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Abstract
Background: There are many potential sources of variability in a microarray experiment.
Variation can arise from many aspects of the collection and processing of samples for gene
expression analysis. Oligonucleotide-based arrays are thought to minimize one source of variability
as identical oligonucleotides are expected to recognize the same transcripts during hybridization.

Results: We demonstrate that although the probes on the U133A GeneChip arrays are identical
in sequence to probes designed for the U133 Plus 2.0 arrays the values obtained from an
experimental hybridization can be quite different. Nearly half of the probesets in common between
the two array types can produce slightly different values from the same sample. Nearly 70% of the
individual probes in these probesets produced array specific differences.

Conclusion: The context of the probe may also contribute some bias to the final measured value
of gene expression. At a minimum, this should add an extra level of caution when considering the
direct comparison of experiments performed in two microarray formats. More importantly, this
suggests that it may not be possible to know which value is the most accurate representation of a
biological sample when comparing two formats.

Background
Microarrays are rapidly becoming a standard tool for
molecular biologists. The technology can reveal a multi-
tude of information from even the simplest biological
experiment. The technique is primarily used by scientists
to generate ideas in experiments colloquially referred to as
"fishing expeditions". However, the result of even simple
experiments is hundreds to thousands of gene expression
changes. Because of this the cost of validation is prohibi-
tive. The microarray technology itself is expensive and this
often prevents replication. Furthermore, the preliminary

experiments are usually composed of the minimum
number of samples absolutely necessary to address the
question. This minimalistic approach is also used for
other common microarray experiments. Rather than rep-
licate an experiment or increase the size of a study, it is
increasingly common for researchers to turn to other pub-
lished microarray experiments to attempt to verify or
expand their findings. Early attempts at cross-platform
verification of microarray experiments utilized data gener-
ated in other laboratories from independent experiments
[1-6]. These attempts produced limited success and
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undoubtedly many more studies went unpublished
because of the difficulty in reproducing the results of one
assay in a second platform.

However, recent studies have shed a more positive light
on cross-platform comparisons. Several studies have now
shown that the probes used to detect transcripts are the
root cause of differences between platforms [7-10]. The
probes on some arrays do not detect the transcripts attrib-
uted to them [11,12]. This is especially a concern for
cDNA-based arrays [13,14]. Many commercial platforms
are utilizing oligonucleotide-based probes. However,
commercial array producers do not always accurately
identify the targets of their probes [15,16]. There are also
limitations to our understanding of the transcriptome and
therefore two different probes that, theoretically, detect
the same transcript may produce different measurements
in microarray experiments because of cross-hybridization
from unknown splice variants, gene families, and tran-
scribed pseudogenes. Nonetheless, the correlation
between different arrays is quite good if one restricts the
analysis to sequence matched probes [9,10,17-19].

Oligonucleotide based arrays appear to have higher reso-
lution and lower variability than cDNA based arrays
[2,20,21]. They are also easier to compare across-plat-
forms because the sequences can be easily cross-matched.
Comparison is even easier when the exact same sequence
is used on two different arrays. The most recent Affymetrix
GeneChips contain probes that were previously available
on earlier arrays. Therefore the sequences are identical and
would be expected to produce similar measurements from
the exact same samples. We tested this assumption and
found that identical probes on the two arrays can produce
different measurements.

Results
The Stratagene Universal Human Reference RNA standard
is frequently used in microarray experiments to provide a
standard reference for comparison purposes. We previ-
ously processed this RNA standard several times for
microarray experiments using the U133A and U133B
arrays from Affymetrix. When the newer U133 Plus 2.0
(U133 Plus) arrays were introduced we also processed this
Universal Reference RNA on the new array. The U133 Plus
arrays contain 54,675 probesets. This includes 22,277
probesets with identical probes to those used on the
U133A arrays, 22,645 probesets from the U133B arrays,
and an additional 9927 newly designed probesets. After
processing the first few Reference RNA samples on the
U133 Plus arrays we evaluated the similarity of these
measurements to those acquired with the corresponding
probesets on the U133A arrays. We directly compared the
values obtained from 12 U133 Plus arrays to those
obtained from 12 U133A arrays. We extracted the data

