected number of proteins
involved in any particular biological process is a small
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Table I: Example depth five biological process GO terms. GO term depth is a commonly used metric for biological specificity in the
Gene Ontology. 5 of the smallest depth 5 GO terms and 4 of the largest depth 5 GO terms are listed above. The processes described
range from very specific behaviors (e.g. contractile ring contraction) to less informative groupings (e.g. cellular protein metabolism),
suggesting depth is a poor measure of specificity. The size distribution for all depth 5 GO term:s is plotted in Fig. 3.

GO term

Term depth Total annotations

lipoic acid metabolism (GO:0000273)

cytokinesis, contractile ring contraction (GO:0000916)
DNA ligation (GO:0006266)

lysosomal transport (GO:0007041)

regulation of sister chromatid cohesion (GO:0007063)
cytoskeleton organization and biogenesis (GO:0007010)
transcription (GO:0006350)

protein biosynthesis (GO:0006412)

cellular protein metabolism (GO:0044267)

285
474
775
1381

(SR, RO RV RO, R R RV, RV,

percentage of the proteome, which should be reflected in
evaluation standards. This imbalance is particularly prob-
lematic in methods based on pairwise associations
between proteins, where the expected number of protein
pairs sharing functional relationships is an even smaller
fraction of all possible protein combinations. For
instance, of the 18 million possible protein pairs in yeast,
it is expected that less than 1 million are functionally
related. This large difference makes the typical reporting
of sensitivity and specificity misleading. For instance, a
recently published method for predicting protein-protein
interactions from several genomic features showed seem-
ingly impressive 90% sensitivity and 63% specificity in
evaluations [24], but would make correct predictions only
1 out of every 9 times when applied on a whole-genome
scale, rendering the method impractical in many experi-
mental contexts (details in additional file 3: Supplemen-
tary discussion).

Given this imbalance, an appropriate measure of func-
tional relevance of genomic data or predictions is the pre-
_1r ) [23].
TP + FP

This measure rewards methods that generate firm positive
predictions, without regard to the accuracy of negative
predictions, which are less helpful in guiding laboratory
experiments. Direct application of precision may be mis-
leading, though, because this measure is only correct
under the assumption that the ratio of positive to negative
examples in the gold standard matches that in the appli-
cation domain. If the ratio of positive to negatives in the
gold standard is much larger than in whole-genome data,
as is often the case in published evaluations, then the
number of false positive predictions will be small and will
artificially inflate the precision statistic. For instance, the
90%-63% sensitivity-specificity example above used an
approximately equal number of positive and negative

cision or positive predictive value (PPV)(

examples (1500 and 2000 respectively), leading to 65%
precision. However, application of this method on a
whole-genome scale, where the ratio of positive to nega-
tive examples is roughly 20 times smaller, would lead to
an expected precision of just 11% (details in additional
file 3: Supplementary discussion).

To avoid such misleading evaluations, the balance of pos-
itives and negatives in the gold standard should match
that of the application domain as closely as possible. Pre-
cision, or PPV, then becomes a direct, representative
measure of how well one could expect a dataset or
method to perform on whole-genome tasks. Of course,
precision alone does not convey all of the important
information, only the quality of the predictions made by a
dataset or method. It must be reported in tandem with
some measure of the quantity of true predictions made. A
standard measure for this is the recall, or sensitivity

TP
TP + FN

framework (for more details, see Methods).

), which is what is used in our evaluation

Suggestions for representative functional evaluation of
data and methods

In light of these problems with current gold standards and
approaches to evaluation, we have compiled a new func-
tional genomics gold standard and suggest several strate-
gies for accurate comparative evaluation of genomic
datasets and methods.

Defining a new gold standard

As discussed previously, a major issue with the current
state of the community is inconsistency among the variety
of standards used. Evaluations based on different stand-
ards (e.g. derived from KEGG versus GO) are often not
comparable, even in a qualitative sense. Deriving a stand-
ard from these hierarchies is further complicated due to
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varying levels of biological specificity of curated biological
knowledge. Furthermore, each of the sources of curated
information has inherent functional biases that can lead
to incorrect estimates of accuracy.

To develop a unified standard for general application in
functional genomics, several key criteria must be met. The
standard must be cross-organismal to ensure relevance to
a broad audience. Secondly, the standard should cover a
wide variety of biological functions or processes to facili-
tate comprehensive evaluations. Finally, the standard
should adapt quickly as biological knowledge expands.
Although there are several sources of annotation that sat-
isfy these criteria to varying extents (eg. KEGG, MIPS, and
GO), GO is arguably the best option to serve as a founda-
tion for the standard, as it is well-curated and was
designed for complete coverage.

