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Abstract
Background: MicroRNAs (miRNAs) mediate a form of translational regulation in animals.
Hundreds of animal miRNAs have been identified, but only a few of their targets are known.
Prediction of miRNA targets for translational regulation is challenging, since the interaction with
the target mRNA usually occurs via incomplete and interrupted base pairing. Moreover, the rules
that govern such interactions are incompletely defined.

Results: MovingTargets is a software program that allows a researcher to predict a set of miRNA
targets that satisfy an adjustable set of biological constraints. We used MovingTargets to identify a
high-likelihood set of 83 miRNA targets in Drosophila, all of which adhere to strict biological
constraints. We tested and verified 3 of these predictions in cultured cells, including a target for
the Drosophila let-7 homolog. In addition, we utilized the flexibility of MovingTargets by relaxing
the biological constraints to identify and validate miRNAs targeting tramtrack, a gene also known
to be subject to translational control dependent on the RNA binding protein Musashi.

Conclusion: MovingTargets is a flexible tool for the accurate prediction of miRNA targets in
Drosophila. MovingTargets can be used to conduct a genome-wide search of miRNA targets using
all Drosophila miRNAs and potential targets, or it can be used to conduct a focused search for
miRNAs targeting a specific gene. In addition, the values for a set of biological constraints used to
define a miRNA target are adjustable, allowing the software to incorporate the rules used to
characterize a miRNA target as these rules are experimentally determined and interpreted.

Background
MicroRNAs (miRNAs) are an abundant evolutionarily
conserved class of small (~22 nts) RNAs which play a sub-
stantial gene regulatory role in plants and animals [1]. The
first miRNA discovered, lin-4, was identified in a genetic
screen focused on identifying genes involved in the hete-
rochronic pathway in C. elegans [2]. The 22 nt lin-4 tran-
script temporally negatively regulates translation of lin-14,
apparently through antisense RNA-RNA interaction

between the lin-4 transcript and multiple regions in the
lin-14 3' UTR. Seven years later a second small RNA, let-7,
was found, and it too acts in the heterochronic pathway in
C. elegans [3]. let-7 represses translation of lin-41 in a tem-
porally dependent manner, also through targeting com-
plementary regions in the 3' UTR of the regulated gene [4].

let-7 transcripts are found in all bilaterians tested [5]. This
discovery led to the understanding that miRNA-mediated
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regulation may be a general phenomenon. Several hun-
dred miRNAs have since been identified in a variety of
plants and animals through cloning and computational
methods, including 78 miRNAs in Drosophila [6]. Many
of these miRNAs are expressed in a temporal or tissue-spe-
cific dependent manner [1].

miRNAs in animals usually act to repress translation of
their target genes through imperfect hybridization to com-
plementary sites in target 3' UTRs [2,7,8]. This transla-
tional repression occurs post-initiation, since miRNA-
induced gene silencing does not change the abundance or
polysome profile of target mRNA, at least in the examples
tested [9,10]. This is in contrast to RNAi, in which short
RNAs called siRNAs are usually perfectly complementary
to their target mRNA and result in its degradation [11-14].
A miRNA directed against a perfectly complementary 3'
UTR target site also results in mRNA degradation [15,16],
indicating that a miRNA can function in the RNAi path-
way given a perfectly complementary target site. miRNAs
are produced from a larger transcript through stepwise
processing by ribonuclease III-like endonucleases in the
nucleus and cytoplasm [17-19]. Following maturation,
miRNAs reside in a miRNA ribonucleoprotein complex
(miRNP) which shares many similarities to the RNA-
induced silencing complex (RISC) involved in RNAi
[1,16,20-22].

While many animal miRNAs have been identified, only a
few have a known function or target [2,23-28]. Incom-
plete base pairing of miRNA to target causes inherent dif-
ficulty in the prediction of miRNA targets due to the high
levels of noise involved in any simple alignment of miR-
NAs to 3' UTRs. In addition, the very few experimentally
derived miRNA/target pairs provide limited biological
information needed to define the necessary and sufficient
characteristics for a miRNA/target pair. Therefore, miRNA
target prediction programs for which the selection param-
eters can easily be adjusted based on current interpreta-
tion of miRNA/target constraints, and on newly
discovered rules governing miRNA/target interactions, are
a valuable resource to the research community.

Implementation
Our bioinformatics approach to identifying miRNA tar-
gets includes two steps: the creation of a database of
potential targets, and screening all possible miRNA/target
pairs for adherence to constraints suggested by analysis of
the known miRNA/target interactions.