from the probesets found on both array types and per-
formed invariant set normalization to place these sets of
data on the same scale [22,23]. Following this normaliza-
tion we compared the U133A array values to the U133
Plus array values for each common probeset. We were sur-
prised to find that 10,552 probesets gave a different value
on the Plus chip than on the U133A chip (Student's t-test,
p-value < 0.05). This is nearly half of the probesets shared
by both arrays. Overall, the array data from any of the
U133 Plus arrays looks very similar to array data from any
of the U133A arrays (figure 1). The correlation between
any two samples was very high (Maximum R = .9867,
Minimum R = .8984, Average R = .9621). Yet, for individ-
ual probesets, the values appeared to fall into either a
group comprised of U133A array values or a group com-
prised of U133 Plus array values. Scatterplots and correla-
tion coefficients are frequently used to demonstrate the
reproducibility of microarray data. However, this data
demonstrates how misleading these and other gross meas-
ures of similarity can be for evaluating how different two
sets of microarray data can be. The overall correlation was
greater than .96 across 22,227 probesets and yet nearly
half of these probesets yielded measurable differences
between the A chip relative to the Plus chip.

Controlled hybridization experiment
We decided to investigate this phenomenon further to be
certain that the differences were not due to unknown bias
introduced during processing of the samples. To mini-
mize the possible sources of bias, we processed 5 aliquots
of the Reference RNA in parallel using the same reagents.
Following the production of labeled RNA we prepared
enough hybridization mixture from each preparation to
hybridize both a U133A array and a U133 Plus array at the
same time. We further processed the samples in parallel to
minimize staining and scanning issues. Following this
carefully controlled experiment we examined the U133A
probeset values relative to the same probesets on the
U133 Plus arrays. This time the t-test indicated that more
than 5000 probesets were yielding different values on the
two array types (p-value < 0.05). Nearly 10% of the eval-
uated probesets were strongly separated into distinct
groups (2191 probesets, p-value < 0.01). There were 1568
probesets in which every recorded measurement from the
A chip was larger than every recorded measurement from
the Plus chip. There were 869 probesets in which every
recorded measurement from the Plus chip was larger than
every recorded measurement from the A chip. By chance
alone we would only expect 43 such occurrences.

Although most microarray laboratories cannot mix array
types for batch methods such as RMA or MBEI, we were
able to generate artificial A CEL files from the appropriate
probe values on the U133 Plus CEL files. This allowed us
to perform RMA on the 10 arrays. Following quantile nor-
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malization and the model-based signal estimation of
RMA more than 9000 probesets produced different values
indicating that the array specific differences are not a con-
sequence of a specific method of normalization or signal
estimation. In addition, the A array files fabricated from
the Plus array data allowed us to perform several types of
normalization at the probe or probeset level similar to the
detailed analysis of Choe et al. ([24]). None of the stand-
ard methods used for normalizing microarray data or cal-
culating the probeset values reduced the number of
differences between the two array formats to a level
expected by chance (data not shown).

Across array type versus within array type comparisons
We evaluated reference RNA samples hybridized to only
the U133 Plus arrays. The 5 arrays hybridized above, cou-
pled with the previous 12 arrays, yields a pool of 17
arrays. When we compared any random group of 5 arrays
from this pool to a second random group of 5 arrays, we
found ~500 probesets appeared to be different on average
(t-test, p-value < 0.05). This is less than would be expected
by chance if all the probes were producing random meas-
urements. This is not surprising. RNA in the hybridized
samples should bind to the appropriate probes providing
directed signal. This reduces the number of probes pro-
ducing random signal and therefore reduces the number
of probesets producing divergent measurements when

two groups of 5 are compared. This phenomenon occurs
at all p-values (figure 2). The observed frequency of differ-
ential measurements is lower than the expected frequency

Frequency of differential expression values observed as a function of p-valueFigure 2
Frequency of differential expression values observed 
as a function of p-value. Plotted is the number of 
probesets at or below the indicated p-value for differential 
measurement when two pools of 5 arrays are compared. The 
p-values were calculated based on a standard t-test using one 
sampling of all the possible 5 by 5 comparisons.

