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Abstract

Background: Identification of a bacterial protein's subcellular localization (SCL) is important for
genome annotation, function prediction and drug or vaccine target identification. Subcellular
fractionation techniques combined with recent proteomics technology permits the identification of
large numbers of proteins from distinct bacterial compartments. However, the fractionation of a
complex structure like the cell into several subcellular compartments is not a trivial task.
Contamination from other compartments may occur, and some proteins may reside in multiple
localizations. New computational methods have been reported over the past few years that now
permit much more accurate, genome-wide analysis of the SCL of protein sequences deduced from
genomes. There is a need to compare such computational methods with laboratory proteomics
approaches to identify the most effective current approach for genome-wide localization
characterization and annotation.

Results: In this study, ten subcellular proteome analyses of bacterial compartments were
reviewed. PSORTDb version 2.0 was used to computationally predict the localization of proteins
reported in these publications, and these computational predictions were then compared to the
localizations determined by the proteomics study. By using a combined approach, we were able to
identify a number of contaminants and proteins with dual localizations, and were able to more
accurately identify membrane subproteomes. Our results allowed us to estimate the precision level
of laboratory subproteome studies and we show here that, on average, recent high-precision
computational methods such as PSORTb now have a lower error rate than laboratory methods.

Conclusion: We have performed the first focused comparison of genome-wide proteomic and
computational methods for subcellular localization identification, and show that computational
methods have now attained a level of precision that is exceeding that of high-throughput laboratory
approaches. We note that analysis of all cellular fractions collectively is required to effectively
provide localization information from laboratory studies, and we propose an overall approach to
genome-wide subcellular localization characterization that capitalizes on the complementary nature
of current laboratory and computational methods.
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Background

The identification of a bacterial protein's subcellular local-
ization (SCL) represents an important step in many anal-
yses. Such information may provide clues regarding the
function of a protein. It can assist in the design of labora-
tory experiments to study a particular protein, and in the
case of surface-exposed and secreted proteins, it can aid in
the identification of potential vaccine candidates, diag-
nostic agents or antimicrobial targets [1-3]. The rapid and
accurate assignment of SCL for a given protein deduced
from a genome sequence thus represents an important
step in processes ranging from genome annotation to
drug discovery.

Several types of laboratory methods are frequently used to
identify a protein's localization. Techniques such as
immunofluorescence and immunoelectron microscopy
[4], PhoA protein fusions [5], fluorescent-protein tagging
[6], and the Western/SDS-PAGE [7] analysis of subcellular
fractions are often applied to the analysis of either single
proteins or a small sets of proteins. While such methods
can provide high-quality localization information, they
can be costly and/or time-consuming, and the number of
proteins for which an SCL can be assigned is relatively
low. Recently, proteomics technologies have been devel-
oped which are capable of providing SCL information for
a much larger number of proteins. Techniques such as
two-dimensional gel electrophoresis and mass spectrom-
etry [8-12] have been frequently used to analyze localiza-
tion for a variety of bacterial genomes, including
Pseudomonas aeruginosa [13] and Bacillus sp. [14]. Many of
these studies have focused on distinct cellular compart-
ments, through the analysis of samples obtained by sub-
cellular fractionation ("subcellular proteomics") [15-19].
A major disadvantage of subproteome analyses is that the
fractionation of a complex structure like the cell into sev-
eral subcellular compartments is not a trivial task. Con-
tamination from other cellular compartments may occur
and some proteins are known to span multiple localiza-
tion sites [7,20-25]. Despite these limitations, however,
genome-scale techniques are rapid, cost-effective, and
capable of returning results for hundreds or even thou-
sands of proteins in a single analysis.

Computational methods have also been developed to aid
analysis of protein SCL. While some subproteomic studies
have used methods like GRAVY [26], SignalP [27], and
TMHMM [28] as a complement to their laboratory results
[15,17], these programs predict protein features rather
than localization sites, and thus are often of limited utility
when attempting to confirm a protein's SCL. Prior to
2003, the only localization prediction method available
for bacteria that was capable of assigning a protein to one
of several different localization sites was PSORT I [29].
Developed in 1991, the program had not undergone any
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significant updates since its release, and has a measured
precision level of only 59% [30]. To meet the need for a
comprehensive, updated and precise bacterial localization
prediction tool, we therefore developed PSORTb v.1.0 in
2003 [30], releasing an updated version 2 of the program
in 2004 [31]. PSORTD uses a series of 10 Gram-positive
and 12 Gram-negative analytical modules to examine a
query protein. Each module scans the protein for the pres-
ence or absence of a particular feature characteristic of a
specific localization site, returning as output either a pre-
dicted localization site or - if the feature is not detected —
a result of "unknown". The modules include: SCL-BLAST
for homology-based detection, the HMMTOP transmem-
brane helix prediction tool, a signal peptide prediction
tool, a frequent subsequence-based support vector
machine, as well as motif and profile-matching modules.
The predicted localization sites outputted by each module
are then integrated by a Bayesian network into a final pre-
diction. The program is able to assign a protein to one of
five localization sites in Gram-negative bacteria (cyto-
plasm, cytoplasmic membrane, periplasm, outer mem-
brane, or extracellular) or to one of four sites in Gram-
positive bacteria (cytoplasm, cytoplasmic membrane, cell
wall, or extracellular). It is also able to generate predic-
tions of multiple localization sites for a protein that spans
two cellular compartments, and if not enough informa-
tion is available to make a confident prediction, it is able
to return a prediction of "unknown". This method was
designed to emphasize precision, attaining a measured
precision level of 96% for both Gram-negative and Gram-
positive bacteria, with a recall of 82%. A database of pre-
dictions based on all currently available complete
genomes is available through PSORTdb [32]. Subse-
quently, other methods have been developed for compu-
tational prediction of bacterial subcellular localization
(see psort.org for a list), including methods with compa-
rable accuracy such as Proteome Analyst [33], though
PSORTb remains the most precise method to date. The
existence of these new computational methods now
requires an evaluation of how well laboratory and compu-
tational methods identify proteins of different SCL. For
genome-wide analysis, do laboratory and computational
methods behave equally or are particular localizations
better predicted by one or both approaches? How can we
best characterize SCL using these methods for future
genome-wide studies?