Although GO can serve as a good basis for a functional
gold standard, effective mapping from organism-specific
annotations to a set of positive and negative examples is
critical. In particular, we have addressed the problem of
varying levels of resolution in the GO hierarchy by select-
ing the gold standard set of terms through curation by six
expert biologists. Through this formal curation process,
the experts selected terms that are specific enough to be
confirmed or refuted through laboratory experiments
while also general enough to reasonably expect high-
throughput assays to provide relevant information (see
details in Methods and additional file 3: Supplementary
discussion). The result of this process is a set of specific
functional classes (GO terms) which can be used to gener-
ate an accurate set of positively related gene pairs or to
directly evaluate or train computational approaches that
explicitly associate proteins with particular biological
processes. This standard created using expert knowledge is
quite different from GO standards commonly used in the
literature (Fig. 4). It can serve as a single, common stand-
ard that addresses the specific concerns of functional
genomics.

This curation can also be used to obtain a negative stand-
ard which addresses some issues with currently used
methods. Specifically, our standard includes a set of nega-
tives more broadly representative than sources such as
localization while excluding likely positive examples (a
shortcoming of approaches that use random sampling).
Further, the standard approximates the correct relative
balance of positive and negative sets enabling biologically
relevant evaluations (see Methods for details).

Evaluating genomic methods and data

In addition to defining a unifying standard, it is critical to
use the standard in a manner that accurately reflects the
biological reliability of datasets or methods. To expressly

http://www.biomedcentral.com/1471-2164/7/187

address the process-specific variability in accuracy, we
developed an evaluation framework that facilitates identi-
fication of functional biases in current general evalua-
tions. To accomplish this, we propose that two
complementary modes of analysis accompany any evalu-
ation of functional genomic data: (1) a genome-wide eval-
uation that estimates general reliability but also reports
the functional composition of the results and (2) a proc-
ess-specific evaluation in which the data or method is
independently evaluated against a set of expert-selected
processes.

Genome-wide evaluation

To provide a genome-wide analysis that also features
information on the constituent biological processes, we
have developed a hybrid evaluation framework that com-
bines traditional measures of the precision-recall tradeoff
with an analysis of the biological processes accurately rep-
resented in the data. In addition to the usual estimation of
precision-recall characteristics, we compute the distribu-
tion of biological processes represented in the set of cor-
rectly classified positives (true positives) at every point
along the precision-recall tradeoff curve (Fig. 5). This dis-
tribution allows one to identify and measure any biases in
the set of positive results toward a specific biological proc-
ess and interpret evaluation results accordingly. Further-
more, all of this information is summarized and
presented in a dynamic and interactive visualization
framework that facilitates quick but complete understand-
ing of the underlying biological information.

Figure 5 illustrates an example of a genome-wide evalua-
tion of several high-throughput datasets using our frame-
work. At first glance, a general evaluation indicates that
the Gasch et al. microarray data is the second most reliable
source for functional data (Fig. 5a). However, an analysis
of the processes represented in the set of correctly classi-
fied pairs reveals that approximately 60% of the correct
predictions by the co-expression data are related to the
process of ribosome formation (Fig. 5a, bottom chart).
This type of analysis is included for any evaluation done
with our system and interactive visualization allows for
quick and accurate detection of any biases that might be
present.

In addition to identifying biases in genome-wide evalua-
tions of datasets or methods, our evaluation framework
provides a way to normalize these biases out of the analy-
sis. A user can choose to exclude all positive examples
related to one or more biological processes. Figure 5b
illustrates an example of this functionality for the evalua-
tion discussed above. Based on the bias we observed, we
excluded all proteins involved in ribosome biogenesis and
assembly (GO term GO:0042254) and re-evaluated the
same set of datasets. While none of the interaction data-
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Figure 4

Depth and size properties of GO terms selected or excluded from the evaluation gold standard based on
expert curation. The functional gold standard based on voting from an expert panel cannot be approximated by either a size
or a depth measure of specificity. (a) Distribution of GO term depths for expert-selected terms (4—6 votes) and expert-
excluded terms (1-3 votes). The selected set of terms cannot be separated from the "too general" excluded terms on the basis
of depth. For instance, 53 of the 107 general GO terms appear at depth 4 or lower and 51 of 1692 specific GO terms appear
at depth 3 or higher. (b) Distribution of GO term sizes (direct and indirect annotations) for the selected and excluded terms
based on the expert voting analysis. As with term depth, size cannot effectively distinguish specific terms from those deemed
too general by experts. For example, 28 of 107 GO terms deemed too general for inclusion in the standard have fewer than