Scatterplots of array data generated from independent samples of Universal Human Reference RNAFigure 1
Scatterplots of array data generated from independent samples of Universal Human Reference RNA. The val-
ues plotted are derived from the Signal values calculated for the probesets found on both U133A arrays and U133 Plus arrays. 
A. Two samples of Reference RNA hybridized to U133 Plus 2.0 arrays are plotted on the X and Y axes. B The same sample 
hybridized to a U133 Plus 2.0 array plotted on the Y axis is now compared to the values obtained from a U133A array (X axis).
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when replicate arrays were taken from the same array type.
In contrast, when the reference RNA was hybridized to dif-
ferent arrays types, more probesets showed differential
expression than expected (figure 2). The number of differ-
ential measurements is much greater than expected by
chance and far greater than expected for arrays hybridized
with the exact same sample. This illustrates the prominent
effect of array type on the measured value.

When arrays of the same type were compared the
probesets that appeared to be differentially measured
were probably all due to random noise. Approximately
500 probesets appeared to have group specific values in
any 5 array to 5 array comparison (p-value < 0.05) within
the same array type. A different 5 array by 5 array compar-
ison yielded a different group of 500 probesets. Less than
2% of the probesets were in common between any two
gene lists produced by such 5 by 5 comparisons. This illus-
trates that the apparent differences were nothing more
than random variation that happened to fall into distinct
distributions when the groups were formed. In contrast,
the probesets found to be different when comparisons
were made across the array types were more consistent.
Approximately 5000 differences were observed at a p-
value < 0.05 when 5 U133 Plus arrays were compared to a
group of 5 U133A arrays. There was 60 to 85% overlap
between any two lists generated by comparisons across
array types. This suggests that the same probesets were
being identified no matter which set of samples were cho-
sen for comparison. This is strong evidence that the differ-
ences are real and not chance events.

We ended up with a total of 34 replicate measures of the
Universal Reference RNA, including 17 for each chip type.
A comparison of the entire group of U133A arrays to the
entire group of 17 U133 Plus arrays yielded more than
10,000 probesets with differential expression values spe-
cific to the array type. Therefore, as more data is added to
the analysis the number of differential probesets increases
rather than decreases, further suggesting that this is a func-
tion of the array and not due to chance. There were 101
probesets for which all 17 measurements for one array
type were higher than all 17 measurements for the other
array type. By chance this would be expected to occur only
once in ~400,000 experiments of this type. We show 4
instances of this occurrence in Figure 3. This figure shows
that sometimes the A chip-values were higher and some-
times the Plus chip-values were higher. It further illus-
trates that the affected probesets cover a range of
hybridization values. All of the probesets depicted are well
above the expression intensity observed for absent or
weakly expressed transcripts. More than 2/3 of the
probesets identified were not considered absent, by either
Signal values thresholds or MAS 5.0 absent/present calls.
To further demonstrate that this phenomenon is observed

at all levels we plotted the average signal intensity of the
U133A arrays against the average signal intensity obtained
from the U133 Plus array for the probesets that showed a
distinct distribution (p-value < 0.01, figure 4). This plot
best illustrates that the phenomenon cannot be a conse-
quence of normalization as one cannot correct a portion
of these probesets without increasing the difference of
another group.

Latin square hybridization control
We have demonstrated that the measurements produced
by the U133A arrays are different than the measurements
from the U133 Plus arrays. At the same time the measure-
ments are so similar that the correlation between array
types is around 96%. In order to develop a frame of refer-
ence for the differences reported here we re-examined the
latin-square data produced by Affymetrix scientists. This
data set was produced from 42 hybridizations in which
known quantities of RNA were added to a hybridization
mixture containing labeled cRNA from HeLa cells. If we
remove from consideration those probesets affected by
the supplemented RNA, the rest of the data consists of 42
replicate measurements of the exact same hybridization
mix. This is analogous to the experiment we performed by
hybridizing the same cocktail to both a U133A chip and a
U133 Plus chip. As a measure of variation we looked for
probeset measurements that deviated more than 2-fold