We therefore compared selected bacterial subproteomic
studies with PSORTb-based computational SCL predic-
tions. Our study indicates that high-precision computa-
tional methods like PSORTb are now exceeding the
precision levels associated with high-throughput 2D gel-
based laboratory methods for localization identification.
We also observe that there is, however, a useful comple-
mentary relationship between the laboratory-based and
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Table I: PSORTDb v.2.0 predicted localization sites for 405 proteins reported in ten subproteome studies.

Laboratory Data

PSORTb v.2.0 Predicted Localization?

Organism Fraction) Total C C/CM C/P CM CM/P P POM OM OM/EC EC UN Agreement?) Coverage®
E. coli [64] c 23 19 - - I - -3 95.0 87.0
Synechocystis [15]  CM 63 13 2 -5 6 - 5 - 30 242 52.4
Synechocystis [46] P 57 2 - o 8 - 3 - -8 64.3 24.6
K. pneumoniae [I16] OM 3 - - - - - - - 3 - - - 100.0 100.0
S. typhimurium [16] OM Il 2 - - - - - - 6 | - 2 77.8 81.8
E. coli [17] OM 39 3 - - - | 3 - 22 | | 8 74.2 79.5
P. gingivalis [18] OM 6 - - - - - - - 2 - | 3 66.7 50.0
P. aeruginosa [13] OM 33 4 - - | - - | 22 2 | 2 80.6 93.9
P. aeruginosa [13] EC 150 33 - - 5 | 33 - 9 6 63 6.9 58.0
H. pylori [19] EC 20 3 - - - 2 - 4 1 I 9 18.2 55.0

a) C = cytoplasmic, CM = cytoplasmic membrane, P = periplasmic, OM = outer membrane, EC = extracellular, and UN = unknown.

A
b) Percentage of agreement is defined by E , where: A represents the number of proteins of the fraction X predicted by PSORTDb to be resident

at X and X/Y localization sites.

B represents the total number of proteins of the fraction X predicted as not unknown by PSORTb.

B
c) Percentage of coverage is defined by — , where: B represents the total number of proteins of the fraction X predicted as not unknown by

PSORTDb.
T represents the total number of proteins identified in the fraction X.

computational methods, with certain localizations being
more accurately identified by one method over the other.
Our work also illustrates the importance of examining all
localizations in concert, preferably using a combination
of both methods, to gain a more accurate view of a given
protein's localization in the cell.

Results

Comparison of computational and subproteomic-based
predictions of SCL for 405 proteins

When computational SCL predictions by PSORTb v.2.0
were compared to the selected subproteomic studies from
Gram-negative bacteria (listed in Table 1), 405 proteins
were identified which met our selection criteria - the
results of the analyses could be matched to specific Gen-
Bank records from the organism being studied (see Meth-
ods for details). A matrix showing the predicted
localization sites for the ten studies is presented in Table
1, together with estimated % agreement and % coverage
for each study.

Because PSORTD is designed with an emphasis on high
precision, the program returns a prediction of "unknown"
if not enough information is available to make a confi-
dent prediction. 163 of the 405 proteins being compared,
or 40.2%, returned a result of unknown and were not con-
sidered in the downstream analyses. Of the remaining 242
proteins, the experimentally observed localization site
agreed with the computationally predicted localization
site in only 104 cases, for a total % agreement of 43.0%.
This figure dropped to 25.7% if the unknown proteins

were included in the calculation. The figures vary signifi-
cantly from study to study, with % agreement ranging
from a low of 6.9% (4.0% including unknowns) in the
largest study to a high of 100% in the smallest study.
However, it is clear that among the 405 proteins, there are
likely a significant number of false positives and false neg-
atives.