100 annotations.
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Figure 5

General (whole-genome) evaluation example. (a) Example of a genome-wide evaluation of several different high-
throughput datasets using our framework. These datasets include five protein-protein interaction datasets, including yeast 2-
hybrid [16,34,35] and affinity precipitation data [14,36], and two gene expression microarray studies [37,38]. Pearson correla-
tion was used as a similarity metric for the gene expression data. The functional composition of the correctly classified set can
be investigated at any point along the precision-recall trade-off, as is illustrated for the Gasch et al. co-expression data. This
analysis reveals that a large fraction of the true positive predictions (> 60%) made by this dataset are associations of proteins
involved in ribosome biogenesis. Of the 500 true positive pairs identified at this threshold, 298 are pairs between proteins
involved in ribosome biogenesis, suggesting that the apparent superior reliability may not be general across a wider range of
processes. (b) The same form of evaluation as in (a), but with a single GO term ("ribosome biogenesis and assembly,"
GO0:0042254) excluded from the analysis, a standard option in our evaluation framework. With this process excluded, the eval-
uation shows that neither of the co-expression datasets is as generally reliable as the physical binding datasets. Additional func-
tional biases can be interrogated through this analysis and corrected if necessary.
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sets change significantly with this process excluded, both
gene expression datasets show substantial decay in their
precision-recall characteristics, suggesting they are gener-
ally less reliable at predicting functional relationships
over a broad range of processes. This result is quite differ-
ent from what we might have concluded had we not been
able to discover and correct this process-specific bias.

Process-specific evaluation

Many biological laboratories focus on specific processes
or domains of interest, even when using high throughput
data/methods. In such situations, a targeted, process-spe-
cific evaluation is often more appropriate than a genome-
wide evaluation. Our framework facilitates convenient
and representative process-specific evaluations by per-
forming independent precision-recall analysis for each
process of interest.

For effective presentation of process-specific evaluation
results, we have developed an interactive matrix-based
view that facilitates comparative evaluation of multiple
datasets across several targeted biological processes (Fig.
6). This method allows for easy and dynamic inter-process
and inter-dataset comparisons. In addition, precision-
recall characteristics for any process are readily accessible,
allowing for a more detailed view of the results. Thus, our
framework combines general and specific evaluations,
enabling accurate interpretation of functional genomics
data and computational methods. This community stand-
ard can facilitate the comparisons necessary for formulat-
ing relevant biological hypotheses and determining the
most appropriate dataset or method for directing further
experiments.

Conclusion

We have identified a number of serious issues with current
evaluation practices in functional genomics. These prob-
lems make it practically impossible to compare computa-
tional methods or large-scale datasets and also result in
conclusions or methods that generalize poorly in most
biological applications. We have developed an expert-
curated functional genomics standard and a methodolog-
ical framework that address the problems we have identi-
fied. We hope these can serve as an alternative to current
evaluation methods and will facilitate accurate and repre-
sentative evaluation. Furthermore, we hope our analysis
will initiate a broader community discussion about
appropriate evaluation techniques and practices.

In recent years, the computational community has played
an influential role in the field of genomics by contributing
many valuable computational methods that facilitate dis-
covery of biological information from high-throughput
data. However, without an accurate understanding of how
well the computational methods perform, the role of bio-

http://www.biomedcentral.com/1471-2164/7/187

informatics in directing experimental biology will remain
limited. Lack of accurate assessment of the experimental
methods themselves hinders both interpretation of the
results and further development of genomic techniques.
Thus, representative evaluation of computational
approaches and high throughput experimental technolo-
gies is imperative to our ability as a community to harness
the full potential of biological data in the post-genome
era.

Methods

GO-based functional gold standard

With the Gene Ontology and corresponding annotations
in hand, the main issue in generating a standard for eval-
uation is deciding which terms are specific enough to
imply functional associations between gene products. As
noted in Results and discussion, the typical approach to
this problem has been to select a particular depth in the
ontology, below which all co-annotated genes are taken to
be positive examples. This has obvious problems in that
biological specificity varies dramatically at any given
depth in the ontology (see Fig. 3 and Table 1 for details).
Another approach reported in the literature is to use term
size (i.e. the number of gene product annotations) as a
proxy for biological specificity. Using this approach, gene
products co-annotated to terms smaller than a certain
threshold are considered positive examples. The number
of annotation genes, however, is not only a function of
how specific a particular term is, but often how well-stud-
ied the area is. Thus size is not always an accurate indica-
tor of specificity, and this problem only becomes worse in
organisms that are less well-studied.

