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Abstract

Background: Genomes of gram-positive bacteria encode many putative cell-surface proteins, of
which the majority has no known function. From the rapidly increasing number of available genome
sequences it has become apparent that many cell-surface proteins are conserved, and frequently
encoded in gene clusters or operons, suggesting common functions, and interactions of multiple
components.

Results: A novel gene cluster encoding exclusively cell-surface proteins was identified, which is
conserved in a subgroup of gram-positive bacteria. Each gene cluster generally has one copy of four
new gene families called cscA, cscB, cscC and cscD. Clusters encoding these cell-surface proteins
were found only in complete genomes of Lactobacillus plantarum, Lactobacillus sakei, Enterococcus
faecalis, Listeria innocua, Listeria monocytogenes, Lactococcus lactis ssp lactis and Bacillus cereus and in
incomplete genomes of L. lactis ssp cremoris, Lactobacillus casei, Enterococcus faecium, Pediococcus
pentosaceus, Lactobacillius brevis, Oenococcus oeni, Leuconostoc mesenteroides, and Bacillus thuringiensis.
These genes are neither present in the genomes of streptococci, staphylococci and clostridia, nor
in the Lactobacillus acidophilus group, suggesting a niche-specific distribution, possibly relating to
association with plants. All encoded proteins have a signal peptide for secretion by the Sec-
dependent pathway, while some have cell-surface anchors, novel WxL domains, and putative
domains for sugar binding and degradation. Transcriptome analysis in L. plantarum shows that the
cscA-D genes are co-expressed, supporting their operon organization. Many gene clusters are
significantly up-regulated in a glucose-grown, ccpA-mutant derivative of L. plantarum, suggesting
catabolite control. This is supported by the presence of predicted CRE-sites upstream or inside the
up-regulated cscA-D gene clusters.

Conclusion: We propose that the CscA, CscB, CscC and CscD proteins form cell-surface protein
complexes and play a role in carbon source acquisition. Primary occurrence in plant-associated
gram-positive bacteria suggests a possible role in degradation and utilization of plant oligo- or poly-
saccharides.
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Background

Most Gram-positive bacteria are known to produce a mul-
tiplicity of extracellular proteins, many of which are des-
tined to become attached to the cell surface [1-5]. These
surface-exposed proteins serve to communicate and inter-
act with the environment. Particularly in pathogenic
streptococci, staphylococci and Listeria, they are often of
primary importance in bacterial adhesion, invasion and
interaction with host cells [6-8]. Cell-surface proteins are
also known to play an essential role in providing nutrition
to the cell through binding, degradation and uptake of
carbon and nitrogen substrates. Many cell-surface pro-
teins have a multi-domain architecture, and share various
structural features including secretion signal peptides,
cell-anchoring domains or motifs, cell-wall spanning
regions, and repeated domains of various functions. In
some cases, multiple proteins join forces to form large
extracellular complexes that provide both binding and
enzymatic functionalities, such as the cellulosomes of
anaerobic bacteria (e.g. Clostridium, Ruminococcus) for
degradation of and growth on cellulose, the main struc-
tural component of plant cell walls [9-13].

Even though the function of a variety of extracellular pro-
teins of Gram-positive bacteria has been characterized
experimentally, recent genome sequencing efforts have
led to the prediction of hundreds of encoded extracellular
proteins of unknown function. Many of these appear to
belong to conserved homologous families of hypothetical
extracellular proteins, suggesting common functions in
different bacterial species. While it is often possible to
detect known cell-anchoring domains in these proteins,
such as (i) amino- or carboxy-terminal membrane-span-
ning anchors, (ii) peptidoglycan anchors covalently
bound through their LPXTG motif [4,14-18], (iii) amino-
terminal lipid-bound anchors [19], and (iv) a variety of
domains binding non-covalently to peptidoglycan, tei-
choic acids [20] or surface polysaccharides, the main func-
tion(s) of these encoded cell-surface proteins in their
interaction with the environment remains elusive.