Distribution of values obtained for selected probesets with U133A arrays and U133 Plus 2Figure 3
Distribution of values obtained for selected 
probesets with U133A arrays and U133 Plus 2.0 
arrays. The probeset numbers are indicated on the left. 
Above each line and plotted with blue circles are the values 
observed with U133 Plus arrays. Below each line and plotted 
with red circles are the values observed for the correspond-
ing probesets on the U133A arrays. Plotted are the log base 
2 equivalents of the Signal values from 17 different arrays.
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from the mean value of all the measurements. In both the
latin square experiment and our experiments the
probesets should have yielded the same value on all arrays
as the same sample was measured. It is well known that
the highest variation occurs for probesets with the lowest
measurements. Therefore, we sliced the full data into
three groups representing the highest expression values,
the middle range, and the lowest measurements from the
chips. Table 1 illustrates that hybridization, staining, and
scanning related effects introduce some variation to the
measurements obtained in a microarray experiment (col-
umn 1). More variation is observed if you also add the ini-
tial processing of the samples (column 2). In our
experiments, where the same sample was hybridized to
both array types, only the hybridization and post-hybrid-
ization steps were sources of variability. But rather than
producing a similar degree of variation as the latin square
data, more overall variation was observed than caused by
the entire microarray process. (Compare column 3 to col-
umns 1 and 2.)

Evaluation of individual probes and probesets
The measurement differences between the A chip and the
Plus chip are probeset specific but not transcript specific.
This is illustrated by the results presented in table 2. The
genes listed in table 2 are detected by more than one
probeset on the arrays [16]. The first probeset of each
group was identified because they produced extremely dif-
ferent distributions in the two chip types. The last column

lists the p-value of the t-test as an indicator of the differ-
ences in the observed measurements. The preceding four
columns list the maximum and minimum values
recorded on the A chips and the maximum and minimum
for the Plus chips. These columns provide a second view
of how distinct the ranges can be and when they might
overlap. The R value for the associated probesets is a meas-
ure of the correlation between the values obtained for that
probeset and the first probeset of the group across 210
U133A arrays representing more than 70 different cell or
tissue types. This is provided for reference to show that
these probesets have a high degree of correlation with
their cognate partners when only the U133A environment
is considered. Yet their behavior across the array formats
is distinctly different in many cases. For example, dimeth-
yarginine dimethylaminohydrolase 2 and U2 small
nuclear RNA auxiliary factor1-like 2 each have two
probesets on the arrays that detects the same transcripts
with similar intensity, but for one probeset the different
arrays produce different values and for one probeset the
two arrays produce overlapping values. Polyglutamine
binding protein 1 and putative prostate cancer tumor sup-
pressor also have two probesets detecting the same tran-
script, but in these cases one of the probesets generates
higher values on the A chip and the other generates higher
values on the Plus chip. Several other patterns are shown
in table 3. Adducin 3 is detected by 4 probesets, each pro-
ducing a different pattern when the A chip-values are com-
pared to the Plus chip-values. These results further
indicate that these differences are not the result of any bias
introduced during processing or normalization, but must
reside in individual probes on each respective array.

The transcript for KIAA0676 is detected by 4 different
probesets. Three of these probesets behave very similarly
on the two array types. The fourth probeset behaves in the
opposite manner (table 2). The individual probes in each
probeset, and their locations on the two arrays, are shown
in table 3. The probesets that show the same behavior are
nearly identical while the divergent probeset is distinctly
different from the other three. On average, 9 of the 11
individual probes are identical for the 3 similarly acting
probesets. The identically designed probes are also located
side-by-side on the respective arrays. Therefore, these
three probesets are virtually identical in both sequence
and location on the arrays and identical in the bias seen
between the array types. This fact was also true of several
other parallel probesets we examined (data not shown).

We looked at the measurements recorded for the individ-
ual probes that comprise these probesets. We found that
10 of the 11 probes produced higher values on the U133A
arrays than on the U133 Plus arrays for probesets
206431_x_at, 215994_x_at, and 212054_x_at. Con-
versely, the probeset 212052_s_at, which behaved in the

Average measurement of the Universal Reference RNA on the U133A array relative to the U133 Plus array for those probesets exhibiting different measurements on the two arraysFigure 4
Average measurement of the Universal Reference 
RNA on the U133A array relative to the U133 Plus 
array for those probesets exhibiting different meas-
urements on the two arrays. The probesets plotted were 
those in which the p-value was less than 0.01 when all 17 
U133A arrays were compared to the 17 U133 Plus arrays. 
The average of the 17 arrays in one group is plotted against 
the average of the 17 arrays in the other group.
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opposite manner, had more individual probes yielding a
higher value on the U133 Plus arrays. Therefore bias at the
probe level appears to generate the bias observed for the

full probeset. We looked at all the individual perfect
match probes for the probesets that produced different
measurements on the two array types. When the probeset

Table 2: Cross-platform behavior of selected probesets that detect the same transcript in the reference RNA.