To address the issue of biological specificity of positive
examples, we chose the less automated but more direct
and biologically consistent approach of expert curation.
For this task, we chose six biological experts with doctor-
ate degrees in yeast genomics. This group contains a
cumulative total of more than 40 years of post-doctoral
experience working with yeast in a research setting.
Instead of using characteristics of the GO term (e.g. depth
in the hierarchy, number of annotations) to determine
specificity, we instructed our expert panel to formally
assess which GO terms are specific enough to imply a
meaningful biological relationship between two anno-
tated proteins. More precisely, we instructed the experts to
select terms with enough specificity that predictions based
on them could be used to formulate detailed biological
hypotheses, which could be confirmed or refuted by lab-
oratory experiments. This curation was performed for all
GO terms from the biological process branch of the ontol-
ogy without information of their hierarchical relation-
ships, and each set of resulting responses was corrected for
hierarchical inconsistencies. Responses for all experts
were then merged by counting the number of votes for
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Figure 6

Process-specific evaluation example. A detailed understanding of which specific biological signals are present in a particu-
lar dataset is important for robust evaluation. Our evaluation framework allows users to query specific processes of interest.
(a) Example of an evaluation of 7 high-throughput datasets over a set of 16 user-specified processes (GO terms). The preci-
sion-recall characteristics of each dataset-process combination were computed independently and the intensity of the corre-
sponding square in the matrix is scaled according to the area under the precision-recall curve (AUPRC). (b) Detailed
comparison of results for a single dataset, which can be accessed directly from the summary matrix. The AUPRC statistic of a
particular dataset (e.g. Ito et al. two-hybrid) for each process is plotted to allow for comparison across a single dataset. (c) The
actual precision-recall curve (from which the AUPRC was computed) is also easily accessible from our evaluation framework.
Users can view underlying details of the AUPRC summary statistic which appears in the other three result views. (d) The
AUPRC results for a single biological process across all datasets can also be obtained from an evaluation result. This allows for
direct measure of which datasets are most informative for a process of interest.

each GO term and terms that received more than three
votes were selected for the positive evaluation standard.
The final counts for all GO terms can be obtained from
Biological expert voting results.

Given this set of specific GO terms, we can generate a pos-
itive pairwise gold standard by considering all proteins co-
annotated to each term as positives. This set of specific
functional classes can also be used to directly evaluate or
train computational approaches that explicitly associate
proteins with particular biological processes as well. For
this, we start with the set of specific terms and obtain a
non-redundant set by removing any terms whose ances-
tors are also in the set. This set of terms can be obtained
from additional file 2: Non-redundant set of specific GO
terms.

We can also use the results of this voting procedure to
define a representative set of negative examples. We expect
that GO terms receiving 1 or fewer votes are too general to
imply meaningful functional relationships between co-
annotated proteins. Furthermore, GO terms with a very
large number of direct and indirect annotations (i.e. a
substantial fraction of the genome) are most certainly too
general to imply meaningful functional relationships
between co-annotated members. Thus, we obtain a set of
gold standard negatives by finding pairs of proteins in
which both members have annotations (other than "bio-
logical process unknown") but whose most specific co-
annotation occurs in terms with more than 1000 total
annotations (~25% of the annotated genome) and with
one or fewer votes from our panel of six experts. The
resulting negative set is more accurate than random pairs
of proteins but is still large enough to reflect our under-
standing of the relative size of functionally related to unre-
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lated pairs in the genome. Furthermore, this set of
negative examples is more representative of the presumed
distribution of biological negatives than alternate sources
of negative evidence such as co-localization. The final
gold standard based on this analysis can obtained from
http://avis.princeton.edu/GRIFn/data,
GO_curated_gold_standard.txt.gz: GO-based yeast func-
tional gold standard. This file contains the final pairwise
gold standard set of positive and negatives resulting from
our expert curation. Yeast protein pairs classified as posi-
tives are labeled with a A“1A” and pairs classified as nega-
tive in the standard are indicated with a -1.