Lactobacillus plantarum is a gram-positive bacterium that is
encountered in many different environmental niches, as it
is associated with various plants [21-24], it occurs in sev-
eral food and feed fermentations [25-28], and it is a natu-
ral inhabitant of the gastrointestinal tract of humans and
animals [29,30]. Analysis of the 3.3 Mbp genome
sequence of L. plantarum WCFS1 revealed over 200 puta-
tive extracellular proteins based on the presence of an N-
terminal signal peptide [31]. The vast majority of these
proteins contained at least one of the cell-anchoring
motifs described above. A new C-terminal domain desig-
nated WXL was found in 19 proteins of L. plantarum. More
recently, fifteen proteins with a WxL-like domain were
identified in the genome of Lactobacillus sakei 23 K [32],

http://www.biomedcentral.com/1471-2164/7/126

and found to be encoded in gene clusters that potentially
encode a multicomponent complex of unknown function
on the bacterial surface. In search of putative functions for
the encoded hypothetical extracellular proteins, and their
possible relation to niche adaptation, we have now dis-
covered that 35 of the cell-surface proteins of L. plantarum
are encoded in nine paralogous gene clusters. Four differ-
ent types of novel protein families are represented in these
gene clusters. We present bioinformatics and experimen-
tal evidence that the encoded proteins are functionally
coupled and possibly form a cell-surface protein complex
that could play a role in sugar metabolism. A genome-
wide search revealed similar gene clusters in a specific sub-
group of mainly plant-associated Gram-positive bacteria,
and we therefore postulate a role in degradation of (com-
plex) plant polysaccharides.

Results

Cell-surface clusters in Lactobacillus plantarum WCFS|
Analysis of the chromosome indicated that many of the
predicted extracellular proteins are encoded in clusters of
3-6 genes [31]. A closer inspection reveals that nine clus-
ters encode proteins which can be divided into 4 different
classes or families based on amino acid sequence similar-
ity, domain and motif characteristics (Table 1; Fig. 1; see
details in additional files 1, 2). All of the 35 encoded Csc
proteins (cell-surface complex) have normal signal pep-
tides for secretion via the Sec-dependent pathway [33]
and processing by the signal peptidase I. Most of the Csc
proteins and their domains are of unknown function
since they do not have significant similarity to proteins of
known function (see below for details). The four families
can be easily distinguished based on domain composi-
tion. The CscA proteins are all predicted to contain a con-
served domain of unknown function (PFAM: DUF916) as
well as a C-terminal transmembrane anchor. CscB and
CscC proteins are characterized by a novel domain of
160-190 residues, which we have termed WXL since it
contains two characteristic conserved sequence motifs
containing the WxL signature (Fig. 1)[31]. The CscB pro-
teins are on average 240 amino acids in size and consist
almost entirely of the WxL domain, while the CscC pro-
teins are much larger with an average size of 800 amino
acids and have a variable N-terminus. Since the WxL
domains of the CscB and CscC proteins can be distin-
guished based on sequence characteristics such as the dis-
tance between the conserved WXL residues, they were
considered as two different families (WxL1 for the CscB
proteins, WxL2 for the CscC proteins). Finally, members
of the CscD family all have a C-terminal LPXTG-type motif
for sortase-mediated covalent anchoring to the peptidog-
lycan layer [4,14], and are uncharacteristically small for
LPxTG-anchored proteins. Figure 2 summarizes the char-
acteristics of the four Csc family members. The individual
families will be discussed in more detail below.
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Table I: Occurrence of cell-surface clusters and genes in genomes
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Species

Complete genome sequences
Lactobacillus plantarum WCFSI
Lactobacillus sakei 23K

Enterococcus faecalis V583
Lactococcus lactis L1403

Listeria innocua Clip | 1262

Listeria monocytogenes EGD-e
Bacillus cereus ZK

Bacillus anthracis A2012 (plasmid)
Incomplete genome sequences
Lactococcus cremoris SK1 |
Lactobacillus casei ATCC367
Enterococcus faecium DO
Pediococcus pentosaceus ATCC25745
Leuconostoc mesenteroides ATCC8293
Oenococcus oeni PSU-1

Bacillus thuringiensis ATCC35646
Lactobacillus brevis ATCC367
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#Seven of these csc genes are found outside the gene clusters in complete genomes (details in additional file I).

* Some genes contain frame shifts, stop codons or truncations (details in additional file 2).
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Csc gene clusters found in Lactobacillus plantarum WCFS|. Genes are color-coded according to family: cscA (blue), cscB
(yellow), cscC (green), cscD (red); other genes are not coloured. Positions of encoded WxLI| domains (in CscB) and WxL2
domains (in CscC) are striped. Predicted CRE sites are indicated by black vertical bars (see also Table 3). Predicted termina-

tors are indicated by loop symbols.