Identification of potential contaminants

Subcellular fractionation is a widely-used method for iso-
lating the proteins resident at a specific cellular compart-
ment [34]. However, a significant limitation of the
technique is the problem of cross-contamination, in
which small amounts of proteins from neighbouring
compartments contaminate the fraction of interest [7,21-
23]. This leads to the inclusion of false positives in the
resulting datasets.

With the computational and subproteomic localizations
differing for as many as 93.1% of the proteins for a partic-
ular analysis, we suspected that certain subproteome stud-
ies we analyzed were prone to cross-contamination. The
two studies examining the extracellular fraction, in partic-
ular, had a % agreement with the computational predica-
tions of only 6.9% and 18.2%, therefore we suspected that
contamination may have been a particular problem for
these studies. This may be due in part to autolysis, a proc-
ess common to many bacterial species which release cel-
lular proteins into the extracellular milieu [35]. It may
also be due to cellular lysis during the centrifugation of
the cells [19]. If we exclude the study with 100% agree-
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ment, which involves only a small (n = 3) number of pro-
teins, we observe that the study with the most agreement
between the two methods involved an analysis of the E.
coli cytoplasm. The single possible contaminant observed
in this E. coli cytoplasmic study suggests that the cyto-
plasm is the easiest compartment to isolate in a subfrac-
tionation analysis.

When a number of subproteome studies of Gram-positive
bacteria were analyzed, we observed a similar trend. Of
the seven studies we examined [14,36-41], the Corynebac-
terium glutamicum [36] and Mycobacterium leprae [38] cyto-
plasmic subproteome experiments displayed the lowest
levels of observed/predicted disagreement, at 0% and 8%
respectively. However, when two Gram-positive extracel-
lular fractions were analyzed (Staphylococcus aureus [41]
and Bacillus sp. [14]), the % disagreement was measured
at 53% and 33% - figures which are significantly lower
than those observed for Gram-negative bacteria.

We next proceeded to examine the 138 disagreeing cases
on an individual basis to identify the source of potential
false positive results. While many false positive results
appeared simply to be the result of "leaky" subfractiona-
tion, we did observe a number of cases in which a protein
resident in the fraction of interest was identified along
with its interacting partners from neighbouring cellular
compartments. For example, Molloy et al. [17] report the
presence of the acriflavine resistance protein A (AcrA) in
the outer membrane fraction however, AcrA - which is
predicted by PSORTDb to be a cytoplasmic membrane pro-
tein - is known to be dually localized in both the cytoplas-
mic membrane and the periplasm [42,43]. AcrA interacts
with the outer membrane protein TolC to form an export
system, thus we suspect that AcrA was found in the outer
membrane fraction due to its tight association with TolC.
Another instance of "co-fractionation by association" was
observed with the PilJ protein isolated from the P. aerugi-
nosa outer membrane fraction. This protein is predicted by
PSORTD to be localized to the cytoplasmic membrane and
displays significant similarity to the known cytoplasmic
membrane protein methyl-accepting chemotaxis protein
II from Salmonella typhimurium [44]. PilJ is part of the
chemosensory systems of P. aeruginosa [45], and it was
likely co-fractionated through its association with another
component of the chemosensory system present in the
outer membrane.

We also observed several conflicting cases amongst the
results when closely related proteins were examined. 85 of
the 405 proteins in the analysis can be grouped into 36
groups of proteins which appear multiple times in the
results. These 36 groups consist of: 1) a single protein
identified more than once in the studies (e.g. OprE, iden-
tified in both the P. aeruginosa outer membrane and extra-
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cellular fractions [13]); 2) two or more paralogs (e.g.
Synechocystis CcmK homolog 1 and CcmK homolog 2,
both identified in the cytoplasmic membrane fraction
[15]); or 3) two or more orthologs (e.g. Helicobacter pylori
carbonic anhydrase, identified in the extracellular fraction
[19], and Synechocystis carbonic anhydrase, identified in
the periplasmic fraction [46]).

We would expect these groups of closely related proteins
to be isolated from the same subcellular fractions, since
subcellular localization is highly conserved across diverse
taxonomic lineages [47]. However, this is only the case for
18 of the 36 groups, although 33 of the 36 are predicted
by PSORTb to reside in the same localization. Fifteen
groups contain related proteins isolated from two differ-
ent fractions. Two groups (the ATP synthase beta chain
proteins and the elongation factor family) contain pro-
teins isolated from three fractions, and one group (the
GroEL, GroEL2 and GroES chaperonin proteins) was iso-
lated from four different subcellular fractions. These latter
three groups illustrate an important trend with respect to
contamination - certain abundant, predominantly cyto-
plasmic, proteins are repeatedly found in the list of poten-
tial contaminants, either due to the subfractionation
process or their association (even if temporary) with pro-
teins of another localization (for example, the protein
folding chaperones). In the majority of these studies,
however, they are not noted as potential contaminants/
co-purifying proteins.