Transcript Probe ID Ra Plus chip range A chip range T-Test

Max. Min. Max. Min.

Adducin 3 (gamma) 201752_s_at 1 2317.2 1848.2 2714.6 2447.2 0.001
201034_at 0.812 4713.7 3574 3949.1 3173.8 0.217
201753_s_at 0.812 3723 2001.4 2015.5 1619.9 0.096
205882_x_at 0.976 2054.1 1709.2 2275.5 1748.1 0.622

dimethylarginine 
dimethylaminohydrolase 2

202262_x_at 1 674 548.4 1040 745.2 0.001

214909_s_at 0.889 744.8 428.4 707.6 543.3 0.994
KIAA0676 protein 206431_x_at 1 973 797.3 1329.1 1049.4 0.002

212054_x_at 0.906 1115.7 749.5 1235.7 1052.3 0.041
215994_x_at 0.925 1407.2 841.8 1570.2 1339.6 0.048
212052_s_at 0.811 1685.6 1423.5 1397 1175.3 0.003

Lysosomal-associated multi-spanning 
membrane protein-5

201721_s_at 1 2944.9 2612 4151 3491.3 0.000

201720_s_at 0.919 1768.6 1273.4 1531.3 1194.1 0.378
nuclear transcription factor Y, gamma 202216_x_at 1 792.9 586.3 1033.5 839.8 0.006

211251_x_at 0.962 813.8 618.9 1070 885.3 0.001
202215_s_at 0.639 861.6 319.3 798.2 512 0.887
211797_s_at 0.761 672.2 428.9 864.9 541.3 0.237

polyglutamine binding protein 1 214527_s_at 1 1808.6 1378.3 2290.6 1868.9 0.006
207769_s_at 0.907 1682.5 1505 1579 1280.6 0.02

Putative prostate cancer tumor 
suppressor

209228_x_at 1 1610.8 1375.8 2304.3 1875.1 0.001

213423_x_at 0.916 2664.5 2295 2236.3 1600.9 0.033
ribosomal protein, large, P0 201033_x_at 1 53465.1 34223.5 67507 55973.4 0.014

208856_x_at 0.967 56980.3 36192.7 63815.1 55584.1 0.136
211720_x_at 0.927 53420.1 37636.2 66827.6 52346.1 0.021
211972_x_at 0.792 50538.4 32930.5 56212.5 48139.1 0.051

staufen, RNA binding protein 
(Drosophila)

213037_x_at 1 6121.4 5809 6947.7 6309.3 0.002

207320_x_at 0.945 6664.7 5179.8 7435.3 5183.5 0.5
208948_s_at 0.854 5936.5 4774.2 5292.5 4762.6 0.256

sulfotransferase (SULT1A3) 209607_x_at 1 1798.6 1595.5 2015.2 1866 0.001
210580_x_at 0.951 2497.1 1768.8 2435.6 2173.4 0.164

U2 small nuclear RNA auxiliary factor 1-
like 2

208174_x_at 1 677.9 529 866.7 779.8 0.001

213876_x_at 0.935 792.5 583.8 738.7 652.4 0.91

aR = the correlation coefficient between the 1st probeset of each group and the indicated probeset across 210 U133A arrays representing more 
than 70 cell and tissue types.

Table 1: Comparison between the variability introduced by hybridization and staining effects alone, the cDNA synthesis and 
transcription process, and cross-platform comparisons. Each value represents the percentage of probesets in each quantile of the 
array where measurements diverged more than 2-fold from the mean.

