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Abstract

Background: Experimental investigation of transcription is still a very labor- and time-consuming
process. Only a few transcription initiation scenarios have been studied in detail. The mechanism
of interaction between basal machinery and promoter, in particular core promoter elements, is not
known for the majority of identified promoters. In this study, we reveal various transcription
initiation mechanisms by statistical analysis of 3393 nonredundant Drosophila promoters.

Results: Using Drosophila-specific position-weight matrices, we identified promoters containing
TATA box, Initiator, Downstream Promoter Element (DPE), and Motif Ten Element (MTE), as well
as core elements discovered in Human (TFIIB Recognition Element (BRE) and Downstream Core
Element (DCE)). Promoters utilizing known synergetic combinations of two core elements
(TATA_Inr, Inr_MTE, Inr_DPE, and DPE_MTE) were identified. We also establish the existence of
promoters with potentially novel synergetic combinations: TATA_DPE and TATA_MTE. Our
analysis revealed several motifs with the features of promoter elements, including possible novel
core promoter element(s). Comparison of Human and Drosophila showed consistent percentages
of promoters with TATA, Inr, DPE, and synergetic combinations thereof, as well as most of the
same functional and mutual positions of the core elements. No statistical evidence of MTE
utilization in Human was found. Distinct nucleosome positioning in particular promoter classes was

revealed.

Conclusion: We present lists of promoters that potentially utilize the aforementioned elements/
combinations. The number of these promoters is two orders of magnitude larger than the number
of promoters in which transcription initiation was experimentally studied. The sequences are ready
to be experimentally tested or used for further statistical analysis. The developed approach may be

utilized for other species.

Background Only some of the scenarios have been studied in detail
Research over the past thirty years has revealed the diver- ~ and more are likely to be discovered. So far, six core pro-
sity of transcription initiation scenarios in eukaryotes. = moter elements have been experimentally identified in
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eukaryotes. These elements are TATA box, Initiator (Inr),
Downstream Promoter Element (DPE), TFIIB recognition
element (BRE), Downstream Core Element (DCE), and
Motif Ten Element (MTE) [1-3].

The basal transcriptional machinery includes Pol II and
general transcription factors (TF): TFIIA, B, D, E, F, and H
[4-7]. TFIID plays the central role in transcription initia-
tion [8,9], acting in cooperation with core promoter ele-
ments and/or specific TFs [6,7,10]. TFIID consists of the
TATA Binding Protein (TBP) and TBP-associated factors
(TAFs) [11]. The universal feature of transcription is bind-
ing of TBP to DNA at a specific distance from transcription
start cite (TSS) regardless of the presence/absence of the
TATA box. In the absence of the TATA box (TATA-less pro-
moters), TAFs bind to DNA and/or to other TFs in order to
involve TBP in pre-initiation complex [9,12-14]. From
this perspective it is easy to comprehend why TATA box
dominates as a core promoter element having the ability
to govern transcription initiation alone (at least in vitro).
The rest of the core elements usually work in cooperation
with others. Indeed, strong synergism between DPE and
Inr, MTE and Inr, DCE and Inr, MTE and DPE, BRE and
TATA, and Inr and TATA has been experimentally estab-
lished [9,14-19]. It is peculiar, that in spite of the consid-
erable improvement of our knowledge of the
transcriptional regulation processes due to emergence of
new experimental techniques and computational
approaches, the scenarios of the interaction between basal
transcription machinery and the core promoter are not
known for the majority of identified promoters [20].

The statistics of the core elements still remain obscure
even for the most studied eukaryotes like Drosophila. So
far, two Drosophila promoter databases have been ana-
lyzed. Kutach and Kadonaga [21] created a small Dro-
sophila Core Promoter Database containing 205 sequences
with an experimentally defined position of TSS "carefully
extracted" from the literature. They visually identified the
presence of TATA box, Inr, and DPE in those sequences
and found that respectively 42.4%, 67.3% and 40.0% of
the promoters contain TATA, Inr, and DPE at their func-
tional positions. The larger database (1941 promoters)
was constructed by Ohler et al. [22]. In total, 28.3% and
62.8% of promoters from this database have TATA and Inr
elements, respectively [22]. These percentages have been
found using motif consensuses for respective elements
with one mismatch allowed.

The experimental investigation of the core promoter ele-
ments is still very labor- and time-consuming. Even for the
well-studied elements, such as TATA box, Inr and DPE,
only a few promoters have been experimentally exam-
ined. Therefore, the statistical analysis of large promoter
databases is useful to complement experimental study by
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identifying new overrepresented motifs [22], revealing
potential synergetic combinations [20], and classifying
promoters.

The hypothesis behind our research is that in the course of
evolution the motifs necessary for promoter regulation
have been preserved in the promoter region, thus their
occurrence frequencies there are far from random. We will
examine the following particular questions:

1) How many known Drosophila promoters follow known
scenarios of the interaction of the basal machinery and
DNAZ? In particular, the transcription of how many pro-
moters is guided by the TATA box and/or by any of the
known synergetic combinations?

2) What are the typical distances between the core ele-
ments and TSS and between elements in synergetic com-
binations?

3) May statistical analysis suggest new synergetic combi-
nations?

4) Are BRE and DCE (elements discovered in human pro-
moters) statistically significant in Drosophila promoters?

5) What typical motifs in the core promoter sequences
remain unknown?

6) How do Drosophila and human promoters differ statis-
tically?