Our analysis of false positives reveals that the potential for
contamination appears to be lowest when the cytoplasm
is the subfraction of interest, and highest when the extra-
cellular fraction is analyzed. The data highlights the fact
that employing a computational contaminant screening
procedure is a valuable addition to a subproteome analy-
sis. It is especially critical for extracellular analyses, as both
autolysis and mechanical lysis of cells during subfraction-
ation can release the contents of other cellular compart-
ments into this fraction of interest. The ubiquitous
cytoplasmic proteins ATP synthase beta, elongation fac-
tors, and the GroEL/ES chaperonins are frequently
observed contaminants; however, many of the studies in
which these proteins were identified do not address this
fact. While these proteins might immediately raise a flag
to most proteomics researchers, they are not commonly
noted and so may not be appreciated by genomics
researchers using SCL data for genome annotation or cell
surface drug target identification. Failure to note these
proteins as potential contaminants/co-purifying proteins
may also have significant consequences for bioinformat-
ics software development. For example, inaccurate subcel-
lular localization assignments could be propagated if the
data were used as training data for a machine learning
method by researchers unfamiliar with the field.
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An estimation of the precision of subproteome 2D gel
analyses

An interesting figure results from the analysis of the 44
proteins that were both isolated in a subproteome study
and are present in the ePSORTdb database [32] of pro-
teins of known subcellular localization. In 12 of these 44
cases, the fraction from which these proteins were isolated
in the subproteomic studies did not match the previously
reported experimentally verified localization. If we view
these 44 proteins found in ePSORTdb as "100% precise
predictions", we arrive at a "true" potential contamination
rate of 27.3%. Nine of these conflicting results were found
in the extracellular fraction in the subproteomic experi-
ments and may represent by-products of cellular lysis. The
remaining three proteins were isolated from the E. coli
outer membrane fraction [17], though they were previ-
ously shown to be periplasmic proteins. The authors of
this subproteome study propose that these proteins were
extracted through their association with outer membrane
components, rather than improper fractionation tech-
nique.

We then carried out a more liberal analysis by investigat-
ing the 138 cases where the PSORTb and subproteomic
localizations differed. For each of the 138 proteins, we
attempted to determine the most probable actual localiza-
tion site. Localizations for twelve proteins, mentioned
above, were found in ePSORTdb. We next looked for a
published report of localization in the literature for the
remaining 126 proteins. If no published information was
available, we then looked for significant (E > 1e-10) simi-
larity to a protein of known localization.

In this fashion, we were able to confirm that the localiza-
tion predicted by PSORTb was correct in 87 of the 138
proteins. For the remaining 51 proteins, neither pub-
lished localization information nor similarity to a protein
of known localization was observed, and we were unable
to determine whether the PSORTb or subproteomic local-
ization site was correct. The results of this analysis are pre-
sented in Table 2.

Using this more liberal analysis, we estimated the average
error rate of laboratory subproteome experiments to be
14.3%. Estimated error rate values varied considerably
between studies, from a low of 0% (K. pneumoniae outer
membrane analysis, in which only 3 proteins were inves-
tigated) to a high of 25.0% (H. pylori study of the extracel-
lular fraction). Again, we observed that extracellular
studies appeared to have the highest error rates due to the
strong potential for contamination discussed earlier. On
average, though, the subproteomic analysis error rate for
all localizations was significantly higher than the error
rate of 4% previously determined for PSORTb [31].
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Reducing information loss: proteins with dual localization
sites

A second disadvantage of subcellular fractionation is the
associated information loss. Certain proteins have
domains in two or more neighbouring cellular compart-
ments, some may cleave into two products, each residing
at a different site [48], and others [20] may be found at
different localizations over time, or during different envi-
ronmental conditions [49]. Because subproteome studies
typically address a single cellular compartment, it is quite
difficult to identify multiply-localized proteins from the
results.

Computational methods can help to reduce the informa-
tion loss associated with subproteome studies. When a
disagreement is observed in cases where the computa-
tional and subproteomic localization sites are neigh-
bours, it may indicate a dually localized protein. An
example found in the present analysis is the ATP synthase
AtpG (beta prime subunit). This protein was extracted
from the Synechocystis cytoplasmic membrane fraction but
was predicted as a cytoplasmic protein by PSORTD.
Inspection of the literature reveals that AtpG contains
domains located in both the cytoplasm and cytoplasmic
membrane [50-52].

PSORTD also flags proteins predicted to reside in two
compartments. Thirteen of the 405 proteins are predicted
to reside at dual localization sites, with the bulk of these
predicted as outer membrane/extracellular. This particular
combination of localization sites suggest an autotrans-
porter — a protein with a beta-barrel transporter domain
and extracellular globular domain that is cleaved and
released after translocating through the pore formed by
the transporter domain. Indeed, many of the 13 proteins
flagged by PSORTb are known autotransporters, including
esterase and the H. pylori vacuolating cytotoxin.