Single platform Single platform Cross platform

Hybridization only Total process Hybridization only

Highest chip-values 0.012% 0.27% 0.048%
Middle chip-values 0.88% 1.6% 1.31%
Lowest chip-values 6.4% 9.0% 13.0%

Total 7.3% 10.9% 14.1%
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produced a larger value in the U133A arrays an average of
7.6 individual probes (out of 11) were higher in the A
arrays than in the U133 Plus arrays. Conversely, when the
Plus chip produced a higher value, an average of 7.7
probes from these probesets were higher in the U133 Plus
environment.

We suspected that this bias might be due to a little bleed
over from the surrounding probes on the array. We exam-
ined a number of individual probes. In many cases
brighter probes surrounded the probes producing the
higher values; however this was not universally true. More
consistently, it appeared that the probes yielding higher
values were just a little brighter on the arrays with the
higher measurements. This suggested a possible manufac-

Table 3: Sequence of the probes used to detect KIAA0676 protein and their location on the arrays.

Probe sequences for 
KIAA0676 protein

Plus chip 
location

A chip 
location

Probe sequences for 
KIAA0676 protein

Plus chip 
location

A chip 
location

206431_x_at X Y X Y 215994_x_at X Y X Y
1 ACACTTAGTCCTCCACAG

TGGGTGG
360 191 527 107 CAAGTATGGGGCCCTGGCT

GTGTTC
765 297 4 169

2 AAGAGTGCAAGGTCTGCC
AGGTCAG

669 255 593 145 √ GTTCAAGACACTTAGTCCTC
CACAG

373 707 157 437 √

3 CAGAACCTGCTGGTGCAA
GCTGGGC

110
5

327 588 189 √ CAGAACCTGCTGGTGCAAG
CTGGGC

110
4

327 586 189 √

4 TGGGCAGGTCCTGACCA
ACCTGCAT

924 913 60 565 √ TGGGCAGGTCCTGACCAAC
CTGCAT

923 913 58 565 √

5 CACAGGTCTTCATGGGCA
GGGGTTG

586 309 333 175 √ CACAGGTCTTCATGGGCAG
GGGTTG

585 309 331 175 √

6 ATCCTCAGGCCTGGGCT
GTAGCAAG

179 51 419 29 √ ATCCTCAGGCCTGGGCTGTA
GCAAG

178 51 417 29 √

7 GCTGTCTGCCCTTGGGTT
CAAGAAC

85 499 180 309 √ GCTGTCTGCCCTTGGGTTCA
AGAAC

84 499 178 309 √

8 ACAAGGATACCCTCACTT
TGCATGA

814 193 566 111 √ ACAAGGATACCCTCACTTTG
CATGA

813 193 564 111 √

9 TTAGCCCCCACATGGGG
CTGCTCTT

921 111
7

380 687 √ CTGACCAGTGTCCAGTGTTA
GCTCC

840 395 141 235

10 GGCTGCTCTTGCTTCTAC
TAAAAGA

557 883 207 545 √ GGCTGCTCTTGCTTCTACTA
AAAGA

558 883 205 545 √

11 TAAAACCAGACCCCCAGT
GGATGTC

87 104
5

596 645 √ TAAAACCAGACCCCCAGTG
GATGTC

86 104
5

594 645 √

212054_x_at 212052 _s_at
1 GTTCAAGACACTTAGTCC

TCCACAG
372 707 158 437 √ GCTGCCTTAGACAGATTCCC

TGGGC
112
2

503 45 313

2 AAGAGTGCAAGGTCTGCC
AGGTCAG

668 255 592 145 √ CACCTTCCTTACACCTGGTG
GGAGC

694 319 337 181

3 CAGAACCTGCTGGTGCAA
GCTGGGC

110
3

327 587 189 √ TATGTGGTATGGGGGTCATT
CCTGC

491 107
7

179 663

4 TGGGCAGGTCCTGACCA
ACCTGCAT

922 913 59 565 √ AAGTGATGGAACCCTCAGGT
GCTCT

403 263 599 147

5 CACAGGTCTTCATGGGCA
GGGGTTG

587 309 332 175 √ AGCCTGAACCTCCTGACTGA
GGAAC

888 143 235 81

6 ATCCTCAGGCCTGGGCT
GTAGCAAG

180 51 418 29 √ CACAGGCGTGGCTGTACAC
GTGCTC

157 311 554 177

7 GCTGTCTGCCCTTGGGTT
CAAGAAC

83 499 179 309 √ CTCATCATCCTTTCCAGTAA
CTTTA

714 379 680 221

8 ACAAGGATACCCTCACTT
TGCATGA

815 193 565 111 √ AAAAAACATCCCTCAGGTCC
TGATA

916 219 212 123

9 TTAGCCCCCACATGGGG
CTGCTCTT

922 111
7

379 687 √ GGTCCTGATATATTTCCTTG
GATTC

114
7

821 183 507

10 GGCTGCTCTTGCTTCTAC
TAAAAGA

556 883 206 545 √ TTGGCTAGAAATTACACTGT
GCTCA

104
1

116
1

505 709

11 TAAAACCAGACCCCCAGT
GGATGTC

85 104
5

595 645 √ TGTGCTCAATGCCTTAATAA
ATCCC

842 919 38 569

√ indicates that the probe is identical to another probe in this group of probesets.
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turing difference as the underlying cause rather than bleed
over from neighboring probesets.

Discussion