For statistical analysis we used an "Orthomine Database"
of Drosophila melanogaster promoters [23] composed by P.
Cherbas and S. Middha (pers. comm. prior to publication,
see Data and Methods for description.)

Results

Four core promoter elements (TATA box, Inr, DPE, MTE)
have been experimentally identified in Drosophila promot-
ers [1,2]. First, we considered statistical parameters of each
of those elements: positional distribution, functional win-
dow, and percentage of promoters containing a particular
element. We also examined the DCE and BRE elements in
Drosophila promoters, although the biological function of
those elements has only been observed in human promot-
ers [3,14,17,19]. Second, we analyzed the parameters of
synergetic and/or cooperative combinations of each pair
of elements: typical distances between the elements and
percentage of promoters containing a combination.
Finally, we revealed typical motifs in different subsets of
Drosophila promoters by the MEME program [24] and
examined their positional distributions in promoter area.
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Table I: The parameters of core promoter elements. List of the core promoter elements (col. 1); motif consensus in a NC-lUB
nomenclature [56] (col. 2); the length of motif (at left) and the distance between center and 5' end (at right) (col. 3); applied windows
for the center of motifs (col. 4); the maximal number of allowed mismatches (n-1) in order for motif consensus still to remain
functional (col. 5); cutoff value for PWM (col. 6); the absolute number (col. 7) and percentage (col. 8) of promoters with respective
core element; statistical significance (SS) of the occurrence frequency of an element in the respective window (col. 9). All respective P-
values are less than 0.0001, which is considered to be extremely statistically significant. The P-values were obtained using P-Value
Calculator [57] from respective Chi () values used for SS calculation [51] for a system with | degree of freedom (DF = I).

I. Name 2. Consensus 3. Length/Center 4. Window 5. n-1 6. Cutoff 7.N 8. % 9.58S
TATA TATAWAAR 12/3 -33--23 | 0.79 549 16.2 46.9
Inr TCAKTY 12/3 -1 -+9 | 0.70 2257 66.5 32.0
DPE RGWYV 8/0 +27 - +36 0 0.895 749 22.1 8.4
MTE CSARCSSAAC 10/0 +17 - +26 2 0.79 344 10.1 20.7
TATA box value we used a procedure described in detail in the sec-

First we examined the positional distributions of the TATA
box sites by different consensus motifs (see Table 1 for
consensuses). The distributions obtained by the consen-
suses with no mismatches, one, and even two mismatches
exhibit huge over-representation (see Additional file 1,
Supplemental Figures S2a-c) in the window from -33 to -
23 bp relative to TSS (we defined the center of the TATA
box at the position of the second 'T'). This is consistent
with the experimental data [1]. So we consider the win-
dow (-33 - -23 bp) as a functional window for the TATA
box element.

PWM for the TATA box was derived using a procedure
described in the section Data and Methods. The PWM uti-
lized only sites extracted from the functional window
whose DNA sequences are equivalent to the consensus
with one possible mismatch. The respective occurrence
frequency table is shown in Supplemental Table S1 (see
Additional file 1). See also pictogram at Table 2. Note that
the length of PWM is greater than the length of the con-
sensus. We included one extra position from the 5'-end
and 3 extra positions from the 3'-end since they exhibit
bias nucleotide composition. To define the optimal cutoff

Table 2: The pictograms of core promoter elements.

Name Pictogram

TATA

SA AR

Inr

6 (6 Feeee
ore G:Coss

(GAACEAC

tion Data and Methods.

Using this new PWM for the TATA box (built specifically
for Drosophila) we are able to find the number and per-
centage of TATA+ promoters as well as statistical signifi-
cance (formula I from Data and Methods) of the TATA
over-representation in the functional window (see Table
1, first line, columns 7-9). One can see that the percent-
age of TATA-containing promoters is much less than pre-
vious estimates; compare with 42.4% [21] and 28.3%
[22]. However, this percentage is comparable with estima-
tion for the human promoters [20]. Note, that if we apply
our PWM to Drosophila Core Promoter Database at the
region from -45 to -15 bp (as in [21]) we find that 40.0%
of promoters have the TATA box, which is close to their
estimate (42.4%). So the difference between percentages
(42.4%, 28.3%, and 16.2%) can be explained by the dif-
ferences between databases and applied intervals. The
positional distribution of the TATA box obtained by PWM
is shown at Supplemental Figure S2d (see Additional file
1). The set of promoter sequences potentially utilizing
TATA box element is presented in Supplemental
Sequences S1 (see Additional file 2).

Initiator

The analogous analysis with Inr consensus allows build-
ing PWM for Inr (see pictogram at Table 2 and also Addi-
tional file 1, Supplemental Figures S3a and S3b and Table
S2) as well as finding respective statistical parameters
(Table 1, second line).

The percentage of promoters with Initiator (66.5%) is
comparable with [21] (67.3%) and [22] (62.8%) esti-
mates. Analysis of the Inr positional distribution for the
considered database (see Additional file 1, Supplemental
Figure S3c) shows significant over-representation for the
Inr motif in the area (-1 to +9 bp). Although that differs
from the canonical Inr positioning at +1 bp, we consider
that window as functional for Inr. The difference may in
part be a mere consequence of imprecise TSS mapping for
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some of the promoters, but may also have other, less triv-
ial reasons (see below). Note, that this window is asym-
metric relative to TSS, with Inr often shifted upstream
from TSS. The promoter sequences with Inr may be found
in Supplemental Sequences S2 (see Additional file 2).