Although PSORTDb can assist in the identification of
dually-localized proteins, false negatives are still possible.
If the observed site and the single predicted sites are iden-
tical, a protein's secondary localization will still go unde-
tected. Though it may not always be feasible, a potential
solution to this problem would be to perform 2D gel anal-
yses of all five compartments in one experiment. Not only
would this aid in the identification of proteins with mul-
tiple localization sites, a comparison of the amounts of
protein present in each fraction could be of use when
screening for potential contamination.

Comparison of PSORTDb with previously reported
contaminant screening procedures

Our results illustrate that it is important to screen the
results of a subproteome study for potential errors. How-

Page 5 of 12

(page number not for citation purposes)



BMC Genomics 2005, 6:162

Table 2: Estimation of subproteome study error rate.
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Organism Fraction? Total proteins Disagreementsb) Confirmed Confirmed % Errorse)
identified PSORTDb errors?  laboratory errorsd)

E. coli [64] C 23 I 0 0 0.0
Synechocystis [15] CM 63 25 0 4 6.3
Synechocystis [46] P 57 5 0 | 1.8
K. pneumoniae [16] OM 3 0 0 0 0.0
S. typhimurium [16] OM I 2 0 2 18.2
E. coli [17] OM 39 8 0 6 15.4
P. gingivalis [18] oM 6 | 0 | l6.7
P. aeruginosa [13] OoM 33 6 0 3 9.1
P. aeruginosa [13] EC 150 8l 2 36 24.0
H. pylori [19] EC 20 9 | 5 25.0
Total 405 138 3 58 14.3

3) C = cytoplasmic, CM = cytoplasmic membrane, P = periplasmic, OM = outer membrane, and EC = extracellular.
b) Disagreement represents the number of proteins of the fraction X predicted by PSORTb not to be resident at X or X/Y localization sites.
9 Confirmed PSORTDb error represents the number of disagreeing cases for which the PSORTb predicted localization site was found to be

incorrect.

d) Confirmed laboratory error represents the number of disagreeing cases for which the PSORTDb predicted localization site was found to be

correct.

©) % Errors is calculated as the number of confirmed laboratory errors divided by the total number of proteins identified.

ever, many groups do not perform such a screen, or
employ approaches which are limited in their utility.

The authors of two of the subproteomic studies analyzed
here performed basic contaminant screens. In the Syne-
chocystis cytoplasmic membrane study [15], the 63 pro-
teins identified were submitted to TMHMM [28].
Seventeen of these proteins were classified as integral
membrane proteins based on the presence of one or more
helices. The remaining 46 were annotated as peripherally-
associated membrane proteins and were then analyzed by
SignalP [27]. Proteins with predicted signal peptides were
classified as associated to the periplasmic face of the mem-
brane, while those without predicted signal peptides were
classified as peripherally associated to the cytoplasmic
face.

Using only a single localization predictive method such as
TMHMM to identify a feature often results in false posi-
tives, particularly in alpha helix detection, where signal
peptides are often mistaken for helices. Furthermore, by
describing the proteins with no detected helices as periph-
erally membrane-associated, there is a failure to recognize
the fact that these proteins may represent potential con-
taminants from other fractions. Had PSORTb been used
as a screening tool, the authors would have been able to
identify 22 potential errors amongst their results with a
relatively high degree of confidence.

The authors of the E. coli outer membrane study [17] com-
pared the Swiss-Prot localization site for the proteins they
identified to the amounts of those proteins detected on
the 2D-gel. They reported that, with the exception of the
flagellin protein, only proteins annotated as integral outer
membrane proteins were detected in significant levels.
They posit that the remaining proteins, detected at lower
levels, may exhibit a functional association with proteins
in the outer membrane. However, this explanation does
not account for several potential cytoplasmic or cytoplas-
mic membrane contaminants, such as the dihydrolipoa-
mide succinyltransferase SucB [53,54], which were also
isolated. A screen such as this also has the potential to pro-
duce a high number of false negatives - outer membrane
proteins present in low quantities which are mistaken for
potential contaminants.

While the authors of the two studies mentioned above do
not claim that their approaches identify all contaminants,
we found that a robust and comprehensive method such
as PSORTD outperforms single methods designed to ana-
lyze specific features, such as signal peptides or transmem-
brane helices. This is not surprising, as it has long been
recognized that multi-component approaches to predic-
tion achieve the best performance. Though dually local-
ized proteins likely represent only a small fraction of
proteins in the cell, they often represent interesting bio-
logical cases, including proteins that play pivotal roles in
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antimicrobial resistance (i.e. efflux proteins [55]), and vir-
ulence (i.e. BrkA [56]) and thus should not be overlooked.