One of the most important considerations in performing
a microarray experiment is that the data obtained at the
end is an accurate representation of the RNA present in
the biomaterial used to start the process. Bias can lead to
erroneous conclusions if the bias happens to track with
the experimental condition evaluated or obscures the dif-
ferences because the bias is larger than the biological
effect. Bias can come from many sources [25-27]. When
properly identified, bias can be corrected and a proper
analysis can proceed. Our data demonstrates that the
array itself can contribute bias to gene expression meas-
urements. It is quite understandable how different probe
sequences could lead to different measurements in gene
expression arrays. However, our data shows that even
identical probe sequences can yield slightly different
measurements of gene expression.

The impact of probe level variation depends on the nature
of the question addressed in a microarray experiment. For
a simple experiment performed in either platform the
observed performance of a gene should be substantially
reproduced by the alternative platform. However, if clini-
cal samples are being accumulated for a disease state, the
differences between platforms might prevent the pooling
of samples processed in both platforms. This depends on
the differences one finds in the experimental system.
Small differences might be obscured while large differ-
ences would still be observable. We observed that many of
the probesets with target genes present in the Universal
Reference RNA showed differences greater than 2-fold.
This bias could compromise experiments where the
number of samples evaluated might otherwise allow one
to detect differences less than 2-fold.

Our data shows that microarray data can be very consist-
ent at the same time as it shows a bias. Overall, any two
arrays produced with the Universal Reference RNA yielded
fairly consistent microarray results. The final measure-
ments form a tight cluster of values for most probesets and
the overall correlation was 0.96 for any two arrays. How-
ever, a significant number of probesets produced two dis-
tinctly different or partially overlapping distributions
when the array formats were viewed separately (figure 2
and 3). Therefore the bias due to the array is clearly evi-
dent even though the overall correlation was very high.
Sometimes a measurement was higher on the U133A
arrays and sometimes it was higher in the U133 Plus
arrays. This could even be true for the same transcript, as
one probeset yielded higher values and another probeset,
detecting the same transcript, yielded lower values than
the alternative platform. This shows that the bias was not

due to processing, hybridization, or normalization arti-
facts. This observation has larger implications. It illus-
trates that it may not be possible to have all probes on an
array performing exactly the same way so that all tran-
scripts could be measured on equivalent scales.

The trend in microarray research is towards generating
larger sets of data for analyzing complex biological prob-
lems and diseases. Institutions are pooling resources to
attain the large datasets required for analysis. Several
groups have already evaluated the comparability of data
produced at distant sites [28-30]. There are also attempts
to directly compare gene expression data from quite dis-
similar microarray platforms as well as serial analysis of
gene expression (SAGE) and RT-PCR [31-34]. This push
towards the direct comparison of microarray data from
distant sites and dissimilar platforms is likely to continue.
It is important to consider the differences in measurement
observed on different array types.