Potential miRNA target database
The selection of sequences for the database was guided by
progress in understanding the actions and features of miR-
NAs and their targets. All known animal miRNAs appear

to target regions in the 3' UTRs of mRNAs [2,23-28], and
so the database was limited to 3' UTR sequences.

miRNAs are highly conserved, particularly in closely
related species [1,5], and 68 of the 78 known D. mela-
nogaster miRNAs are identical to their predicted counter-
parts from D. pseudoobscura. The constraint on miRNA
evolution is thought to be a consequence of their interac-
tion with multiple targets, thereby restricting the rate of
change of both the miRNA and its targets [29]. In addi-
tion, miRNA targets that have been experimentally
derived are very highly conserved in other species
[1,5,7,24,27]. Therefore, the database was further limited
to highly conserved regions of 3' UTRs.

Finally, the majority of experimentally derived miRNA
targets contain multiple predicted target sites[1,2,23-28].
Our approach to allow detection of multiple targets in a
single 3' UTR was to fragment the database sequences into
segments no longer than 50 nt, each of which is tested for
target sites. For conserved 3' UTR segments longer than 50
nt, overlapping 50 nt segments with end points differing
by 5 nt were added to the database (i.e. a 100 nt sequence
would be fragmented into 11 overlapping 50 nt seg-
ments). We chose 50 nt for the maximum target site
length since all predicted target sites of known miRNA tar-
gets are less than this size [2,23-28].

The Berkeley Genome Pipeline [30,31] was accessed to
obtain all 3' UTR sequences which are at least 80% con-
served between D. melanogaster and D. pseudoobscura,
and are at least 12 nt long [the smallest predicted target
site of known miRNA targets that we are aware of is 13 nts
in length [2]]. The D. pseudoobscura genome sequence is
largely known, but the last stages of sequence finishing (to
allow assembly of the final sequence from the large
number of shorter contigs) and annotation are not com-
plete. Thus some regions of the D. pseudoobscura
sequence that are highly conserved with D. melanogaster
3' UTRs have not been definitively linked to a coding
region. Nevertheless, these conserved sequences were
included to ensure that the largest fraction of potential
miRNA target sites would be evaluated in the prediction
process. Using D. melanogaster genome annotation
release 3.1 (BDGP) we obtained 14,287 annotated 3'
UTRs. Of these, 6702 contained unique segments, at least
12 nt in length and 80% conserved with D. pseudoob-
scura DNA, that were included in the database. The 6702
database entries correspond to 6399 different genes, with
some genes represented more than once because of alter-
nate splicing.

Biological miRNA target constraints
The MovingTargets algorithm applies a set of five biologi-
cal constraints to all possible alignments of each miRNA
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with the miRNA target database sequences, producing a
set of predicted targets. The user sets values for the con-
straints. This adjustable algorithm facilitates focused
searches with individual mRNAs, where experimental evi-
dence may suggest that miRNA-dependent regulation
exists.

1) Number of target sites in the mRNA. For most of the
known miRNA/target mRNA pairs the miRNA is predicted
or known to interact with multiple sites within the 3' UTR
[23-28]. Furthermore, there is experimental evidence of a
synergistic effect between multiple miRNP complexes
associated with a single mRNA [21], suggesting that mul-
tiple target sites may allow for rapid translational control
[32].

2) Strength of miRNA-mRNA hybridization. The specific
interaction of a miRNA with a target mRNA involves base
pairing [4], and it is reasonable to assume that target site
occupancy will be positively correlated with the strength
of the base pairing [22-28]. We therefore rank potential
miRNA/target interactions according to the strength of
hybridization between the miRNA and its target site, as
measured by the predicted free energy of binding. These
predictions are made using M. Zuker's DINAMelt Server
software [33] which was expressly designed for evaluating
the interactions of short RNAs and thus offers advantages
over the commonly used alternatives, mFold [34] and
RNAfold [35].

3) Number of consecutive base pairs involving the 5' part
of the miRNA. There is suggestive evidence that miRNA/
target interactions require a series of consecutive base
pairs between the 5' part of the miRNA and the target
[7,23-28,36-38]. Of the experimentally validated animal
miRNA targets [2,23-28], 19 of the 24 predicted miRNA/
mRNA interactions have 6 or more consecutive base pairs
within the first 8 nucleotides of the miRNA; 10 of these
interactions have perfect complementarity in this region.
This is contrasted with only 5 of the 24 predicted miRNA/
mRNA interactions having 6 or more consecutive base
pairs at the miRNA 3' end. Note that for almost all exam-
ples of mRNAs known to be regulated by miRNAs, the
specific target sites in the mRNA (identified as regions
with significant complementarity to the miRNA) have not
been individually tested and verified.