Optimal identification of cytoplasmic membrane proteins
requires a combined computational and laboratory
approach

Examining the detailed PSORTDb results for the proteins
reviewed in the present analysis, we observed an interest-
ing trend in the output of the HMMTOP module, which
predicts the number of transmembrane alpha-helices in a
query protein. Of the 405 proteins analyzed by
HMMTOP, only six proteins contained three or more pre-
dicted helices. Even more surprising was that only three of
these six were identified in the Synechocystis cytoplasmic
membrane study. When three cytoplasmic membrane
subproteome studies in Gram-positive bacteria were ana-
lyzed, the same trend was observed, with only six out of
269, or 2.2%, of proteins predicted to contain three or
more transmembrane helices (TMHs). We then analyzed
the complete Synechocystis proteome with PSORTDb, pre-
dicting a total of 540 cytoplasmic membrane proteins, of
which 461 contain three or more transmembrane helices.

Our results indicate that 2D gel electrophoresis of the
cytoplasmic membrane fraction is only capable of identi-
fying a small proportion of the multi-pass membrane pro-
teins in a given proteome, likely due to the low pI and
poor solubility of these proteins [57]. While other tech-
niques can be used to identify these proteins in the labo-
ratory - for example, liquid chromatography coupled
with tandem mass spectrometry and affinity labelling
[58,59] - PSORTD is a cheaper and faster solution which
is capable of identifying these proteins with a high degree
of precision.

While PSORTb appears to outperform laboratory subpro-
teomic methods for the identification of proteins with
three or more transmembrane helices, the opposite is true
for membrane-associated proteins with one or two heli-
ces. In their analysis of the Synechocystis cytoplasmic mem-
brane fraction, the authors of the study report 40
membrane-associated proteins. PSORTb, on the other
hand, only confidently identifies three such dually local-
ized proteins - two with cytoplasmic domains, and one
with a periplasmic domain. In order to maintain a high
level of precision, PSORTD requires that one of the follow-
ing criteria be met to identify a cytoplasmic membrane
protein: three or more predicted TMHs, similarity to a
known membrane protein, or a positive result from the
cytoplasmic membrane SVM module. As a result of these
stringent criteria, a large number of cytoplasmic mem-
brane-associated proteins with one or two helices are not
identified by PSORTb.

http://www.biomedcentral.com/1471-2164/6/162

Our observations indicate that the cytoplasmic mem-
brane presents a special case for both laboratory and com-
putational analysis. If a true picture of the membrane
proteome is desired, it is necessary to use a combined
approach, in which a computational method is used to
identify integral cytoplasmic membrane proteins, while a
laboratory method is used to identify cytoplasmic mem-
brane-associated proteins.

Discussion

Comparing the precision of laboratory and computational
methods

In the present analysis, we compared the localizations
predicted by the computational method PSORTbD to the
localizations of 405 proteins reported in ten subproteome
2D gel electrophoresis studies. The data generated in our
analysis indicates that subproteome studies vary greatly in
terms of their precision. Certain small studies of particular
fractions, such as the analysis of three K. pneumoniae
outer membrane proteins or 23 E. coli cytoplasmic pro-
teins, display low or non-existent apparent error rates.
Larger studies and those focusing on particular localiza-
tions - including the extracellular milieu - can contain
significant levels of false positive, or contaminant pro-
teins.

We attempted to estimate the precision associated with
subproteome studies using two approaches. In the first,
more stringent approach, a comparison of 44 proteins
against the ePSORTdb database of proteins of experimen-
tally verified localization yielded a rough estimate of false
positives of 27.3%. A second approach, in which we
attempted to determine the true localization of 138 pro-
teins using literature and homology-based approaches,
yielded an estimate of 14.3%.

While our approximate error rate is by no means a defini-
tive estimate and was not calculated using large samples,
it does illustrate the importance of evaluating the results
of a subproteome study with a critical eye. While errors
associated with each study do vary, on average as many as
1 out of every 4-7 results could be erroneous.

Even more notable is the observation that while our esti-
mated precision of subproteome analysis exceeds that of
early predictive tools such as PSORT I [29] (with a
reported precision of 59.6% [30]), current high-precision
computational methods such as PSORTb (with 96% pre-
cision) appear to outperform laboratory subproteome
studies, generating fewer false positive results. While it is
true that measured precision values calculated from cross-
validation studies of test datasets represent a slight overes-
timation of precision, even a more conservative estimate
of 90% precision still exceeds the levels attained by most
high-throughput laboratory methods. In other words,
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PSORTD, first released in 2003, appears to be the first
computational method developed that outperforms high-
throughput laboratory studies for SCL prediction. Other
computational methods have since been developed that
also have high accuracy, and slightly more recall (sensitiv-
ity) such as Proteome Analyst. However, no method has
yet been developed that is as precise as PSORTb.

Limitations of computational methods

While our comparison of the precision achieved by com-
putational and laboratory subproteome analyses indicates
that certain predictive tools have surpassed wet-bench
methods for localization identification, there are a
number of caveats associated with the use of computa-
tional tools.

Of the 405 proteins submitted to PSORTb, only 59.8%
returned a predicted localization site and in only 43% of
these cases did the predicted site match the observed site.
The 40.2% "unknown" rate we observed is well below the
recall of 82% reported in the paper describing PSORTb.
Such a discrepancy between "practical” values and "theo-
retical" values is frequently observed with machine learn-
ing methods, due to the fact that the data used to train and
test the method is generally quite well-annotated while
"real world" data, on the other hand, contains large num-
bers of hypothetical proteins.