Since their introduction, microarrays have been forecast
for clinical use. Many people believe that patterns of gene
expression will be used to identify disease states. Diagno-
sis, prognosis, and treatment options are all believed to lie
in patterns of gene expression. While some people begin
the search for these patterns, the microarray community
has also been working towards improving the technology
to produce more reliable results. Some sources of bias can
be minimized or corrected. Others will simply be accepted
as part of the process. Classifiers developed to interpret
microarray data must allow for any variation that occurs
in the measurement of individual probes. It remains to be
determined whether the variation caused by the type of
array will interfere with the performance or development
of classifiers. For the present time it seems wise to use a
single array type for the evaluation of microarray data. If
the classification of samples relies on small gene expres-
sion differences, the classification may be microarray for-
mat specific. However, large differences will probably still
be observed despite the small differences reported here
between the U133A arrays and the U133 Plus arrays.

Conclusion
Microarray data is often useful beyond the intentions of
the original experiment. The microarray community is
continuously developing standards for microarray
processing and data management that allows scientists to
utilize microarray data held in repositories. Much like
sequence data, this stored gene expression information
can be used in a multitude of creative ways. The compari-
son of microarray data between two formats, or even
between two laboratories using the same format, requires
knowledge about the sources of error that can arise in a
microarray experiment. We have demonstrated that the
same sequence can provide slightly different measure-
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ments of gene expression in different array formats. This
implies that the comparison of microarray data between
formats may require an additional, array specific, correc-
tion factor for each probe. The larger implication is that it
may not be possible to establish equivalent correlations
between the measured value in an array and the absolute
value in a biological sample for every gene on an array. If
sequence, as well as sequence context, introduces subtle
adjustments to the final measured value of a transcript,
then it may not be possible to know which measurement
is the most accurate measurement of transcript abun-
dance. Therefore attempts to perform cross-platform veri-
fication either have to use gene specific correction factors
or be satisfied with similarity rather than exact replication.

Methods
The source of RNA was the Universal Human Reference
RNA from Stratagene (Catalog number 740000, Strata-
gene, La Jolla, CA) for all samples. This RNA was proc-
essed using the established Affymetrix protocols for the
generation of biotin-labeled cRNA, hybidization, stain-
ing, and scanning. A more complete description of this
process is available in the papers by Warrington et al. [35]
or Dobbins et al. [28]. Hybridizations were performed as
indicated in, either HG-U133A (U133A) arrays, or
Human Genome U133 Plus 2.0 (U133 Plus) arrays from
Affymetrix, Inc. (Santa Clara, CA). The U133A arrays were
scanned on an Affymetrix GeneChip® scanner 3000 at a
2.5 μm resolution and the U133 Plus chips were scanned
at 1.56 μm resolution. All data was initially generated
from the scanned image files using the MAS 5.0 software
embedded in the GeneChip Operating Software from
Affymetrix. The data was initially normalized globally to
an average intensity of 500. The signal values from each
array were then exported to a text file. The probesets in the
U133 Plus arrays but not found on the U133A arrays were
removed from these files and then all the arrays used in
this study were renormalized in a single group using the
iterative process described by Li and Wong as well as by
Wang et al. [22,23]. This process insured that the final nor-
malization was based on the most stable gene expression
measurements across the arrays and that the probesets on
the U133 Plus arrays, but not represented on the U133A
arrays, did not influence the final normalized values.

All data used in this manuscript are publicly available for
download. The initial samples placed on U133A arrays are
available at the Gene Expression Database Portal ([36],
experiment IDs 615–618). The samples hybridized to
U133 Plus Arrays are from a series evaluating the effect of
starting RNA quantity. The array data is available at the
Gene Expression Omnibus ([37]) under accession
number GSE3062. The samples processed and then
hybridized to both a U133A array and a U133 Plus array
are available under the accession number GSE3061.

The Latin Square data set used for comparison was gener-
ated by scientists at Affymetrix and is available from the
company's website [38].

For the probe level analysis the values in each CEL file
were loaded into a database. The probe values corre-
sponding to those probesets found on the U133A arrays
were extracted from each U133 Plus array and used to gen-
erate an artificial U133A CEL file. All the CEL files were
then normalized to the same average value and individual
probe values were compared across arrays. This technique
also allowed comparisons using batch methods such as
RMA or MBEI and perform other normalization tech-
niques on the probe level data. The artificial U133A CEL
files and corresponding U133A CEL files were loaded into
a local implementation of the RMA program available
through Bioconductor to calculate the expression values.
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