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Abstract

Background: Pooling genomic DNA samples within clinical classes of disease followed by
genotyping on whole-genome SNP microarrays, allows for rapid and inexpensive genome-wide
association studies. Key to the success of these studies is the accuracy of the allelic frequency
calculations, the ability to identify false-positives arising from assay variability and the ability to
better resolve association signals through analysis of neighbouring SNPs.

Results: We report the accuracy of allelic frequency measurements on pooled genomic DNA
samples by comparing these measurements to the known allelic frequencies as determined by
individual genotyping. We describe modifications to the calculation of k-correction factors from
relative allele signal (RAS) values that remove biases and result in more accurate allelic frequency
predictions. Our results show that the least accurate SNPs, those most likely to give false-positives
in an association study, are identifiable by comparing their frequencies to both those from a known
database of individual genotypes and those of the pooled replicates. In a disease with a previously
identified genetic mutation, we demonstrate that one can identify the disease locus through the
comparison of the predicted allelic frequencies in case and control pools. Furthermore, we
demonstrate improved resolution of association signals using the mean of individual test-statistics
for consecutive SNPs windowed across the genome. A database of k-correction factors for
predicting allelic frequencies for each SNP, derived from several thousand individually genotyped
samples, is provided. Lastly, a Perl script for calculating RAS values for the Affymetrix platform is
provided.

Conclusion: Our results illustrate that pooling of DNA samples is an effective initial strategy to
identify a genetic locus. However, it is important to eliminate inaccurate SNPs prior to analysis by
comparing them to a database of individually genotyped samples as well as by comparing them to
replicates of the pool. Lastly, detection of association signals can be improved by incorporating data
from neighbouring SNPs.
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Introduction

The ability to genotype hundreds of thousands of single
nucleotide polymorphisms (SNPs) across the genome
and to perform association analysis between cases and
controls provides, for the first time, a discovery-based
approach for determining the underpinnings of complex
human genetic disorders. Technologies from Affymetrix
(microarray-based GeneChip® Mapping arrays), [llumina
(BeadArray™), and Sequenom (MassARRAY™) are now
available with sufficient density to detect linkage disequi-
librium between informative SNPs and nearby disease-
causing nucleotide variants through non-hypothesis
based whole-genome association scans for certain popula-
tions [1-3].

Several practical issues make whole-genome association
studies by utilizing individual genotyping difficult to
implement [4]. Power estimates predict that somewhere
on the order of a thousand cases and control subjects
must be genotyped to detect allelic differences of <5%
between the cohorts, as well as to detect rare alleles which
may be causative in only a subset of the cohort [5]. Addi-
tionally, population stratification and allelic imbalance
may identify SNPs that have statistically significant allelic
frequency differences yet have no relation to the disease
[4,6,7]. Whole-genome association studies are now tech-
nologically possible, though the cost is several million
dollars if samples are individually genotyped. Here we
describe the validation of pooling genomic DNA samples
as a rapid pre-screening to detect disease-causing loci for a
few thousand dollars on SNP genotyping microarrays.

It is possible to identify SNPs that have significant differ-
ences in allelic frequencies between two populations
while saving a significant amount in resources by pooling
genomic DNA and then SNP genotyping on a single
microarray, or preferably on a series of replicated arrays.
Indeed, a limited number of studies have been conducted
that demonstrate the possibility to predict accurately the
allelic frequencies of a SNP from a pooled sample on a
microarray, and, in fact identify quantitative trait loci [8-
12]. Typically, these studies have validated the pooled
allelic frequencies by later individually genotyping
between ten to a few hundred SNPs. The most elegant val-
idations of pooling have used indirect approaches, such as
spiking a single individual of known genotype into a
pooled group with unkown genotypes [9].

One cannot realistically expect all probes on a microarray
to function equally, especially considering that the objec-
tive of these platforms is to identify allelic differences of
0%, 50%, and 100%. Indeed, as platforms move to
100,000+ SNPs, the ability to select preferentially the best
performing SNPs, such as was done in the design of the
Affymetrix 10K GeneChip®, will likely be compromised.
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As a result, our prediction is that many SNPs will be unre-
liable for pooling, and thus may be more likely to lead to
false positives. In a pooling study, limiting false positives
that are a result of the assay, rather than the underlying
population, will be a major factor in being able to realis-
tically identify SNPs that can predict disease status. In this
study, we investigated the reliability of SNP allelic fre-
quency measurements as determined from pooling
genomic DNA samples on SNP mapping arrays. We fur-
ther demonstrate our ability to identify poorly predictive
SNPs prior to analysis.

Results

We compared the predicted allelic frequencies from pools
of genomic DNA to the known allelic frequencies deter-
mined by individual genotyping in order to establish the
accuracy of pooling. The goal was to compare allelic fre-
quencies for all the SNPs on a microarray, since not all
SNPs will be equally accurate for the prediction of fre-
quencies. Inaccurate SNPs are expected to be problematic
as microarrays progress to probe hundreds of thousands
of SNPs, whereby SNPs are chosen primarily for their
physical position in the genome and not for their repro-
ducibility. Indeed, in order to identify 11,500 SNPs for the
Affymetrix 10K GeneChip® Mapping Array nearly 500,000
SNPs were screened by Affymetrix for reliability in the
assay [13].