Cell-surface clusters in other bacteria
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DUF916 domain  C-terminal WxL1 domain WxL2 domain LPxTG anchor
membrane anchor
N\
] IMII‘I)
signal peptide
CscA CscB CscC CscD
domain DUF916 WxL1 WxL2 -
anchor C-terminal - - LPxTG
size range (average) 320-380 (345) 160-330 (240) 480-1650 (800) 90-140 (115)
average sequence 25% 21% 12% 16%
identity
Figure 2

Schematic summary of the characteristics of Csc families. The summary is based on all proteins found in the genomes
listed in Table I. The size range refers to the entire proteins. Approximate position and size of domains (DUF916, WxLI,

WxL?2), identified by Hidden Markov models, are indicated by stripes. The average sequence identity refers to the entire pro-
teins, and is particularly low for the CscC proteins, which only have WxL2 domains in common, and for CscD proteins, which

only have the LPxTG anchors in common.

The NCBI and ERGO genome databases were searched for
the presence of Csc family members and csc-like gene clus-
ters. Clusters encoding these cell-surface proteins were
found in the complete genomes of Lactobacillus plantarum
(9 clusters)[31], Lactobacillus sakei (8)[32], Enterococcus
faecalis (6), Listeria innocua (3), Listeria monocytogenes (2),
Lactococcus lactis ssp lactis (3), Bacillus cereus ZK (1), Bacillus
cereus 10987 (1, on plasmid) and Bacillus anthracis (1, on
plasmid) (Table 1). The csc clusters were also found in the
incomplete genomes of L. lactis ssp cremoris (5 clusters, of
which one cluster on a plasmid), Lactobacillus casei (3),
Enterococcus faecium (3), Pediococcus pentocaseus (2), Oeno-
coccus oeni (1), Leuconostoc mesenteroides (1), and Bacillus
thuringiensis (1). Details of all csc gene clusters and
encoded proteins can be found in additional files 1, 2, 3.
In several cases csc genes are still unidentified in incom-
plete genomes because the clusters are on small contigs.
Each gene cluster generally has one copy each of the 4 new
gene families cscA, cscB, cscC and c¢scD, although some var-
iation is observed. A single copy of the cscA is always
present, while 1-4 different cscB genes occur in the gene
clusters. Although single c¢scC and cscD genes are usually
present, they are missing in a few clusters. All encoded
proteins have a regular signal peptide for secretion by the
Sec-dependent pathway.

Evidence of gene clusters as functional units

There are many indications that these gene clusters are
functional units, i.e. that the genes are transcribed coordi-
nately, and that the encoded gene products function
together in a pathway or protein complex.

Csc genes are nearly exclusively found in these gene clus-
ters, with very few exceptions outside the clusters. The
clusters rarely contain other genes than the csc family
members, as based on the criteria of correct gene orienta-
tion, small intergenic distance and absence of predicted
termination sequences. In all ¢sc clusters, the genes are ori-
ented in the same transcriptional direction and usually
have intergenic regions smaller than 100 nucleotides, sug-
gestive of an operon structure. In general, the csc gene
clusters are bounded by terminators on both sides (Fig. 1).
One complete gene cluster (LLX-1) on the L. lactis ssp lactis
IL1403 chromosome is exactly bordered by 15981 ele-
ments, and several other clusters are flanked on one side
by IS elements, suggesting that some of these gene clusters
have been transferred as a unit. Moreover, complete csc
gene clusters are found on plasmids of L. lactis SK11 [34],
B. anthracis and B. cereus (see additional file 1), suggesting
that these genes can be transferred between strains or spe-
cies via these mobile genetic elements.

Comparative DNA microarray-based genotyping analysis
of 20 strains of Lactobacillus plantarum revealed considera-
ble variation in the presence/absence of different DNA
regions in individual strains as compared to strain WCFS1
[35]. In general, the csc clusters of L. plantarum WCFS1
appear to be highly conserved in other strains. However,
the entire cluster LPL-IX (LPL3676-3679) appears to be
missing in 3 of the 20 strains analyzed, while the genes
flanking this cluster appear to be present. Again, this sug-
gests that the entire cluster can be excised or inserted as a
functional unit.
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Domain and function prediction of Csc proteins

CscA family

The CscA proteins are found to belong to the PF06030
Pfam family (or DUF916, bacterial proteins of unknown
function). In addition to the N-terminal signal peptide,
these proteins all contain a predicted C-terminal trans-
membrane helix, which presumably serves to anchor
them in the cell membrane (see full sequence alignment
in additional file 6). Each csc gene cluster generally
encodes only a single CscA protein (see additional file 1).
The CscA-family members are fairly uniform in size (320-
380 residues), and the large majority are predicted to be
very basic proteins with a pI above 9.0 (see additional file
2).