Additional evidence comes from mutational analysis of
miRNAs and their targets. The ability of miR-30 to repress
translation of an artificial target in cultured human cells is
eliminated by a mutation in the target mRNA that disrupts
a single base pair in the middle of the 5' region of the
miRNA, while a mutation in the target mRNA disrupting
base pairing in the 3' part of the miRNA retains about 60%
of the repressive activity [22]. We used the DINAMelt

Server to predict the effect of both mutations on hybridi-
zation strength, and found that the inactivating mutation
had a more modest effect than the weak mutation. These
results argue that the important aspect of the interaction
disrupted by the first mutation was the consecutive series
of base pairs at the 5' end of the miRNA, rather than the
strength of the interaction as measured by thermody-
namic stability considerations alone. A mutation in the 5'
region of the let-7 miRNA eliminates repression of lin-41
mRNA in vivo, but also reduces the level of the mature
miRNA, making it difficult to conclude why it is ineffec-
tive [3].

4) Total number of miRNA 5' nucleotides involved in base
pairing to the target. For mRNAs shown to be miRNA tar-
gets, all of the 24 predicted miRNA/mRNA interactions
have 6 or more total base pairs within the first 8 nucle-
otides of the miRNA; 21 of these interactions have at least
7 base pairs. This is contrasted with only 11 of the 24 pre-
dicted miRNA/mRNA interactions having 6 or more total
base pairs at the miRNA 3' end [23-28]. In addition, there
is more stringent sequence conservation in the 5' end of
homologous miRNAs than in the 3' end [36].

5) Number of nucleotides in the miRNA 5' region
involved in G:U base pairs. Predicted miRNA/target inter-
actions of known miRNA targets have at most one (6 out
of the 24 predicted miRNA/mRNA interactions) and usu-
ally no G:U base pairs in the miRNA 5' region. In contrast,
despite having fewer overall base pairs in the miRNA 3'
region, 9 out of the 24 predicted miRNA/target interac-
tions have more than 1 G:U base pair in the miRNA 3'
region, and 8 of the 24 have 1 G:U base pair in this region
[23-28]. Thus, canonical base pairing appears to be
favored over G:U base pairing in the miRNA 5' region.

Subsequent to development of the MovingTargets algo-
rithm an extensive study of the rules of miRNA/target
interactions was published [39]. The results emphasize
the importance of the latter three constraints described
above.

Methods
DNA constructs
Reporter plasmids were constructed by cloning the 3'UTR
of each target gene into the BamHI/XbaI site of luk-ttkUTR
[40]. luc/tramtrack is the luk-ttkUTR plasmid. For luc/
CrebA, the CrebA 3'UTR was amplified by PCR from
genomic DNA (all sequence coordinates are from Release
3 from FlyBase, http://www.flybase.net): 3L:15500154-
15502103. For luc/ab, the ab 3'UTR was PCR amplified
from genomic DNA: 2L:11248260-11249979. For luc/
Eip74EF, the Eip74EF 3'UTR beginning at position 29 was
cloned from pBSE74AcDNA, a gift from Carl Thummel.
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The control plasmid for monitoring transfection effi-
ciency is MT-RLuc [40].

miRNA plasmids were constructed by cloning a DNA seg-
ment containing the predicted primary transcript of each
miRNA into the BamHI/EcoRI site of ActMSI [40]. Each
primary transcript was amplified by PCR from genomic
DNA to generate fragments with the following sequence
coordinates: let-7: 2L:18450072-18450291; mir-92b:
3R:21466427-21466673; mir-312: 2R:15647675-
15647897; mir-34: 3R:5926642-5926792. In each case,
BamHI and EcoRI sites were introduced at the 5' and 3'
ends, respectively, by PCR.

Targeting Assay
S2 cells were transfected with 2 µg of microRNA plasmid
(for non-control samples), 50 ng reporter plasmid, and 10
ng control plasmid. For each transfection, 0.5 mL Schnei-
der's Drosophila Medium (Gibco) containing indicated
plasmids and 0.5 mL Schneider's Drosophila Medium
containing 5 µL Cellfectin (Invitrogen) were mixed gently
and incubated at RT for 15–45 minutes. 2 × 106 cells were
centrifuged for 5 minutes at 1000 g, aspirated, resus-
pended in the DNA-lipid mix described above, and trans-
ferred to a 35 mm well of a 6-well plate. Cells were
incubated at 25°C for the remainder of the transfection.
After 4–5 hours, 0.5 mL of Schneider's Drosophila
Medium containing 30% Fetal Bovine Serum (Gibco) was
added to each well. The following day, 2 mL of complete
growth medium [Schneider's Drosophila Medium with
10% FBS and 1% Pen/Strep (Gibco)] was added to each
well. Between 38 and 45 hours after transfection, the
reporter and control plasmids were induced by adding 3.5
µL of 700 mM CuSO4. After 6–6.5 hrs, cells were har-
vested, lysed, and assayed for reporter and control luci-
ferase expression using the Dual-Luciferase Reporter Assay
system (Promega). Each transfection was carried out at
least 5 times.