Unfortunately, until machine learning methods - includ-
ing PSORTD - are trained on much larger datasets, the gap
between recall values is not likely to improve significantly.
In the interim, we recommend that users employ addi-
tional predictive strategies with higher recall values. Pro-
teome Analyst [33] uses a different approach to PSORTb
in generating its predictions — keywords are extracted from
Swiss-Prot annotations of proteins homologous to a given
query; these keywords are then passed to a machine learn-
ing classifier. Proteome Analyst displays excellent preci-
sion - the authors report an overall precision of 95.9% for
Gram-negative bacteria - and although its coverage when
applied to whole genomes is generally comparable to
PSORTD, it did provide a much larger number of predic-
tions for the dataset analyzed here - of the 405 proteins
submitted, Proteome Analyst returned a predicted locali-
zation site or sites for 398.

The performance of a given method can also vary signifi-
cantly depending on the organism being analyzed. For
example, PSORTb was able to generate predictions for
only 25% of the proteins identified in the Synechocystis
periplasmic fraction (see Table 1). Several factors may
explain this low rate of coverage, including particularities
of the morphology of Synechocystis sp., the low number of
Synechocystis proteins included in PSORTDb's training data-
set, and the fact that three-quarters of the proteins found

http://www.biomedcentral.com/1471-2164/6/162

in the periplasmic fraction are annotated as hypothetical
proteins. This is in contrast to the excellent coverage
achieved by PSORTD in the analysis of the E. coli cytoplas-
mic fraction, which reflects the fact that as a model organ-
ism, E. coli proteins occur frequently in PSORTb's training
data.

A method's performance also varies between localization
sites and, in general, correlates with the amount of train-
ing data available for a given localization. PSORTb per-
forms very well when identifying both cytoplasmic and
outer membrane proteins, but is not able to make as many
predictions for periplasmic and extracellular proteins.
Proteins resident at specific localization sites — for exam-
ple, the periplasm and the extracellular space - can be
similar to the point that differentiating the two based on
sequence alone can be difficult.

It is also important to note that every predictive method
will generate a certain number of false positive results, and
that it is critical to keep the measured precision of a given
method in mind when carrying out a computational anal-
ysis. For example, some computational methods, such as
CELLO [60], have a measured precision of only 71.5%
[31].

Limitations of laboratory methods

Laboratory analyses also carry with them a number of
caveats. We have already shown that one of the major dis-
advantages of subproteomic studies is the potential for
contamination via leaky fractionation or lysis. Growth
conditions can also affect the results of a subproteome
study. Different growth conditions can alter the expres-
sion of a particular protein, thus while a subproteome
study can provide valuable data about expression under a
given condition, they may not yield a global picture of the
proteins expressed by a bacterium. The parameters of the
experiment can also play a key role in determining which
proteins are identified from a gel.

It is critical to choose an appropriate pH gradient for max-
imum resolution of total proteins, and even then standard
methods may not detect or separate low abundance or
hydrophobic proteins. Protein complexes can also be
problematic if their subunits are difficult to disassociate
[57,61,62].

Proposed method for the optimal characterization of
cellular compartments

In the present study, we have shown that computational
and laboratory-based analyses of specific cellular com-
partments complement each other, with each method
contributing to improve the accuracy of the other.
Although both methods do display certain limitations,
each offers a number of significant advantages, which we
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have summarized in Table 3. In order to capitalize on
these advantages, we propose that genome-scale studies
aimed at cataloguing the proteins of a particular cellular
compartment adopt a complementary approach in which
both methods are used.

With respect to the subproteomic aspect of such a study,
we suggest that rather than analyze a single cellular com-
partment, a study ought to analyze all available compart-
ments. By determining the relative abundance of a protein
in each compartment, a researcher will able to quickly flag
potential contaminants and identify proteins with com-
plex localization profiles - dual localizations or localiza-
tion that varies temporally.

After retrieving the set of protein sequences corresponding
to the spots on a 2D gel, the proteins should be submitted
to a high-precision localization prediction method for
analysis. PSORTD is the most precise localization predic-
tion tool available, and its consensus approach allows the
user to acquire detailed information about protein fea-
tures, such as homology to protein of known localization,
or the presence of a signal peptide, transmembrane heli-
ces, or specific sequence motifs and patterns. Proteome
Analyst is a second high-precision method which comple-
ments PSORTb well, through the use of an annotation-
based approach.

The computationally predicted and experimentally
observed localization sites should then be compared. In
cases where the computational and laboratory methods
disagree, detailed analysis of the individual protein
should be carried out. Through examination of the litera-
ture and further computational analysis, very often a con-
fident call regarding the protein's true localization can be
made. An excellent model is provided by Elias et al. [63],
who employ a multi-faceted approach - including PSORT
I, PSORTb, and in-depth examination of individual pro-
teins - to the analysis of their results from a study of
Shewanella oneidensis hypothetical proteins.