CscB family

The CscB family members are also fairly uniformly sized
(190-280 residues, with a few exceptions), and typically
have an acidic pI of 4-5. These proteins are not yet
described in the Pfam or COG databases. We have defined
the C-terminal domain of about 160-190 residues as the
"WxXL1" domain (Fig. 1; see full sequence alignment in
additional file 7) since it contains two highly conserved
sequence motifs Trp-x-Leu. Preceding the first Trp-x-Leu
motif is a highly conserved Asp-x-Arg-Gly sequence. Most
family members have a short Pro-rich region between the
signal peptide and the WxL1-domain. The four exceptions
are much larger proteins of L. plantarum (LPL1446,
LPL3412) and E. faecalis (EF0405, EF0406) that have the
C-terminal WxL1 domain in common; the larger N-termi-
nal parts of these L. plantarum proteins are similar to each
other, but have no known other domains, whereas the
two E. faecalis proteins are also similar to each other and
have L-domain-like repeats (see below).

CscC family

The CscC family members are much larger than CscA or
CscB proteins, and more heterogeneous in size (500-900
residues, with some exceptions). They are multi-domain
proteins, all characterized by a C-terminal domain of
about 130-140 residues, defined as the "WxL2" domain
since it is very similar to the WxL1 domain but differs in
overall size, in conserved residues and in the distance
between the two WXL motifs (see full alignment of WxL2
domains in additional file 8). Based on these differences,
the WxL1 and WxL2 domains can be distinguished as dif-
ferent domain variants, which is also supported by Hid-
den Markov Models: CscB proteins were recognized by a
Hidden Markov model based on the WxL1 domain with-
out false positive hits in CscC proteins, and vice versa.

In addition, other domains could be identified in some
CscC proteins with homology to different kinds of bind-
ing domains, albeit often with weak homology (see addi-
tional file 4). The clearest domain-homologue identified
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is an N-terminal domain of about 300 residues with struc-
tural similarity to concanavalin A-like lectins/glucanases.
This superfamily includes a diverse range of carbohydrate-
binding domains and glycosyl hydrolase enzymes that
share a common structural fold (see Pfam clan CL0004)
[36-38]. Lectins and glucanases exhibit the common
property of reversibly binding to specific (complex) car-
bohydrates. This ConA-like domain was found in ten
CscC proteins from six different species, and is character-
ized by several conserved aromatic residues, most of
which are tryptophans (see full sequence alignment in
additional file 9). Aromatic residues of starch-binding
domains have been shown to be involved in the binding
of saccharide rings by stacking with indole and phenyl
rings [39]. Various (semi)-conserved Asp and Glu residues
are potential metal ion ligands, including an ExD motif, as
also found in glycosyl hydrolases of this superfamily (see
Pfam clan CL0004). The ConA-like domains of CscC pro-
teins show distinct sequence similarity to each other, but
much less to other families of the large concanavalin A-
like lectin/glucanase superfamily, suggesting that they
may represent a new subfamily. The best sequence simi-
larity is with leguminous plant lectins, including the
known metal ion binding residues (alignment in addi-
tional file 13).

CscD family

The CscD family is not characterized by sequence similar-
ity, but rather by the presence of both a signal peptide for
secretion, and by an LPxTG-type motif for covalent
anchoring to the peptidoglycan matrix. CscD proteins
form a very unusual group among the LPXTG-proteins
[14], [], since they are extremely short (90-140 residues)
and have only 40-60 residues between the signal peptide
(which is removed by signal peptidase I) and the LPXTG-
anchoring motif (which is cleaved by sortase). This
implies that only a short peptide of that length would
become attached to the peptidoglycan. These peptides
have very low sequence homology to each other, and mul-
tiple sequence alignment is not informative. We propose
that they play a role in anchoring the other Csc proteins to
the cell surface through as yet unknown interactions.

Cluster evolution

Family tree analysis of the CscA, CscB and CscC proteins
(see additional files 10, 11, 12) suggests first that the clus-
ters have evolved as units without shuffling, as the three
trees are basically the same. Secondly, some cluster dupli-
cations are of early origin as they precede several specia-
tion events. Other cluster duplications are of more recent
origin, as cluster members from the same species are
grouped in the same branch, as can be clearly seen in spe-
cies with many clusters, i.e. L. plantarum, L. sakei, E. faecalis
and L. lactis. Also, the gene order in clusters of these more
recent duplications has changed little, compared to older
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duplications (see additional file 3). Finally, multiple cop-
ies of cscB genes in clusters appear to be the most recent
duplications, as they are most similar to members within
the same cluster (see additional files 1, 11).