DPE

The DPE element was discovered and studied mainly in
Drosophila [9,21]. The positional distribution of DPE (see
Additional file 1, Supplemental Figure S4a) exhibits over-
representation in the area from +27 to +33 bp with maxi-
mum at position +28 bp, which is the experimentally
defined functional position for DPE. Note that sites
resembling DPE are under-represented almost in the
entire promoter area except of the functional window and
around TSS. The latter is just an artifact since DPE and Inr
motifs partially coincide (compare 'RGWY' in DPE and
'AKTY'" in Inr). Since DPE works in cooperation with Inr at
a strict distance, the functional window for DPE should
have at least the same size as a functional window for Inr.
That is why we consider the interval from +27 to +36 as a
functional window for DPE despite over-representation of
the DPE sites in narrower interval (27-33).

The selection of DPE motif consensus is not straightfor-
ward. The initial study based on three Drosophila and one
human promoters [9] revealed sequence motif G(A/T)CG
as a new core promoter element. Later on, the functional
significance and universality of this motif were confirmed
on 19 Drosophila promoters [21]. The experimentation in
vitro with randomized sequences showed that variety of
sequences could function as DPE [21]. Thus, the consen-
suses RGWYVT or/and RGWYV were suggested, although
there is no evidence that all possible sequences from these
motifs are indeed functional in real promoters in vivo. To
choose the sufficient consensus we first applied the most
trusted motif G(A/T)CG to the promoter database and
extracted all promoters containing this motif in the win-
dow from +27 to +33 bp. Then we found the positional
distribution of sites with consensus RGWYVT in the
remaining (DPE-less) subset of promoters. The positional
distribution showed over-representation of motif
RGWYVT in the same window suggesting functional sig-
nificance of this consensus. Then we applied consensus
RGWYV to the subset of DPE-less (in this case RGWYVT-
less) promoters and found that even this loosest motif is
still over-represented in the functional window. Thus, sta-
tistics suggest that the consensus RGWYV is viable for
DPE, so this information was used for further analyses
and the PWM building. Supplemental Table S3 (see Addi-
tional file 1) and the pictogram at Table 2 present the fre-
quency table calculated based on the DPE sites at
positions from 27 to 29. The positional distribution of
DPE obtained by PWM is in Supplemental Figure S4b (see
Additional file 1).
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The statistical parameters of DPE calculated based on the
PWM are presented at Table 1, third line. One can see that
the percentage of potential DPE promoters is even larger
than percentage of the TATA box promoters. The set of
promoter sequences most likely utilizing DPE element is
presented in Supplemental Sequences S3 (see Additional
file 2).

MTE

The Motif Ten Element, "CSARCSSAACGS", initially was
discovered by statistical analysis of Drosophila promoter
database [22]. Then the functional significance of MTE as
a new core promoter element has been experimentally
established [2]. It was shown that the first five nucleotides
are important for transcriptional activity, while the seven
remaining nucleotides are "sufficient to confer MTE activ-
ity to heterologous core promoters" [2]. MTE (at position
+18) works in cooperation with Inr and also with DPE.
Since the synergetic position for the DPE is +28 the last
two nucleotides are overlapped with DPE. Because it is not
clear what the functional MTE motif consensus is, we con-
sidered three consensuses: first 5, first 10, and 12 bp long.
All of them are essentially over-represented in the func-
tional window. For further statistical analysis we used
only the 10 bp long consensus (see Table 1, fourth line).
Note that in contrast to the DPE, MTE is over-represented
practically in whole promoter area (see Additional file 1,
Supplemental Figures S5a and S5b). The PWM was
obtained based on the frequency table (Table 2 and Addi-
tional file 1, Supplemental Table S4) built by sites
extracted from positions +18 - +23 by consensus allowing
up to two mismatches. The promoter sequences with MTE
at its functional position are presented in Supplemental
Sequences S4 (see Additional file 2).

Although it was shown that MTE is also functional (in
vitro) in human promoters [2], the preliminary statistical
analysis of two human promoter databases (Eukaryotic
Promoter Database [25] and Database of Transcriptional
Start Sites [26]) using any of three considered above con-
sensuses did not show overrepresentation of MTE at
expected functional positions in human promoters.

BRE and DCE

We found that these two elements discovered in human
promoters are statistically overrepresented in Drosophila
promoters too. For the details of their statistical analysis as
well as a list of potential promoters utilizing them as core
promoter elements see Additional file 1.

Potential synergetic combinations

The core promoter elements usually work in cooperation
with each other. Supposedly, a sizable amount of promot-
ers utilize a similar scenario, i.e. use the same combina-
tion of core promoter elements for promoter recognition
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The number of promoters N having one of the combinations
of two elements at respective synergetic/cooperative dis-
tances L (where statistical significance is meaningful).

by the basal machinery. If this is true, statistical analysis of
the promoter database should be able to verify the known
synergetic combinations as well as to reveal new combina-
tions. It is also important to find the exact distances
between the elements as well as to classify known promot-
ers by the combinations they utilize.