Individual genotyping of SNPs for 107 samples

Allelic frequencies for 10,205 SNPs on 107 samples were
determined by individually genotyping on the 10K Gene-
Chip®. These samples were genotyped over a one-year
period; therefore, some samples were genotyped on ver-
sion 1.0 of this platform and others on version 2.0. Only
SNPs genotyped on both platforms were utilized for this
study. Accuracy of SNP calls was approximately 99.8%, as
determined by inheritance errors in family pedigrees, in
line with the accuracy reported by Affymetrix (99.9%)
[13]. We found no significant decrease in accuracy
between the two versions of the 10K GeneChip®. The aver-
age percentage of SNPs called across all 107 samples was
90.9%. Only individuals with a call rate above 80% were
included in the present study. For example, 2,783 SNPs
were called for all individuals and 3,525 SNPs were called
for >98% of individuals. In our experience using this plat-
form on over 4,000 samples we determined that the call
rate is highly dependent on DNA quality and that high
quality genomic DNA yields a call rate of 95-98%. The
samples used in this study have been collected over sev-
eral years with variable DNA quality. It is to be expected
expect that large-scale whole-genome association studies
will also be forced to utilize DNA of less than optimal
quality since hundreds to thousands of individuals are
needed. Thus the genomic DNA used in this study will
likely be representative of what could be expected in a
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Examples of good and poor performing SNPs
for 100 individuals who each had call rates of 95%
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Figure |

Example of RAS statistics for three SNPs based on genotyp-
ing of 100 individuals with an average call rate of all SNPs
greater than 98%. These example SNPs illustrate how SNP
call reliability can vary both between SNPs and within the
same SNP, as measured by RAS| and RAS2 values. Blue
spheres are BB individuals, orange triangles are AA individu-
als, and green squares are AB individuals, grey stars are "Not
Called".
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whole-genome association study on a disease where sev-
eral-thousand individuals are needed.

Construction of pools

Pools were created in triplicate from the individually gen-
otyped samples. The individuals were from the Old Order
Amish and Old Order Mennonite populations of south-
eastern Pennsylvania [14]. Pool 1 consisted of 52 individ-
uals, Pool 2 consisted of a different 52 individuals, and
Pool 3 consisted of 3 patients who died of a form of sud-
den infant death syndrome known as SIDDT and had a
known region of identity-by-descent (shared a pre-
defined allele on all six chromosomes across the case
cohort) [14]. This region was defined on the 10K microar-
ray by 13 consecutive autozygous SNPs, 6 of which were
informative. All DNA was quantitated using PicoGreen
reagent (Molecular Probes, Eugene, Oregon) to ensure
equal amounts were contributed to the pool from each
individual. These three pools were then genotyped in rep-
licates of three on the 10K GeneChip®. In all, 9 microar-
rays were used for the pooled genotyping compared to
107 microarrays for the individual genotyping.

Calculation of allelic frequencies from pooled samples
The predicted allelic frequencies from pooled genotype
samples were calculated for each SNP using a k-correction
factor based on their derivation from over 3,000 individ-
uals genotyped on the 10K GeneChip®. The training set
consisted of 3,000 individuals that were genotyped in our
lab within the past year. All had call rates above 80% with
an average call rate of 95%. None of the 3,000 individuals
used for calculation of k-correction factors were included
in the pooled genomic DNA.

The purpose of the k-correction factor is to allow for cal-
culation of a predicted allelic frequency from peak
heights, or in this case fluorescence signal, whereby p = A/
(A+kB) [15]. K-correction factors have recently become
well established and have been used successfully in
primer extension assays whereby measurements in SNP
allelic frequencies on pooled genomic DNA have been
taken by HPLC, mass spec, and by fluorescence in TAQ-
MAN assays [15-19]. For the 10K Mapping array assay, p is
the predicted allelic frequency of the A allele, A is the flu-
orescent signal intensity measure of the A allele, and B is
the fluorescent signal intensity measure of the B allele.
The k-correction factor can be calculated for a given SNP
using a heterozygote who is AB, effectively 50% A and
50% B. Conveniently, output of the Affymetrix GeneChip
software for the Affymetrix 10K Mapping Array includes
Relative Allele Signal (RAS) values which have been previ-
ously used to determine k-correction values (see Figure 1)
[11]. Generally, RAS = A/(A+B). Here, A refers to the
median match/mismatched differences of the major allele
and B for the minor allele (Affymetrix Technical Manual).
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Figure 2

(A) Allele frequency differences between individual and
pooled genotypes. Histogram representing the total number
of SNPs at each allele frequency difference between individ-
ual and pooled samples. (B) Accuracy of predicted SNP fre-
quencies increases for those SNPs that perform well on
Mapping 10K individual assays and decreases for poorly per-
forming SNPs. The mean and median absolute difference
between the predicted allelic frequency and individually gen-
otyped allelic frequencies are shown vs. the binned perform-
ance of SNPs on individual assays. Performance is ranked by
the frequency of calls in a set of 3,000 individually genotyped
samples.