Co-expression and regulation of cluster genes

Several previous transcriptome investigations aimed at
elucidation of L. plantarum response under various stress
conditions have indicated that the transcription of specific
csc genes is regulated in response to bile, salt and lactate
stress [41,42]. In several cases, the expression of entire csc
gene clusters was observed to change significantly.

In the present study, seven of the nine csc gene clusters of
L. plantarum appeared to be significantly up-regulated as a
consequence of a replacement mutation in the ccpA gene
(encoding catabolite control protein A, CcpA) when
grown on glucose as the main energy and carbon source
(Table 2; Figure 3). These data strongly suggest that these
gene clusters are part of the catabolite control regulon that
is controlled by the central regulator CcpA. To further sub-
stantiate this, a MAST-motif search was performed to
identify putative CRE sites, for binding of CcpA [43,44],
within the csc gene clusters and their upstream regions.
Putative CRE sites could be identified for six out of the
seven up-regulated csc clusters, generally upstream of the
first gene of the cluster and in three clusters also inside csc
genes (Figure 1, Table 3). In contrast, no significant CRE-
like sites could be identified within or upstream of the
residual csc gene clusters, supporting a functional role of
the identified CRE-site candidate sequences in regulation
of these clusters.

Taken together these data strongly support the consistent
coordinated expression of the L. plantarum csc clusters,

http://www.biomedcentral.com/1471-2164/7/126

while a putative role for specific subsets of these clusters
in stress survival/adaptation or in carbon source acquisi-
tion can be anticipated.

Discussion

Conserved gene clusters encoding extracellular proteins
belonging to four distinct new families have been found
in several gram-positive bacteria. Based on the experimen-
tal evidence and predictions provided above that the
CscA, CscpB, CscC and CscD proteins are functionally
coupled, we propose that they form a cell-surface protein
complex. Two components are presumably bound to cell-
wall components, i.e. the CscA is membrane-anchored
and CscD is bound to peptidoglycan. The CscB and CscC
proteins have novel WxL domains which could function
in binding to CscA/CscD proteins, or to other compo-
nents of the cell-surface (peptidoglycan, polysaccharides,
teichoic acids, etc). The occurrence of these csc clusters in
a limited number of gram-positive bacteria suggests a
niche adaptation. All of the species in Table 1 are free-liv-
ing bacteria found in the environment. Several of these
bacteria are known to be associated with plants and plant
fermentations, and many are used for making a variety of
fermented products such as sauerkraut, sourdough, olives,
silage, soy milk, wine and cheese, or can be found as con-
taminants of these products. L. sakei is more often associ-
ated to meat products [32]. It is noteworthy that these
gene clusters are neither present in the many sequenced
genomes of (mostly pathogenic) streptococci, staphyloco-
cci, and clostridia, nor in the Lactobacillus acidophilus sub-
group of the lactobacilli, which are typical gut bacteria.

Experimental characterization of a Csc family protein has
demonstrated its cell-surface location [45]. A c¢scB gene
product called Cpf (Co/aggregation-Promoting Factor) of
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Figure 3

Example of coordinated gene expression of csc gene clusters found in Lactobacillus plantarum WCFS|. Cluster
LPL-I (genes Ip1446—Ip1450) is shown with flanking genes. Genes are color-coded according to relative gene expression (meas-
ured by transcriptome analysis) in a comparison of the wild-type strain and a ccpA knock-out mutant upon growth on glucose.
A sliding color scheme is used from down regulation (dark green) to up regulation (dark red) of genes in mutant vs wild type.
Blue genes were not measured. Predicted terminators are indicated by loop symbols. Figure were made with the Microbial

Genome Viewer [79, 80].
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Table 2: Gene expression data of L. plantarum, growth of ccpA mutant vs wild-type