The resulting set of gold standard positive and negative
examples is quite different from previously used GO
standards based on size or depth as a measure of biologi-
cal specificity. Figure 4 illustrates this, plotting a histo-
gram of GO term depth and size for both the excluded and
included GO term sets based on the biological expert vot-
ing procedure described above. Because our gold standard
is based on direct re-evaluation of the gene ontology with
respect to functional genomics, there are a number of
non-specific GO terms excluded based on the voting
results that appear relatively deep in the ontology, and
conversely, a number of relevant GO terms included that
appear near the root (Fig. 4). A similar trend is true of the
GO term sizes of the selected and excluded set: many of
the GO terms excluded on the basis of expert voting have
relatively few annotations. This confirms our earlier
observation that neither size nor depth in the ontology
serve as good measures of biological specificity. Basing the
criteria for generating a GO-based gold standard instead
on expert knowledge ensures that the standard is consist-
ent in terms of the biological specificity of the relation-
ships it is capturing and can therefore provide a
meaningful basis for evaluation.

Other efforts have previously aimed to derive summary
terms from the GO hierarchy, most notably the Saccharo-
myces Genome Database's (SGD) GO Slim set [19]. This
set, however, is not generally appropriate for the purposes
of functional evaluation as it was constructed to be a set of
"broad biological categories" meant to span the entire
range of processes [19]. The functional relationships cap-
tured by such broad terms are often too general to provide
a meaningful basis for data evaluation. For example, pro-
tein biosynthesis (GO:0006412) is one such term
included in the GO Slim set, which has approximately
800 annotated genes. A prediction of an uncharacterized
protein's involvement in "protein biosynthesis" would
not be specific enough to warrant further experimental
investigation in most cases. Furthermore, from the per-
spective of defining an accurate pairwise evaluation stand-
ard, clearly not every pair of genes within this set (over

http://www.biomedcentral.com/1471-2164/7/187

300,000 possible pairwise combinations) has a specific
functional relationship.

Metrics for evaluation: ROC and precision-recall curves
Sensitivity-specificity and precision-recall analysis are two
approaches to measuring the predictive accuracy of data
from two classes given the class labels (referred to here as
positive and negative). Sensitivity and specificity are typi-
cally computed over a range of thresholds (for multi-val-
ued data) and plotted with respect to one another. Such
an analysis is known as a Receiver Operating Characteris-
tic (ROC) curve and portrays the trade-off between sensi-
tivity and specificity. Each threshold yields one point on
the curve by considering protein pairs whose association
in the data exceeds the threshold value to be positive pre-
dictions and other pairs to be negative. Precision-recall
analysis is done in the same way, but with precision (or
PPV) replacing specificity. Each of these quantities is cal-
culated as follows:

True positives (TP): protein pairs associated by data and
annotated as positives in gold standard

False positives (FP): protein pairs associated by data and
annotated as negatives in gold standard

True negatives (TN): protein pairs not associated by data
and annotated as negatives in gold standard

False negatives (FN): protein pairs not associated by data
and annotated as positives in gold standard

Precision = —P, Recall = L
TP+ FP TP + FN
i, . TN s P
Specificity = —————, Sensitivity = ————
TN + FP TP + EN

ROC and precision-recall curves can be summarized with
a single statistic: the area under the curve. For ROC curves,
we refer to this statistic as the AUC, which is equivalent to
the Wilcoxon rank-sum (Mann-Whitney) statistic. Preci-
sion-recall characteristics can be summarized with a simi-
lar measure which we refer to as the AUPRC. For all plots
shown here, we have used AUPRC because precision is
more informative than specificity for the typical sizes of
positive and negative example sets as discussed in the
"Relative size of gold standard positive/negative sets" sec-
tion of Results and discussion.

Implementation of web-based evaluation framework

To facilitate community use of the standard, we have
implemented our evaluation framework in a public, web-
based system available at [13]. All evaluations are based
on the standard described in "Defining a new gold stand-
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ard", which is also available for download at http://

avis.princeton.edu/GRIFn/data/

GO_curated_gold_standard.txt.gz: GO-based yeast func-
tional gold standard and additional file 2: Non-redundant

set of specific GO terms. The website allows users to
upload genomic datasets for evaluation and includes sev-
eral widely used high throughput datasets (including
those described here) for comparative evaluation. The
methods for presenting evaluation results, including all
graphs and interactive components, were implemented in
SVG (Scalable Vector Graphics), which can be viewed on
most browsers with freely available plugins (see Help at
[13] for details). The web interface was implemented in
PHP, with a back-end MySQL database and C++ evalua-
tion server.
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specific enough to direct laboratory experiments, but are also general
enough to reasonably expect high-throughput assays to provide relevant
information.
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Non-redundant set of specific GO terms. This file contains a non-redun-
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the hierarchy is also in the set.
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