The results of the statistical analysis are presented at Table
3 and Figure 1. First, we considered known synergetic
combinations. It has been abundantly experimentally
confirmed that DPE works with Inr, and their synergism
strongly requires an exact spacing, namely 27 bp [21]. We
found that statistical significance (SS) of over-representa-
tion of Inr_DPE promoters (with distance 27 bp between
the elements) above number expected by chance is huge
(31.2) and, at the same time, the SS values for the neigh-
bor distances are negative (see line 1 at Table 3). This data
not only strongly supports well-known experimental fact,
but also demonstrates the ability of applied statistical
analysis to test cooperation of the core elements. Moreo-
ver, we confirmed other known experimentally defined
combinations: Inr and MTE, and MTE and DPE with spac-
ing distances as expected [2], namely 17 and 10 respec-
tively (see Table 3). The respective subsets of promoter
sequences may be found in Supplemental Sequences S6-
S8 (see Additional file 2). Note that SS of over-representa-
tion of Int_MTE combination at distance 16 bp is compar-
atively large suggesting that this distance also could be
synergetic. The latter has not been shown experimentally.
The subset of promoters including Inr and MTE at dis-
tance 16 bp is presented at Supplemental Sequences S9
(see Additional file 2).

http://www.biomedcentral.com/1471-2164/7/161

The combination TATA and Inr also can work synergisti-
cally [15]. Since the maximum of occurrence frequency
for the TATA and Inr elements are placed at position -29
and +1, respectively, the expected synergetic distance
between them is 29 bp. Surprisingly, the SS of over-repre-
sentation of TATA_Inr combination at distance 29 bp is
negative, although SS at distances from 30 to 34 are posi-
tive with a strong maximum at 31 and 32 bp suggesting
synergy at those distances. The promoters with TATA_Inr
combination are listed in Supplemental Sequences S10
(see Additional file 2).

The statistical analysis of other possible combinations of
core promoter elements suggests cooperation between
TATA and DPE at distances 58-60 bp, and TATA and MTE
at distances 47-49 bp (see Table 3). The respective subsets
of promoters can be found in Supplemental Sequences
S11 and S12 (see Additional file 2).

Over-represented motifs

Analysis of the proximal promoter area (-60 - +40 bp) by
the program MEME revealed ten over-represented motifs
in Drosophila promoters [22]. Motifs three, four, and nine
resemble TATA, Inr and DPE consensuses, respectively.
Motif ten has been shown to be a new core promoter ele-
ment, namely MTE [19]. We found that only a portion of
promoters (~24%) contain considered combinations of
the core promoter elements. This suggests existence of
other, still unknown elements and/or combinations. Note
that positional distributions of nucleotides are essentially
nonrandom in the proximal promoter area even for the
subset of promoters without known core promoter ele-
ments (compare Supplemental Figures S1a and S1b, see
Additional file 1). To uncover over-represented motifs dif-
ferent from the known core elements we examined 857
(25.3% of the total number) promoter sequences with no
one of four known core elements by the program MEME
at positions from -35 to +35 bp from TSS. Analysis
revealed four statistically significant motifs. All of them
resemble already known over-represented motifs from the
article [22] (see Table 4). It is worth closely considering
their positional distributions.

Motif 1 is the most over-represented motif. We scanned
the entire promoter database and Inr-less subset of pro-
moters by the Motif 1 consensus with two mismatches
(see Table 4, line 1). The resulting positional distributions
are presented respectively in Supplemental Figures S7a
and S7b (see Additional file 1). One can see an essential
over-representation of Motif 1 at positive strand in the
area from -50 to +30. Indeed SS(-50<I/<30) = 40.9 and SS(-
50<I<30) = 36.9 for the whole promoter database and Inr-
less subset of promoters, respectively. The positional dis-
tribution of Motif 1 with one mismatch exhibits the same
behavior (not shown). Note the large maximum at posi-
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Table 3: The statistical parameters of combinations of core elements. Combination name (col. I); position of the center of the first
element of the combination in bp (col. 2); distance between the centers of the elements in bp (the suggested synergetic distances
marked by bold font (col. 3); the percentage (%) (col. 4); the absolute number (N) (col. 5); statistical significance of over-
representation of promoters having this combination at respective positions with distance as in col. 3 (col. 6); and respective P-values
(col. 7). The P-values were calculated as for the Table |. The P-values < 0.001 are commonly considered to be extremely statistically

significant, and those <0.01 - as very statistically significant.

I. Combination 2. Position 3. Distance 4. % 5.N 6.SS 7. P-value
Inr_DPE -1 -+9 25 0.77 26 -4.8

26 1.33 45 -3.7

27 11.8 401 31.2 <0.0001

28 1.03 35 -4.8

29 0.77 26 -4.0
Inr_MTE -1 -+9 15 0.41 14 -3.0

16 1.6 55 33

17 3.0 101 10.0

18 0.35 12 -3.8

19 0.64 22 -1.3

16-17 4.3 147 8.7 <0.0001
MTE_DPE 17 -26 9 0.09 3 221

10 0.97 33 7.3 <0.0001

Il 0.32 Il 0.7

12 0.12 4 -1.0

13 0.06 2 -0.3
TATA Inr -33--23 29 1.4 46 -2.8

30 2.4 83 1.8

31 3.0 135 8.6

32 4.8 163 13.9

33 2.0 68 2.2

34 1.7 58 1.7

35 1.1 36 -1.0

30-34 1.5 389 9.7 <0.0001
TATA_DPE -33--23 57 0.44 15 -1

58 0.80 27 2.1

59 0.83 28 32

60 0.56 19 1.7

6l 0.32 I 0.1

58-60 1.9 66 3.2 0.0014
TATA_MTE -33--23 46 0.12 4 -1.4

47 0.44 15 2.3

48 0.35 12 1.2

49 0.41 14 2.0

50 0.12 4 -1.4

47-49 I.1 37 2.6 0.0093

tion -5 (from the 5'-end of the motif consensus), which is
the position +1 for the first 'A' in the consensus. Surpris-
ingly, this maximum is even larger in the Inr-less set of
promoters, which poses a question if Motif 1 is able to
work as a core promoter element instead of Inr. It is inter-
esting that the occurrence frequency of Motif 1 at the prox-
imal distance from TSS is essentially larger at positive

strand than at negative strand (see Additional file 1, Sup-
plemental Figure S7c), which also indirectly suggests that
Motif 1 is able to interact with the basal machinery.