The combination of 2D gel analysis and PSORTb predic-
tion can provide a remarkably clear and genome-scale pic-
ture of protein localization in a given bacterium. Of
course, these methods are no replacement for the hypoth-
esis-driven detailed investigation of individual proteins.
Instead, they provide an accurate jumping-off point for
the in-depth analysis of specific proteins using additional
techniques. As both computational and laboratory high-
throughput approaches improve in terms of both preci-
sion and recall, however, we see an increasingly important
role for these methods in the fields of molecular biology
and genomics.

http://www.biomedcentral.com/1471-2164/6/162

Conclusion

We have performed the first focused comparison of
genome-wide laboratory/proteomic and computational
methods for subcellular localization identification, and
show that PSORTD is the first computational method to
attain a level of precision exceeding that of high-through-
put laboratory approaches. We note that analysis of all
cellular fractions collectively is required to effectively pro-
vide localization information from laboratory studies,
and we propose an overall approach to genome-wide sub-
cellular localization characterization that capitalizes on
the complementary nature of current laboratory and com-
putational methods.

Methods

Selection of subproteomic studies

Eight manuscripts describing the 2D gel electrophoresis
analysis of ten bacterial subcellular fractions were selected
for the present study (Table 1). The studies were chosen to
ensure that they represented all five of the possible Gram-
negative localization sites over a range of organisms,
including: Escherichia coli, Helicobacter pylori, Klebsiella
pneumoniae, Porphyromonas gingivalis, Pseudomonas
aeruginosa, Salmonella typhimurium, and Synechocystis.
In all, eight studies were selected [13,15,16,18,19,46,64]
spanning all five localization sites for Gram-negative bac-
teria. In addition, seven supplementary Gram-positive
studies were evaluated to a lesser degree to ensure that the
results were generally applicable to all bacteria. A total of
269 proteins from the cytoplasm of C. glutamicum
[36,37] and M. leprae [38], from the cytoplasmic mem-
brane of Bacillus anthracis [39], M. leprae [38] and Myco-
bacterium tuberculosis [40], and from the extracellular
fraction of Bacillus sp. [14] and S. aureus [41], were ana-
lyzed. The vast majority of the studies used fractionation
followed by two-dimensional SDS-PAGE electrophoresis.
Proteins were then subjected to peptide mass fingerprint-
ing (PMF) identification. One study [18] used fractiona-
tion followed by two successive one-dimensional SDS-
PAGE electrophoresis analyses, with subsequent N-termi-
nal amino acid sequence analysis.

Protein selection

For each study, we examined the reported proteins to see
if they met two criteria. First, the protein must have been
identified through comparison of the spot to the sequence
of the bacterial genome under study, and not to another
organism. For example, in the S. typhimurium outer
membrane study of Molloy et al. [16], only the proteins
identified by a PMF search against the S. typhimurium
genome were selected, while proteins identified by a PMF
search against other organisms were not included. Sec-
ond, we had to be able to match the protein reported in
the study to a GenBank record in order to retrieve the cor-
rect amino acid sequence. After these two filtering steps
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Table 3: Advantages and disadvantages of computational and subproteomic approaches to localization analysis.

Computational methods

Proteomics analysis

Advantages

Rapid predictions for all proteins deduced to be encoded in a given
sequence

Detailed information about specific features of proteins, e.g. signal
peptides, TMHs

Identification of potential contaminants in subproteome analyses

Identification of hydrophobic integral membrane proteins

Can be performed under different conditions and provide condition-
specific information
Confirms expression of hypothetical proteins

Large-scale source of data on SCL for hypothetical proteins that cannot
be easily predicted computationally

Disadvantages

Does not perform as well (less predictions) when analyzing an organism
that is not similar to well studied/model organisms.

May miss flagging some multiply-localized proteins

Poorly predicts particular localizations for which there is little training
data, or the proteins are computationally difficult to differentiate
between localizations.

Cannot identify condition-specific data on SCL, particularly proteins that
change SCL depending on the condition.

Time-consuming

Low abundance and hydrophobic proteins not readily detected
Difficult to accurately identify all proteins found on the gel
One subcellular fraction at once analyzed

Subfractionation often results in contamination
Cannot identify multiply localized proteins

were applied, the final dataset consisted of 405 proteins
for the Gram-negative organisms.

Computational analysis

Computational predictions of localization were per-
formed using the standalone version of PSORTb v.2.0
[31]. The complete predictions are available as supple-
mental material (See Additional file 1: PSORTb complete
predictions). Proteins predicted to reside at multiple
localization sites were manually identified from the
PSORTD results. A protein was annotated with dual local-
izations if PSORTD returned two sites with scores between
4.50 and 7.49 or if the SCL-BLAST module returned signif-
icant similarity to a protein known to have dual localiza-
tions. Additional limited computational analyses were
performed with Proteome Analyst [33], as described in
the text.
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