ccpA mutant/wild-type

cluster gene Csc family product Ma P-value
| LPL1450 B extracellular protein 1.00 0.0008
LPL 1449 B extracellular protein 1.22 0.0003
LPL1448 A cell surface protein precursor 1.24 0.0002
LPL 1447 D cell surface protein precursor 1.36 0.0002
LPL 1446 B extracellular protein 1.20 0.0006
I LPL2175 B extracellular protein 1.35 0.0005
LPL2174 A cell surface protein precursor 0.79 0.0048
LPL2173 C extracellular protein 0.71 0.0032
i LPL2978 B extracellular protein 0.08 0.7133
LPL2977 A cell surface protein precursor 0.90 0.0005
LPL2976 D cell surface protein precursor 0.59 0.0077
LPL2975 C extracellular protein 0.37 0.0466
v LPL3067 B extracellular protein 2.00 0.0001
LPL3066 A cell surface protein precursor 1.85 0.0001
LPL3065 D cell surface protein precursor 1.49 0.0002
LPL3064 C extracellular protein 1.51 0.0001
\ LPL3075 C cell surface protein (putative) -0.16 0.0780
LPL3074 D cell surface protein precursor 0.32 0.0357
LPL3073 B extracellular protein 0.0l 0.0600
LPL3072 A cell surface protein precursor -0.68 0.0016
A LPL3I117 C cell surface protein (putative) 1.54 0.0002
LPL3I16 B extracellular protein 1.76 0.0002
LPL3I15 A cell surface protein precursor 1.85 0.0000
\l LPL3414 B extracellular protein 1.21 0.0006
LPL3413 A cell surface protein precursor 0.86 0.0079
LPL3412 B extracellular protein 0.63 0.0056
Vil LPL3454 D cell surface protein (putative) 0.67 0.0087
LPL3453 B extracellular protein 0.79 0.0013
LPL3452 B extracellular protein 1.26 0.0002
LPL3451 A cell surface protein precursor 1.13 0.0008
LPL3450 C extracellular protein 1.46 0.0006
IX LPL3679 B extracellular protein -0.17 0.0159
LPL3678 A cell surface protein precursor 0.12 0.1040
LPL3677 D cell surface protein precursor 0.49 0.0220
LPL3676 C extracellular protein 0.70 0.0018

aM = 2|og of the expression ratio's, calculated as the average expression level observed in the ccpA mutant divided by the average expression ratio

observed in the wild-type.

Lactobacillus  coryniformis DSM20001T, a species com-
monly found in agricultural habitats and food products,
was purified and found to mediate coaggregation with
and aggregation of other bacterial species. Cpf could be
removed from the surface of Lactobacillus cells by treat-
ment with high salt (5 M LiCl), and could subsequently be
reattached by removal of salt resulting in restoration of

the co/aggregation property. This indicates that CscB pro-
teins are non-covalently bound to the bacterial cell sur-
face, supporting our hypothesis.

Transcriptomics experiments show that at least six of the
csc gene clusters of L. plantarum are under catabolite
repression, as they are up-regulated in a ccpA-knockout
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Table 3: Putative CRE sites of L. plantarum csc clusters

http://www.biomedcentral.com/1471-2164/7/126

cluster gene position sequence E-score
| LPL1450 starts 66 and 42 bp upstream of gene TGATTATCGTTACCA n.a.
TGATCACCGCAGGCA
LPL 1449 inside gene TGTAAGCGTCACCA 3,60E-05
LPL 1446 inside gene TGGAACCGCTGGCA 6,80E-06
I LPL2175 starts 7| bp upstream of gene TGAAAGCGGAATCA 2,60E-05
11l LPL2977 inside gene TGATAACGGCATCA 5,00E-06
v LPL3067 starts 263 bp upstream of gene TGTAACCGTTATCC 8,80E-05
LPL3066 inside gene TGGAACCCTTAACA 6,30E-05
LPL3064 inside gene TGCAAGCGTATCCA 1,60E-06
\% none
A LPL3117 starts 62 and 3| bp upstream of gene TGTGAGCGCTATCA 7,80E-06
AGATTACGCTGTCA 7,80E-05
Vi none
Vil LPL3454 starts |21 bp upstream of gene TGGAATCGCTGTCA 1,20E-05
IX none
consensus Bacillus TGAAAGCGTTTTCA

n.a. = clear palindromes which are possible CRE sites, but score is lowered due to insertion of | extra nucleotide

strain grown on glucose, and they contain CRE elements
for binding of the global regulator CcpA. This regulatory
clue suggests a functional link of the Csc proteins with
sugar metabolism. Furthermore, some CscC proteins con-
tain ConcanavalinA-like lectin/glucanase domains.
ConA-like domains are often found in proteins involved
in cell recognition and adhesion, and lectins and gluca-
nases are known to reversibly bind to specific complex
carbohydrates. Bacterial and fungal glucanases and xyla-
nases with ConA-like domains can degrade complex
polysaccharides like beta-glucans, kappa-carrageenans,
xylans and cellulose [36-38,46]. Hence, the presence of
ConA-like domains in CscC proteins would support a role
of the proposed Csc cell-surface protein complex in bind-
ing and/or degradation of complex (plant-derived) oligo-
or poly-saccharides. Plant cell-wall polysaccharides are an
abundant source of carbon and energy for many free-liv-
ing micro-organisms, which exploit such polysaccharides
from decaying plant material, i.e. in compost, soil, and
sewage.