Motif 2 is essentially over-represented at positive strand in
the area from -70 up to +10 bp (see Additional file 1, Sup-
plemental Figure S8a); the occurrence frequency in the

Page 6 of 13

(page number not for citation purposes)



BMC Genomics 2006, 7:161

Table 4: The pictograms and consensuses of overrepresented
motifs. The numeral in parentheses in the first column is the
numeral of overrepresented motif from the article [22].

Motif Pictogram Consensus
1(1) LA YGGYCACACT
2(7) el 8 MCAKCHCTRR
3(2) e HATCGATA
4(5) CAGC G CAGCTGHT
5(6) agﬁG. A Tl TYRGTATTTY
6 G TTKTKTTT
MAAARYRAAA

’ CAMALCAMLA

area from -40 to +10 is much larger at positive strand than
at negative strand (see Additional file 1, Supplemental
Figure S8b).

Motif 3 has a huge over-representation in the wide area
from -130 to +20 at both strands; the occurrence fre-
quency is up to eight-fold higher than expected by chance
(formula I from Data and Methods) (see Additional file
1, Supplemental Figures S9a and S9b). Motif 4 is largely
overrepresented practically in all promoter area, especially
from -150 to +50 bp, at both strands (see Additional file
1, Supplemental Figures S10a and S10b). Usually, tran-
scription factor binding sites that regulate transcription by
interacting with the basal machinery exhibit such behav-
ior.

We also examined via the program MEME the TATA-less
subset of promoters in the area from -40 to -10 bp as well
as DPE-less and MTE-less subset in the area from +10 to
+40. In the TATA-less subset of promoters MEME found
motif 5 that resembles the motif 6 from the article [22]
(Table 4, line 5). The positional distribution of the motif
5 in the TATA-less promoters (positive strand) is pre-
sented at Supplemental Figure S11a (see Additional file
1). One can see the large over-representation in upstream
area up to -120 bp. Similar to the motifs 1 and 2, the
occurrence frequency of motif 5 at positive strand is visi-
bly larger than at negative strand at the upstream area up
to -90 bp (see Additional file 1, Supplemental Figure
S11b). In DPE-less and MTE-less subset of promoters we

http://www.biomedcentral.com/1471-2164/7/161

found two new motifs (Table 4, lines 6 and 7). These
motifs are over-represented in the entire promoter area at
both strands (see Additional file 1, Supplemental Figures
S12 and S13), which is not typical for the core promoter
elements.

Relation to chromatin structure

Involvement of nucleosomes in the promoter activity (e.
g. [27-33]) and regulation [34-43] suggests that the nucle-
osomes would occupy certain positions in the vicinity of
promoters, to provide specific spatial environment for the
recognition of the promoters, and for interactions with
various transcription factors. In our earlier work [44] we
addressed this issue by computational mapping the nucle-
osomes in the vicinity of the TSS of human genes. For this,
the nucleosomal DNA AA/TT periodical pattern was used,
derived from a collection of experimentally mapped
nucleosomes [45]. Two preferred positions for the nucle-
osome centers relative the TSS have been detected: 43 + 3
base pairs upstream from the TSS, and 18 + 9 down-
stream. These two positions may correspond to two differ-
ent types of the chromatin local architecture around the
promoters — two types of promoters [44]. Alternatively,
the preferred positions could reflect two states (dormant
and active?) of the promoters of one dominant type. In
this study we mapped computationally the nucleosomes
around the Drosophila promoters of various regulatory
types, to compare the data with those for human promot-
ers.

In the Supplemental Figure S14 (see Additional file 1) the
combined (superimposed) map of the nucleosomes near
the TSS is shown. It displays two maxima. The more
prominent maximum corresponds to the nucleosomes
centered at around -43 bp from the TSS. This is, appar-
ently, the same preferred position as observed in human
promoters. Such remarkable commonality suggests that,
indeed, eukaryotic promoters are involved in a very spe-
cial 3D organization, being spatially linked with the "pro-
moter nucleosomes". The transcription start sites are
located within the nucleosomes, 43 base pairs from the
dyad axis of the nucleosome, and oriented outwards from
the histone surface. This follows from the almost exact
divisibility of the distance by the nucleosome DNA struc-
tural period: 4 x 10.4 = 41.6 base pairs.

This major preferred position for the "promoter nucleo-
somes" is characteristic of all types of Drosophila promot-
ers (TATA+, TATA-, DPE+, DPE-, MTE+, MTE-, Inr+),
except for Inr- promoters (see Additional file 1, Supple-
mental Figure S15). This may mean that the Inr-less pro-
moters are not involved in any specific 3D chromatin
structure, being, e.g., permanently exposed for a non-spe-
cific, non-regulated initiation.
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Second, minor preferred position for the nucleosomes in
the vicinity of TSS is around +11 bp. It does not have a
counterpart in human promoters, as well as the position
+18 of human promoters has no counterpart in Dro-
sophila. Only future detailed 3D study of the promoter
structure in its chromatin environment may reveal what
the preferred positions +11, and +18 correspond to. They
may reflect details of remodeling, somewhat different in
human and Drosophila.