Potential miRNA Target Database
D. melanogaster 3'UTRs were obtained from the Berkeley
Drosophila Genome Project http://www.fruitfly.org, Dro-
sophila Release 3.1 Annotations. Conserved D. pseudoo-
bscura sequences were obtained from the Berkeley
Genome Pipeline using the following parameters: mini-
mum conservation width = 1; calculation window = 20;
minimum conservation = 80%. We used the 7-8-03 AVID
alignment for determining conserved regions [30,31]

miRNA sequences
D. melanogaster miRNA sequences were obtained from
The microRNA Registry [6].

Results
In this initial use of MovingTargets we set stringent values
for all of the adjustable biological constraints to produce
a high likelihood set of miRNA target predictions. The fol-
lowing values were used: minimum of 3 target sites; max-
imum free energy of hybridization of -15 kcal/mole at
room temperature (22°C) for each target site; minimum
7 out of 8 consecutive 5' miRNA nt matches; maximum of
1 G:U base pair in the miRNA 5' region. The high-likeli-
hood set of miRNA target predictions corresponding to
these strict biological constraints, generated from analysis
of all 78 miRNAs and the full database of 6399 potential
targets containing conserved 3' UTR sequences, is given in
Table 1. Given the strict constraints, this group will not
contain all miRNA/target pairs (and includes no predic-
tions for a subset of the known miRNAs).

A striking feature of the set of predicted miRNA targets is
the disproportionate fraction of mRNAs that encode tran-
scription factors (13 of 41 genes with known function) or
have assigned roles in neural processes (7 of 41). [41]
noted a similar enrichment for transcription factors and
neural genes in predicted miRNA targets in Drosophila.
Because the different predictions identify groups of genes
that are not fully overlapping, the bias is even more strik-
ing. The emphasis on transcription factors was also
observed for predicted miRNA targets in plants [42] and
mammalian cells [43].

Validation of predicted targets
We chose a subset of three predicted miRNA-target pairs
for validation in a cultured cell assay. The assay is similar
to that used by Zeng and Cullen [22]. A reporter plasmid
expresses, under control of the inducible metallothionein
promoter [44], a hybrid mRNA in which the firefly luci-
ferase coding region is fused to the candidate target 3' UTR
(luc/target). The miRNA plasmid expresses, under control
of the constitutive actin promoter, a genomic DNA seg-
ment that contains the miRNA primary transcript. Finally,
a control plasmid expresses Renilla luciferase under con-
trol of the inducible metallothionein promoter, and
serves to monitor transfection efficiency. In parallel trans-
fections one population of S2 cells receives all of the plas-
mids, while a second population receives the reporter and
control, but not the miRNA plasmid. Approximately 1.5
days after transfection (to allow the miRNA to accumu-
late), transcription of the reporter and control mRNA is
induced by addition of CuSO4 to the growth medium.
After an additional 6 hours, the cells are harvested and the
levels of firefly and Renilla luciferase are measured.

The let-7 miRNA is predicted to target the abrupt (ab)
mRNA at five positions in the 3' UTR (Table 1, Fig. 1A).
The level of luciferase activity from the luc/ab mRNA in the
absence of exogenous miRNA provides the standard for
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Table 1: microRNA/target pairs predicted by MovingTargets using the following strict targeting criteria: minimum 3 target sites, 
maximum dG of microRNA/target hybridization of -15 kcal/mole at RT for each target site, minimum 7 out of 8 consecutive base pairs 
in microRNA 5' end, maximum 1 G:U base pair in microRNA 5' region. Transcription factor targets are listed first followed by neural 
targets. Gene function and biological process are as given by FlyBase http://www.flybase.net, March 2004.

Target miRNA # target 
sites

dG of miRNA-mRNA 
hybrid (kcal/mole)