It is striking that the genome of Lactobacillus plantarum has
the most csc gene clusters. L. plantarum is frequently found
on plants [21,23] and fermented plant material [47], and
it is used in plant fermentations [48,49] and silage
[22,24]. On plant surfaces, L. plantarum should be in close
association with other bacteria (or fungi) which are capa-

ble of plant polysaccharide degradation and L. plantarum
could make use of the liberated oligosaccharide units. In
addition, or alternatively, L. plantarum could have its own
extracellular enzyme systems for breakdown of complex
polysaccharides, and we hypothesize that the newly
described Csc system could be one of such systems.

Extracellular protein complexes for degradation of com-
plex polysaccharides are already known in other groups of
bacteria, but they are completely different in protein com-
position from the putative Csc protein complexes. Some
anaerobic bacteria such as Clostridium and Ruminococcus
have an elaborate system called the cellulosome, a large
extracellular enzyme complex, to break down plant cell
walls. In clostridia, the components of cellulosomes are
encoded in large gene clusters [50-52], which are coordi-
nately expressed and regulated by catabolite repression
[53]. Bacteroides thetaiotaomicron, found in the distal intes-
tine (colon) of the Gl-tract, has an outer-membrane-asso-
ciated multi-protein complex called the starch-utilization
system (Sus), consisting of different starch-binding pro-
teins and sugar degradation enzymes encoded in gene
clusters [54-57]. Hence, it is not unlikely that during evo-
lution different extracellular protein complexes have
arisen in subgroups of bacteria, each specific for a particu-
lar environmental niche with its characteristic carbohy-
drate sources.
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Conclusion

We have presented bioinformatics and experimental evi-
dence that the extracellular CscA, CscB, CscC and CscD
proteins are functionally coupled and possibly form a
cell-surface protein complex that could play a role in sugar
acquisition. Based on the occurrence of these gene clusters
in many environmental Gram-positive bacteria, we postu-
late a role in degradation and utilization of (complex)
plant polysaccharides, and possibly other food polysac-
charides. Our hypotheses provide a guide for experimen-
tal work in any of these bacteria to investigate the location
and composition of these protein complexes, their
polysaccharide specificity and degradation properties, or
the effect of knock-out mutants on the survival of the
strain(s) grown on different substrates.

Methods

Bioinformatics analysis

Sequence information was obtained from the NCBI bacte-
rial genome database [58] and the ERGO database [59].
The ERGO gene nomenclature was used; conversions to
SwissProt nomenclature, where possible, is provided in
additional file 5. Genome context was visualised in ERGO
and with the Artemis viewer [60]. Terminators were deter-
mined with TransTerm [61]. Multiple alignments were
created using ClustalW [62] and MUSCLE [63]. Signal
peptides were predicted with SignalP [64], and transmem-
brane helices were detected with TMHMM 2.0 [65]. Con-
served sequence patterns and novel domains and motifs
were identified with MEME [66] and MAST [67]. Previ-
ously described domains were identified by scanning pro-
tein sequences with Hidden Markov Models (HMMs)
from the PFAM [68], SMART [69] and SUPERFAM [70]
databases using the HMMER package. HMMs were com-
pared with HHsearch [71]. Protein family trees were made
with LOFT (Rene van der Heijden, personal communica-
tion).

Motifs representing catabolite-responsive elements (CRE)
were searched by first constructing a MEME profile [66]
using 22 established CRE-containing sequences from B.
subtilis [44]. With this profile, the program MAST [67] was
used to detect CRE sites in the L. plantarum WCFS1
genome.

Members of the Csc families (see below) were searched for
in the NCBI and ERGO databases using BLASTP and Hid-
den Markov Models (HMMs), starting with the L.
plantarum Csc protein sequences as seeds, followed by
iterative rounds of searches until saturation was reached.
Subsequently, we used gene context to search the neigh-
borhood of identified csc genes to find additional mem-
bers of the csc gene clusters. This step involved searching
in the encoded proteins for signal peptides, LPXTG-type
anchoring motifs, and domains containing the WxL

http://www.biomedcentral.com/1471-2164/7/126

motifs (using Hidden Markov Models). In several cases,
the correct CDSs were only found after making corrections
for missed ORFs, incorrect start codons, frame shifts, etc
(see additional files 1, 2).