Interestingly, the TATA promoters (see Additional file 1,
Supplemental Figure S15a) demonstrate a rather elabo-
rate pattern of several preferred positions, in addition to
the standard -43 peak. This may reflect, again, a TATA-spe-
cific subtype of local promoter architectures, or perhaps, a
special path of remodeling of the TATA+ promoters.

TATA, MTE and DCE contain AA and TT dinucleotides,
only one per motif. This can have only a small modula-
tory effect on the nucleosome positioning, since typical
nucleosomes require 3-4 AA and/or TT dinucleotides dis-
tributed in accordance with the nucleosome sequence pat-
tern [46].

Discussion

Positional distributions of each of the four core promoter
elements (TATA, Inr, DPE, and MTE) exhibit essential
overrepresentation at their functional positions (see Table
1 and Additional file 1, Supplemental Figures S2-S5)
strongly suggesting that sizable amount of promoters uti-
lize them for interaction with the basal machinery.

Surprisingly, a small number of promoters (~16%) com-
paring with known statistics for Drosophila [21,22] include
TATA box, although this percentage is consistent with the
percentage of TATA promoters in human genome [20,47].

Every fifth promoter has DPE (22%) and a majority of
promoters (66%) have an Inr element, which is also con-
sistent with the percentage of the respective elements in
human promoters [20]. There are a considerable amount
of promoters (~10%) with MTE. As we already men-
tioned, the MTE is not over-represented at expected func-
tional positions in human promoters. It seems to be odd
since the rest of the known core elements are functional
(or at least over-represented) in both human and Dro-
sophila promoters; moreover it was specifically shown that
MTE is functional (in vitro) in one human promoter [2].
This contradiction can be explained if we notice that only
the first 5 nucleotides from the MTE consensus are really
necessary for the MTE recognition by pre-initiation com-
plex (PIC) [2], and this short version of MTE partially
includes the sub-element S3 from the DCE (compare
CSARC and AGC). It suggests that human and Drosophila
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consensuses of MTE are different and also that S3 could be
part of MTE.

Motif consensus for a particular element is derived from
the sites experimentally found to be functional. Usually
the number of experimental sites is limited, making it dif-
ficult to build a reliable PWM. It is expected that the
majority of putative sites found in the functional window
of aligned promoter sequences are functional which
allows using these sites for building more realistic motif
consensus and/or PWM. Using an earlier developed tech-
nique [25], we obtained PWMs for those four elements
specifically for Drosophila (see pictograms at Table 2 and
Additional file 1, Supplemental Tables S1-S4) using sites
extracted from the promoter database.

Promoter elements BRE and DCE discovered in human
promoters most likely have functional meaning in some
Drosophila promoters too. Indeed, the number of promot-
ers having combination BRE_TATA at distance 9 bp (in
this case 3'-end of BRE and 5'-end of TATA box are con-
nected just like in human promoters [14]) is visibly over-
represented compared with the expected number. The
sub-elements of DCE also show statistically significant
features. Thus, the over-representation of combination Inr
and sub-element one (S1) of DCE at distances +6 and +7
is large. The combination of Inr and S1 at those distances
are found to be functional in several human promoters
[19]. The sub-element two (S2) shows significant over-
representation at certain distances from Inr. The sub-ele-
ment three (S3) is also overrepresented at expected posi-
tions from +19 to +31 from TSS.

Typically, transcription initiation is regulated by a combi-
nation of the core promoter elements. The synergism
between the elements usually requires exact spacing [1,2].
Statistical analysis of the promoter database allows an
identification of synergetic/cooperative distances. Thus,
our analysis confirms experimentally defined distances
between Inr and DPE - 27 bp; Inr and MTE - 17 bp; MTE
and DPE - 10 bp (see Table 3). Surprisingly, the synergetic
distances between the TATA and Inr are 31 and 32 bp, not
29 bp as expected based on the position of maximums of
the TATA box (-29 bp) and Inr (+1) of respective posi-
tional distributions in the promoter area. This finding
suggests that in the presence of functional TATA box the
TSS position does not necessarily coincide with the center
of the Inr element but may be shifted on 2-3 bp in 5'
direction. It could be one of the reasons why positional
distribution of Inr is asymmetric relative to TSS. The result
of analysis also suggests the cooperation between TATA
and DPE at distances 58-60 bp as well as the possibility
of TATA and MTE cooperation at distances 47-49 bp. The
Inr_MTE combination is also over-represented at a dis-
tance of 16 bp (not only 17 bp), although experiments
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showed synergism only at 17 bp [2]. Overall, the pro-
posed technique is sensitive to the spacing between core
elements and can be recommended for examination of
other elements, as well as for analysis of promoter data-
bases for other species.

Our estimates show that only 24% of promoters utilized
known and proposed synergetic combinations while 25%
of promoters contain none of the known four core ele-
ments. That encourages the search of new elements. The
analysis of positional distribution of over-represented
motifs revealed by the program MEME leads to several
suggestions.

1. Motif 1 (Table 4, first line) could be a core promoter
element, since a) the occurrence frequency of this motif
obtained on 3393 aligned promoter sequences (on posi-
tive strand) has a strong maximum at TSS area (namely, at
position +1 for the first 'A' from the 5'-end); b) this maxi-
mum is even larger on Inr-less set of promoters, excluding
possible interference of Inr element; c) there is no such
maximum at negative strand.