Molecular Function Biological process

CrebA mir-92b
mir-312

3
4

-16, -24, -19
-16, -20, -17, -22

transcription factor salivary gland development

fkh mir-315 3 -18, -16, -17 transcription factor salivary gland morphogenesis
Eip74EF mir-34 3 -25, -27, -21 transcription factor mesoderm development
Eip93FA mir-280A 3 -21, -15, -16 transcription factor autophagy, induction of apoptosis by 

hormones
pros mir-34 3 -18, -17, -18 transcription factor ectoderm development
zfh1 mir-5 3 -17, -15, -15 transcription factor ectoderm development, mesoderm 

development
zfh2 mir-276a-3 3 -16, -15, -17 transcription factor, RNA binding ectoderm development
SoxN mir-34

mir-309
3
3

-23, -24, -16
-19, -16, -20

transcription factor, DNA 
bending

ectoderm development, visual perception

HLHm5 mir-7 3 -24, -24, -26 transcription factor ectoderm development, cell proliferation
CG32527B mir-34 3 -25, -24, -21 multiple (including transcription 

factor)
unknown

ab let-7 5 -20, -25, -17, -17, -19 transcription factor transmission of nerve impulse, sex 
determination

sbb mir-33 3 -16, -17, -19 transcription factor axon guidance, axon target recognition, larval 
walking behavior

nerfin-1 mir-279
mir-286

3
3

-19, -17, -24
-19, -16, -27

transcription factor neuronal lineage restriction

Syn mir-92b 3 -19, -20, -15 unknown neurotransmitter secretion, synaptic vesicle 
exocytois

synaptogyrin mir-313 3 -17, -16, -15 unknown synaptic vesicle exocytosis, regulation of 
calcium ion dependent exocytosis

Pkc98E mir-210 3 -15, -15, -15 multiple multiple (including neural processes)
nAcRbeta-96A mir-210 3 -19, -18, -23 nicotinic acetylcholine-activated 

cation-selective channel activity, 
acetylcholine receptor activity

multiple (including neural processes)

WA bantam
mir-280A

4
3

-21, -16, -27, -17
-17, -19, -15

unknown induction of apoptosis, programmed cell death

kel mir-310
mir-311
mir-312

3
4
4

-20, -19, -22
-17, -21, -19, -15
-16, -18, -20, -17

actin binding apoptosis, ovarian ring canal formation

RhoGEF2 mir-9c 3 -16, -16, -18 Rho guanyl-nucleotide exchange 
factor activity, diacylglycerol 
binding

multiple

adat mir-3
mir-309
mir-318

3
3
3

-28, -17, -19
-23, -16, -15
-26, -15, -20

tRNA specific adenosine 
deaminase activity

purine base metabolism

bru-2 mir-9a
mir-9c

3
3

-19, -17, -16
-19, -15, -16

RNA binding mRNA processing, protein metabolism

CG32062A mir-12
mir-280A

4
3

-19, -17, -23, -15
-16, -16, -19

RNA binding unknown

fus mir-303 3 -16, -15, -16 RNA binding epidermal growth factor receptor signaling 
pathway

mblA mir-280A 3 -17, -17, -21 RNA binding, DNA binding mesoderm development
Asph mir-9b 3 -21, -19, -16 peptide-aspartate beta-

dioxygenase activity
transmembrane receptor protein tyrosine 
kinase signaling pathway

CG32429 mir-33 3 -17, -17, -18 unknown unknown
lmg mir-34 3 -27, -20, -22 unknown mitotic anaphase
wb mir-34 4 -22, -22, -19, -23 binding, structural molecule 

activity
cell-cell adhesion, cell-matrix adhesion, signal 
transduction

Cbl mir-34 3 -22, -17, -22 ligase activity cellular defense response
Pdi mir-34

mir-263b
mir-305
mir-316

4
3
4
3

-26, -23, -30, -20
-18, -15, -17
-24, -18, -19, -22
-21, -16, -21

protein disulfide isomerase 
activity

protein folding, protein modification
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measurement of the effect of the miRNA. When let-7 is
coexpressed with the luc/ab reporter, the level of luciferase
activity is substantially reduced (Fig. 1B). To confirm that
expression of the luciferase reporter in this system is not

simply sensitive to the coexpresssion of any miRNA, the
experiment was also performed using miR-92b instead of
let-7. Using the parameters noted above, MovingTargets
does not predict mir-92b to target ab. Exogenous miR-92b

CG31637 mir-92b 3 -17, -18, -17 sulfotransferase activity carbohydrate metabolism
CG3689 mir-210 3 -20, -15, -17 pre-mRNA splicing factor activity mRNA cleavage, nuclear mRNA splicing, via 

spliceosome
CG8475 mir-263b 3 -18, -17, -21 kinase activator activity, 

phosphorylase kinase regulator 
activity

glycogen metabolism

didum mir-276a-3 3 -18, -16, -15 multiple multiple
Ggamma1 mir-277 3 -19, -16, -15 heterotrimeric G-protein 