Strains, growth conditions, and transcriptome profiling

L. plantarum strain LM3 [72] is a close relative of the
sequenced strain WCFS1 [31,35] and previous CGH anal-
yses have shown that DNA microarrays based on the
genome of strain WCFS1 can be used for transcriptome
profiling in this strain: 92% of the probes on the array
hybridized with LM3 DNA (D. Molenaar, unpublished
data; [35]). Strain LM3 appears to contain all nine csc clus-
ters that were identified in the WCFS1 genome, as con-
cluded from array-based genotyping efforts [35] The LM3
strain was used in these studies because a ccpA-mutant
derivative of this strain is available, LM3-2 (ccpA::cat)
[72]. Both the parental strain LM3 and its ccpA derivative
LM3-2 were grown in the 0.25 x MRS medium (prepared
without carbon source; [42]) supplemented with 2% glu-
cose. The 1 liter vessel chemostat (Applikon Dependable
Instruments, Schiedam, The Netherlands) was operated
with 500 ml working volume at 37°C, pH 6.0, 125 rpm,
and a flow rate of 120 ml h-! [73]. The aerobic condition
was maintained by sparging the vessel with air at a rate of
29 ml min-!. The culture pH was controlled automatically
by the addition of 0.5 N HCl or 0.5 N NaOH. The cultures
were inoculated with 20 ml of an overnight culture and
grown as a batch culture until mid-exponential phase,
when continuous feeding of fresh medium was initiated.
Samples for RNA extraction were drawn when steady state
was reached, that was assumed to require five residence
times.

In order to avoid degradation, conversion and de novo syn-
thesis of mRNA molecules during sampling of cell culture,
we performed a quenching method for collection and cen-
trifugation of cells [74]. Cell pellet was resuspended in TE
buffer and transferred in a chilled 2-ml microcentrifuge
tube containing 1 g of 0.1-mm-diameter zirconium beads
(Biospect Products), 0.25 g macaloid (Kronos Titan
GmbH, Leverkusen), 50 ul SDS 10% and 500 ul phenol.
The cells were broken by bead-beating [75] at room tem-
perature for 4 times 30 sec, with intermittent cooling on
ice for 3 min. After centrifugation for 10 min at 14,500 x
g at 4°C, phenol-chloroform extraction was performed
until the water phase was clear. RNA was precipitated
overnight at 20° C with 1 volume isopropanol, pelleted by
centrifugation at 14,500 x g, 20 min, at 4°C, washed once
with 70% ethanol and resuspended in appropriate vol-
ume of RNase-free MQ-water. Contaminating chromo-
somal DNA was removed by digestion with RNase-free
RQ1 DNase (1 U/ul; Promega) for 15 min at 37°C fol-
lowed by RNA precipitation with 0.3 M Na-acetate and
two volumes of ethanol. The pellet was resuspended in

Page 9 of 13

(page number not for citation purposes)



BMC Genomics 2006, 7:126

RNase-free MQ-water and determination of sample con-
centration and quality was performed by an A,.,and A,
reading and by agarose gel electrophoresis. RNA prepara-
tions were stored at -80°C until used.

RNA samples were labelled according to previously
described methods. The labelled RNA samples were
hybridized to previously described, clone-based DNA
microarrays that cover more than 80 % of the L. plantarum
WCFS1 genome, representing 88% of the annotated open
reading frames [35]. Hybridizations and washing of the
slides, as well as scanning and primary data analyses were
performed as previously described.

Statistical analysis

Microarrays containing fragments of the L. plantarum
WCES1 genome as probes were used to measure the
expression of genes. The design and production of these
arrays as well as the normalization of spot data was
described before [76]. Statistical analysis of the data was
performed using the "limma" package for R [77,78]. Aver-
aging of spot data to obtain gene-related data was per-
formed as described before [76]. The eBayes function in
the limma package was applied to obtain a cross-probe
variance estimation and false discovery rate corrected p-
values for the whole set of probes. The weighted geometric
mean of the false-discovery rate (FDR) corrected p-values
was calculated as an indication of significance, although
these means do not equal FDR corrected p-values any-
more for the complete list of genes.

Abbreviations
BLASTP Basic Local Alignment Search Tool for Proteins

CRE Catabolite Responsive Element

HMM Hidden Markov Model

MAST Motif Alignment and Search Tool

MEME Multiple Em for Motif Elicitation

PFAM Protein Family database

SMART Simple Modular Architecture Research Tool
TMHMM TransMembrane Hidden Markov Model
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