2. Motifs 2 and 5 are highly over-represented in the prox-
imal promoter area, namely in the area where pre-initia-
tion complex interacts with DNA. In addition, the
occurrence frequency at the DNA positive strand in the
over-represented area is essentially larger than at the neg-
ative strand. As follows from the previous analysis, the
typical features of core promoter elements are a) a narrow
functional window and b) distribution on the positive
strand is visibly different from those on the negative
strand. (Note that TFBS for the majority of specific TFs are
placed on both strands). While the motif 1 has both fea-
tures of the core elements (a and b), the motifs 2 and 5
have only one (b). At the same time the distributions of
the motifs 2 and 5 still have a relatively narrow region of
overrepresentation covering the basal machinery area.
One may speculate that these motifs still could be a target
for PIC, or e.g. a target for repressors preventing PIC-DNA
interaction.

3. Motifs 3 and 4 are also highly over-represented in the
proximal promoter area on both strands. They most likely
are transcription factor binding sites for some (not gen-
eral) TFs.

Conclusion

Statistical analysis of the Drosophila promoter database
revealed the major features of Drosophila promoters. We
summarize here the main results.

1. The sets of promoter sequences utilizing the TATA box,
and/or Initiator, and/or DPE, and/or MTE elements for
DNA-PIC interaction are presented. The positions of the
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elements are marked to simplify experimental verifica-
tion. The position weight matrices for these four elements
as well as their optimal cutoff values are obtained.

2. There is statistical evidence that BRE and DCE, the core
promoter elements shown to be functional in human pro-
moters, are most likely functional in some Drosophila pro-
moters too.

3. The sets of promoter sequences presumably utilizing
synergetic combinations of two core elements, TATA and
Inr, Inr and DPE, Inr and MTE, and DPE and MTE, are rep-
resented. There are also the sets of promoters with sug-
gested  synergetic = combinations  (not  shown
experimentally but statistically significant): TATA and
DPE, TATA and MTE, and TATA and BRE.

4. The synergetic distances between the elements are
established. In addition to known from the experiment
synergetic distances such as between Inr and DPE (27 bp),
Inr and MTE (17 bp), MTE and DPE (10 bp) we found
synergetic distances between TATA and Inr (30-34 bp),
Inr and MTE (16 bp), TATA and DPE (58-60 bp), and
TATA and MTE (47-49 bp).

5. Over-represented motif 1 (Table 4, line 1) can be a new
core promoter element.

6. Motifs 2 and 5 (Table 4, lines 2 and 5) could be ele-
ments for DNA-PIC interaction or binding sites for silenc-
ers Or repressors.

7. Motif 3 and 4 (Table 4, lines 3 and 4) are most likely
transcription factor binding sites.

8. Some of statistical features are similar between Dro-
sophila and Human promoters. Thus, the percentages of
promoters containing core promoter elements such as
TATA, Inr, and DPE as well as their synergetic combina-
tions are comparable. The functional positions of the core
promoter elements as well as the distances between ele-
ments in synergetic combinations are the same for Dro-
sophila and Human promoters. Exception is the distances
between TATA box and others elements (Inr and DPE),
which are longer (approximately on two bp) in Drosophila
promoters than in Human.

9. The relationship of the local chromatin architecture
(nucleosome positioning) with certain types of core pro-
moter was elucidated. In particular, TATA+ and Inr- pro-
moters show two distinct types of the chromatin
organization.
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Methods

A total of 3393 non-redundant Drosophila melanogaster
promoter sequences from the "Orthomine Database" (P.
Cherbas and S. Middha, pers. comm.) were used for statis-
tical analyses. The database was constructed as the nonre-
dundant union of 3 published Drosophila promoter
sequence databases [21,22,48]. In the case of Kutach and
Kadonaga's database [21] some experimentally-deter-
mined TSSs had been rejected in favor of positions sug-
gested by sequence analysis; in those cases the
"Orthomine database" employed the original (experi-
mental) TSS. In those few cases where the TSS position
could not be unambiguously derived from the published
papers, the sequence was omitted. For each sequence the
unambiguous genomic sequence was retrieved (Drosophila
genome annotation v4.1); those sequences that could not
be unambiguously assigned to a single genomic location
were omitted. In each case the genomic sequence from -
250 to +100 (TSS = +1) was recovered. The final database
includes 3393 sequences (1908 from Ohler et al. [22],
157 from Kutach and Kadonaga [21], 1328 from the
EPD). When the entire set is compared to the current Dro-
sophila annotation the modal deviation between the data-
base TSS and the annotated TSS is equal to 0.

The software package Promoter Classifier [49,50] was
applied for data manipulation. We also created multiple
Windows-based C++ programs to accommodate calcula-
tions.