GTPase activity
G-protein coupled receptor protein signaling 
pathway

CG1441 mir-278 3 -30, -22, -26 oxidoreductase activity unknown
Rh6 mir-278 3 -19, -22, -20 G-protein coupled 

photoreceptor activity
phototransduction, visual perception, sensory 
perception

CG31163A mir-289A 3 -17, -15, -17 SH3/SH2 adaptor protein activity unknown
CG18854 mir-306-3 4 -27, -19, -24, -21 inositol-triphosphate 3-kinase 

activity
unknown

CG7908 mir-309 3 -17, -19, -22 zinc ion binding, 
metalloendopeptidase avtivity

cell surface receptor linked signal 
transduction, proteolysis and petidolysis

CG14507 mir-276a-5
mir-276b-5

3
3

-24, -20, -21
-24, -20, -21

phospholipase A2 activity unknown

CG33085A,B mir-184-3
mir-284A

3
3

-21, -22, -16
-23, -25, -17

argininosuccinate lyase activity unknown

CG32316B mir-184-3
mir-278

3
3

-20, -22, -16
-18, -20, -23

oxoglutarate dehydrogenase 
(succinyl-transferring) activity

tricarboxylic acid cycle

CG32912B mir-279 3 -15, -21, -16 peptidoglycan recognition activity immune response
CG33047A,B mir-133

mir-284A
3
3

-19, -17, -19
-27, -17, -15

alpha-L-fucosidase activity O-glycoside catabolism, fucose metabolism

CG33075B mir-306-3 3 -26, -20, -27 carrier activity transport
CG32956B mir-9a

mir-9b
mir-9c
mir-33

5
5
5
3

-17, -19, -18, -21, -18
-17, -20, -16, -20, -17
-17, -22, -18, -20, -18
-19, -23, -18

multiple multiple

CG33038B mir-9a
mir-9b
mir-9c

4
5
4

-20, -17, -16, -18
-18, -19, -17, -16, -16
-21, -17, -17, -19

multiple heparan sulfate proteoglycan biosynthesis, 
proton transport

CG32791 mir-31a 3 -15, -17, -15 unknown multiple
tinc mir-34 3 -22, -23, -33 unknown unknown
CG9932 mir-263b 4 -16, -21, -20, -21 unknown unknown
CG30389 mir-14

mir-34
3
3

-17, -16, -25
-28, -21, -24

unknown unknown

CG3975 mir-33 3 -17, -19, -22 unknown unknown
CG8963 mir-6 3 -16, -17, -17 unknown unknown
CG3638 mir-184-3 3 -27, -17, -22 unknown unknown
CG33006B mir-278 3 -20, -15, -23 unknown unknown
CG31305B mir-278 4 -16, -32, -29, -25 multiple unknown
CG32206A mir-289A 3 -15, -15, -16 unknown unknown
CG12071 mir-305 3 -17, -21, -19 unknown unknown

A: exact 5' and 3' ends for mir-263a, mir-274, mir-280, mir-282, mir-284, mir-289 have not yet been determined (6); target predictions for these 
microRNAs are likely to change once the precise microRNA sequences are known
B: gene annotated as a "gene cassette"; molecular function and biological process listed is the union of molecular functions and biological processes 
for each ORF in the putative dicistronic transcript

Table 1: microRNA/target pairs predicted by MovingTargets using the following strict targeting criteria: minimum 3 target sites, 
maximum dG of microRNA/target hybridization of -15 kcal/mole at RT for each target site, minimum 7 out of 8 consecutive base pairs 
in microRNA 5' end, maximum 1 G:U base pair in microRNA 5' region. Transcription factor targets are listed first followed by neural 
targets. Gene function and biological process are as given by FlyBase http://www.flybase.net, March 2004. (Continued)
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can repress expression in the assay system of a reporter
mRNA bearing the 3' UTR of a predicted miR-92b target
(below), but has only a small effect on luc/ab expression,
much less than the effect of let-7 (Fig. 1B). We conclude
that let-7 is specifically targeting the ab 3' UTR.

Two additional predicted targets were tested for miRNA-
dependent regulation. The CrebA mRNA is predicted to
have three target sites for miR-92b and mir-312 (Table 1);
these miRNAs are closely related, sharing the same nts in
positions 2–9 and 15–21. Both miRNAs repress expres-
sion of the luc/CrebA reporter (Figure 2B). The Eip74EF

mRNA is predicted to have three target sites for miR-34
(Table 1; Figure 2A), and miR-34 represses expression of
the luc/Eip74EF reporter (Figure 2B).

Flexible MovingTargets search to identify potential 
miRNAs targeting specific genes
In addition to validating a subset of our predicted targets,
we wondered if we could use the flexibility of MovingTar-
gets to identify a miRNA that regulates a gene known to be
under another form of translational control. One such
gene is tramtrack (ttk), which encodes a transcription fac-
tor that determines non-neuronal identity in developing

Drosophila let-7 miRNA targets the abrupt 3' UTRFigure 1
Drosophila let-7 miRNA targets the abrupt 3' UTR. A. Predicted sites of let-7 interaction with the ab 3' UTR. The schematic at 
top shows the relative positions of the sites as vertical bars in the ab 3' UTR. The predicted pairings are shown below, with the 
free energies (in kcal/mol) and exact positions in the ab 3' UTR indicated. B. Luciferase expression in transfected S2 cells. 
Expression from the luciferase/ab mRNA with no added miRNA is shown at left, set to a relative value of 1. The other bars indi-
cate the results of coexpression with let-7 or miR-92b. In this figure and in Figure 2, all values represent the average luciferase 
expression from at least 5 experiments, and error bars represent standard deviation.
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sensory organ cells, and which has been shown to be
translationally repressed by the RNA-binding protein
Musashi [40].

ttk is not a predicted miRNA target using the strict biolog-
ical constraints described above. However, by relaxing
these constraints to require a maximum free energy of
miRNA/target hybridization of -12 kcal/mole at room
temperature and a minimum of 6 out of 8 consecutive
base pairs in the miRNA 5' end, MovingTargets predicts
that mir-9c, mir-92a, mir-92b, and mir-312 (the latter three
are closely related miRNAs) target ttk. We tested mir-92b
and mir-312 in the S2 cell assay, and both miRNAs repress
expression of the luc/ttk reporter (Figure 2C).

Discussion
The nature of the interaction between a miRNA and its tar-
get – incomplete and interrupted base pairing – creates a
substantial challenge for the prediction of candidate
miRNA targets. Furthermore, very few mRNAs have been
shown to be under miRNA regulation, limiting the
number of examples from which the basic rules governing
miRNA/target interactions can be determined. The latter
problem is particularly acute, since even in mRNAs
known to be regulated, the actual target sites are usually

only inferred from their partial complementarity to the
miRNA. Thus a precise description of these rules is a mov-
ing target, and will undoubtedly be refined as additional
targets are identified by methods not biased by current
prediction strategies.

Our approach to predicting miRNA targets addresses both
of these difficulties. The combination of a conserved 3'
UTR database and the MovingTargets algorithm allowed
us to predict 83 miRNA targets that meet stringent biolog-
ical constraints based on features of the probable or
proven interactions between individual miRNAs and the
mRNAs under their control. Each of three target predic-
tions chosen for testing was verified in the S2 cell transfec-
tion assay. Thus the algorithm succeeds in predicting
miRNA targets. At present we have restricted the database
of potential target sequences to those from 3' UTRs, but
this could be expanded to include entire mRNAs given
evidence that miRNAs bind to other regions of animal
mRNAs. The biological relevance of a predicted miRNA/
target interaction depends on whether the miRNA and tar-
get are expressed at appropriate concentrations in a partic-
ular cell type. Thus, this and all other prediction methods
represent only the first step, albeit an important one, in
identifying bona fide miRNA targets.

miRNA-dependent regulation of CrebA, Eip74 and ttkFigure 2
miRNA-dependent regulation of CrebA, Eip74 and ttk. Each panel shows at top the distribution of the miRNA target sites in the 
CrebA (A), Eip74 (B) and ttk (C) 3' UTRs. For panels A and C, the vertical bars above the line indicate sites for miR-92b, while 
vertical bars below the line indicate sites for miR-312. Luciferase expression data are presented as in Fig. 1.
Page 8 of 11
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The MovingTargets software allows individual researchers
to specify which constraints the software should enforce.
Dramatically different predictions will result by adjusting
the parameter values used here. This capacity of the soft-
ware has two notable benefits. First, it provides the means
to adjust the parameter values as the rules of miRNA/tar-
get interactions become better understood. Second, the
adjustability of the algorithm facilitates less constrained
searches that focus on a particular mRNA or miRNA. For
example, if experimental evidence suggests that an mRNA
is regulated by miRNAs, yet it is not among the group pre-
dicted using the stringent screening parameters, then
relaxing different parameters one by one would produce a
set of candidate miRNA regulators. Here the drawback of
increased sensitivity – an increased number of predictions
with an unknown fraction presumed to be false – would
be acceptable. We were able to identify miRNAs targeting
ttk using this strategy.