We exploited the idea that motifs necessary for transcrip-
tion regulation are overrepresented in a particular area of
promoter region. So the statistical analysis of averaged
positional distribution of the element's occurrence fre-
quency (OF; = n;/N,, where n; is the number of promoters
containing a considered element centered at position i in
N; aligned promoter sequences) is the main method of
our investigation. We use the term 'functional window' to
designate the positions of the center of the site relative to
TSS (the distances between 5'-end and the center of motifs
were defined as in Table 1, column 3), where the occur-
rence frequency of the considered element is much larger
than expected. Thus, we suppose that sites appearing in
that window are likely to have a functional (biological)
meaning. To formalize 'over-representation' we consider
parameter of statistical significance derived from Chi-test
[51]:

S8 = (N real — N random ) / v N, random 1 ( I )

where N, ; is the total number of sites found by position
weight matrix (PWM) or motif consensus in the consid-
ered window and N,,,,,, is the total number of sites found
in the randomly generated control sequences with the

same percentage of nucleotides as in the promoter
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sequences at the same positions. To find the distribution
of the element's occurrence frequency we scan each pro-
moter sequence at each position by respective PWM or
motif consensus. We examine the presence of the core
promoter elements and relations between the elements in
different subsets of Drosophila promoters. To implement
this strategy we divided datasets of promoters to subsets.

To generate the random sequences we first calculated the
percentage of nucleotides at each position averaged over
all 3393 aligned promoter sequences. Then we generated
100,000 sequences with length equal to promoter length.
The probability of finding each nucleotide at each posi-
tion is proportional to the calculated above percentage.
Note that we do not use a conventional model of ran-
domly shuffled sequences as the control. The main reason
for this is the essential in-homogeneity of the nucleotide
positional distributions in the promoter area (see Addi-
tional file 1, Supplemental Figures Sla and S1b). As a
result of such distributions, the SS values built using shuf-
fled sequences are strongly biased. For example, let's con-
sider a hypothetical motif (with no biological sense) with
dominant composition of A and T nucleotides. With shuf-
fled random sequences, such motif will show overrepre-
sentation (large positive SS) at positions from -250 to -
150 and from +50 to +100 and under-representation at
positions from -25 to -5 (large negative SS). The same
motif will not show significant SS values at any positions
if our random sequences will be in use. Thus the control
sequence set designed here allows eliminating the biases
related to strong positional in-homogeneity of promoter
area.

The following procedure was applied to obtain PWM for
each core promoter element (this is a simplified and mod-
ified version of PWM building algorithm we developed
earlier [52]). First, the approximate position of a func-
tional window for a particular element was defined by
examining the occurrence frequency distribution. Second,
we analyzed how many mismatches in an "ideal" consen-
sus (consensus defined by the experiments) are allowed.
For this we divided the database to two subsets: one with
promoters containing sites at any position in the func-
tional window and matching exactly the motif consensus,
and another with promoters without such sites. Then we
applied motif consensus to the latter subset allowing one
mismatch. If the number of sites in the functional window
is still essentially overrepresented, we repeat all previous
steps allowing two mismatches. We reiterate this cycle up
to n times, where n is the number of mismatches in con-
sensus for which distribution of occurrence frequency
(obtained on the datasets of promoters with no sites
matching the motif consensus with n-1 mismatches) has
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no over-representation (SS = 5 was taken as cutoff value).
We assume that sites found inside a functional window by
the consensus with n-1 mismatches are most likely func-
tional sites. Note that functional windows of all n steps do
not necessarily coincide. We used these sites from the
functional window of step n-1 to construct PWM. There
are several different approaches to define PWM [53]. We
used the form derived from Staden [54] and Bucher [55].
The next step is to define the cutoff value. We realize that
PWM should be "stronger" than consensus with n mis-
matches and "weaker" than consensus with n-1 mis-
matches. Our goal is to find such optimal cutoff value C,,
that PWM with C,, find all functional (over-represented)
sites. To implement it, we apply PWM with arbitrary C =
C; (we could start with small values, a priori less than C,)
to promoter database and divide it to two subsets: with
sites in the functional window and without such sites.
Then we apply the motif consensus with n mismatches to

the latter subset of promoters S . Thus, we find the

number of promoters N;ml that do not contain sites
defined by PWM with C = C,, yet contain sites defined by
consensus with n mismatches. We should compare this

number with N}, ;m - the number of sites from the ran-

domly generated sequences with the same percentage of
nucleotides as in the aforementioned subset of promoter

sequences S,l1 at the same positions. If N;eal <N;und0m,
the cutoff value is too small (C,<C,,). We should repeat
the procedure every time increasing cutoff value. The
value C,, is the optimal cutoff value if in the subset of pro-

m \gm  _ AM
moters Sn Nreal = Nmndom'

To define potential synergetic distances between two core
promoter elements we examine the statistical significance
(SS!) of over-representation of promoters containing a
combination:

1 ) I I
88" = (Nrear _Nexpect)/\/ Nexpect ' (H)

where N}eal and Nlexp et are the real and expected num-

bers of pairs of considered elements placed at their func-
tional positions at distance ! from each other. The
expected number is the estimated number of pairs if the
presence of one element is independent of the presence of
the other. This number may be calculated by formula:
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(Ila)

where w1 and w2 are the positions of 5'- and 3'-ends of the

w2
) 1 2
Nexpecl = z (pl *pi+l)r

i=wl

functional window of element one; p; and p?; are the

probabilities to find element one at position i and ele-
ment two at position i+l, respectively. These probabilities

are the respective occurrence frequencies OFl-1 and OFi%rl

calculated based on all promoters from Orthomine Data-
base.

As we see at the Results section some of the combinations
exhibit over-representation at several distances. To calcu-
late the over-representation of promoters containing both
elements at distances from [ to I+Al we should modify the
formula for the expected number:

LAl w2 . i—1 ; i+l+Al ) k-1 .
Nexpeee = 2 (i *TTO-pp)*( Y, pe [TQ-pm) (1Ib)
i=wl j=1 k=i+l  m=1
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