What is the minimal quality of miRNA/target site 
interaction sufficient for regulation?
In the initial examples of miRNA-dependent regulation,
the miRNAs very efficiently blocked accumulation of the
proteins encoded by the target mRNAs. These dramatic
effects could be the normal mode of miRNA-dependent
regulation: when some quality of miRNA/mRNA target
interaction occurs, then protein accumulation is blocked.
Alternatively, the degree of regulation could be directly
correlated with the quality of the individual interactions
(or their sum), and several mutation studies have shown
that the level of translational repression of a miRNA target
varies in relation to the quality of miRNA targeting, as
defined by such characteristics as free energy of hybridiza-
tion, consecutive 5' base pairing, and number of target
sites [3,22,39]. In our experiments to validate the
predicted miRNA targets we tested a miRNA, miR-92b, not
predicted to interact with the ab 3' UTR. Although miR-92b
did not produce the strong inhibitory effect of let-7, it did
cause some inhibition. One interpretation is that miR-92b
weakly interacts with the ab 3' UTR, and that the weak
interaction is sufficient for a weak regulatory effect. When
the 'number of target sites' parameter of MovingTargets
was relaxed to two, rather than three, we found that miR-
92b is predicted to target ab at two sites that satisfy the
remaining strict biological constraints. Thus our results
are also consistent with the notion that there is a
correlation between the overall strength of miRNA/mRNA
interactions and the degree of regulation. An implication
of this conclusion is that even weak interactions may have
consequences, and that many or even most of all cellular
mRNAs may be regulated, but that the degree of regula-
tion may vary substantially.

Comparison of different prediction results
The high-likelihood miRNA targets predicted in this paper
using strict biological constraints produce very different
results in comparison to the other Drosophila miRNA tar-
get prediction algorithms. The simplest forms of compar-
isons are not possible, because the other predictions
produce a ranked list of predicted targets for each miRNA,
while our method identifies a group of miRNA targets that
adhere to specific constraints. Nevertheless, when consid-
ering our group of 83 predicted miRNA targets, only 11
are included among the top 20 targets for any individual
miRNA predicted by Enright et al. [41], only 13 appear in
the top 50 targets for individual miRNAs predicted by
Stark et al. [45], and only 4 of the 83 are predicted by
Rehmsmeier et al. [46].

There are several possible reasons for the differences in the
predictions by the different algorithms. First, only our
approach goes beyond thermodynamic stability consider-
ations in imposing a penalty on G:U base pairs involving
the 5' part of the miRNA. Second, the value of multiple
target sites is treated differently (there is experimental evi-
dence of synergy between multiple target sites and most
known miRNA targets have multiple predicted target sites
[2,21,23-28]. For example, Enright et al. reward for multi-
ple sites by summing a score for all complementary sites
in the target 3' UTR, whereas our algorithm requires a
miRNA/target pair to have a user-specified absolute
number of target sites each meeting a user-defined set of
biological constraints. A third difference centers on the
importance of extensive base pairing in the miRNA 5'
region, for which there is both experimental evidence and
the precedent of the predicted interactions between
known target mRNAs and their miRNAs [2,23-28]. Our
algorithm requires a miRNA-target interaction to have a
user-specified minimum absolute number of consecutive
and total base pairs in the miRNA 5' region. In contrast,
Enright et. al. appear not to heavily weight this feature,
since many of their top-rated miRNA/target interactions
have significant gaps in the miRNA 5' region.

Five other miRNA target prediction methods for animals
have been published, but the predictions cannot be com-
pared directly to ours since four of the five examined
mammalian mRNAs and the other tested only a small
number of Drosophila genes [38,43,47-49]. None of
these approaches is identical to ours, and so if used with
Drosophila mRNAs and miRNAs, each would be expected
to provide results not identical with ours, just as for the
published examples.

Conclusion
Prediction of animal miRNA targets is a challenging task
due to the incomplete and interrupted base pairing
between a miRNA and its target. We developed the Mov-
Page 9 of 11
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ingTargets software program to provide a tool for the accu-
rate and flexible prediction of miRNA targets in
Drosophila. Using this tool, we identified a set of 83 high-
likelihood miRNA targets. We tested and verified 3 of
these predictions, including a target for the Drosophila let-
7 homolog.

MovingTargets provides flexibility in describing the char-
acteristics defining a miRNA target. Thus, as the rules gov-
erning miRNA-target interactions are better elucidated,
these constraints can be enforced through MovingTargets
to produce more refined sets of miRNA target predictions.
We used this flexibility to relax the constraints placed on
a miRNA-target interaction to predict and validate miR-
NAs targeting tramtrack. MovingTargets is freely available
on DVD by request.

Availability and Requirements
The MovingTargets software is available on DVD by
request. It can be used on any Perl platform, such as the
Macintosh 'Terminal' utility. Usage of the software
requires only minimal computer skills. The researcher can
specify the biological constraints for a miRNA target
search through the user interface. In addition, the
researcher can specify a single target for focused searches
with individual mRNAs. For a miRNA target search of the
entire target database, the program runs in about 2 hours
on an earlier generation Macintosh computer (466 MHz
G4); focused searches for miRNAs targeting an individual
mRNA are much faster and take about 20 minutes.
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