There are two RAS values, RAS1 (sense) and RAS2 (anti-
sense) since both sense and antisense directions are
probed.

Whereas k-correction factors based on the Affymetrix 10K
GeneChip® Mapping Array have been previously calcu-
lated directly using only heterozygous RAS values [11], we
suggest that this can be improved upon since the RAS val-
ues are generally not 0 or 1 for homozygotes (See Figure
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1). Indeed, we observed significant deviation for many
SNPs, which could potentially add significant bias (see
discussion) [11]. Thus for each SNP, we normalized RAS
values, referred to as nRAS, using the individuals from the
training set that were AA (normalized to 1) and BB (nor-
malized to zero). Without this normalization, predicted
frequencies will be systematically biased as the pooled
samples approach homozygosity. Thus nRAS, = (RAS,-
AA,,.)/(BB,,.) where AA, . is the average RAS, score for
individuals AA in the training set, and BB,,, is the RAS,
score for individuals BB in the training set. The value of X
refers to whether the calculation is for RAS1 or RAS2, and
nRAS values are calculated for both RAS1 and RAS2. Thus,
two predictions of allelic frequency are obtained: one
from RAS1 and one from RAS2. Each RAS variable has dis-
tinct variability, and as shown in Figure 1(b), RAS1 may
be very precise with low variance, while RAS2 may exhibit
high variance, and vice versa. Averaging the two RAS val-
ues will mask the RAS value with lower variance. Because
of this independent variability, we do not recommend
averaging RAS1 and RAS2 for all SNPs as was suggested in
other pooling studies [8,10,12]. Rather, we recommend
treating the two RAS values as separate experiments, and
preferably removing RAS values with the greatest variance
prior to analysis.

Values making up each of the RAS1 and RAS2 mean values
are provided for homozygous AA, homozygous BB, and
heterozygous individuals on a website based on our 3,000
person database which is being made available to the pub-
lic as part of this publication. These k-correction factors
derived from RAS1 and RAS2 values using this training
dataset are available at [20] and as supplementary
material.

Comparison of allelic frequencies: Pooling vs. individual
genotyping

For the 10,205 SNPs on the Affymetrix 10K GeneChip®we
found a median difference in allelic frequency between
individually genotyped samples and pooled samples of
5.1%, a mean difference of 6.3%, and a standard devia-
tion of 4.9%. Figure 2 shows a histogram for all the SNPs
and their difference between the predicted frequency from
the pools and the individual genotypes data. Other stud-
ies have reported slightly lower differences between
pooled and individually genotyped methods for
determining allelic frequencies (3-5%) [8,9,12]. Many
reasons are likely for this difference: We used DNA that
was collected over ten years and was of varying quality; we
also compared all the SNPs on the microarray rather than
selecting only a few SNPs for comparison. Realistically,
the greater difference seen in this study may be more rep-
resentative of large association studies, in which thou-
sands of genomic samples of varying quality are pooled.
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Table I: Inaccurate SNPs with the largest difference between SNP allele frequencies when genotyped individually vs. calculated from
pooled DNA can be partially predicted. Nearly 40% of the SNPs found to be the 100 most inaccurate SNPs were also either (a) one the
500 worst performing SNPs in individual genotyping or (b) had the largest variability between replicates in the pool.

All SNPs (a) 500 worst
performing SNPs
Criteria: NoCalls on

3000 person database

(b) 500 worst
performing SNPs
Criteria: Pool
variability from 3

SNPs found in (a) or (b) Inaccuracy (predicted

vs. genotyped)

replicates

100 most inaccurate 24.2%
SNPs (individual
genotyped vs. pooled)
500 most inaccurate
SNPs (individual
genotyped vs. pooled)

Remaining 9605 SNPs 4.4%

12.5%

27.3%

14.5%

38.6% 27.2%

22.1% 20.2%

8.6% 5.0%

Identification of assay false positives

While the differences in frequencies between pooled and
individual genotyped samples show that calculating fre-
quencies from pooled samples is highly accurate, it is per-
haps of greater importance that we are able to predict
those SNPs that are unreliable and largely inaccurate.
Assays genotyping 500,000 SNPs will likely not have the
ability to be as selective and thus are likely to provide a
large number of SNPs that do not reliably quantitate
allelic frequencies from pooled genomic samples. As
shown in Table 1, we found that the 100 SNPs most likely
to give a "NoCall" in individual genotyped samples more
often gave unreliable predictions of allelic frequencies in
pooled samples. Furthermore, as shown in Figure 2b,
those SNPs that are the worst 10% (in terms of % called
for individual genotypes) also gave rise to higher allelic
frequency differences.

We found that rarely called SNPs are also likely to be
called inaccurately (Table 1 and Figure 3c¢). In this case,
constructing k-correction factors and predicting allelic fre-
quencies will be unreliable for these SNPs, even if pooled
replicates show low variability. SNPs with the highest var-
iance in pool replicates were also unreliable. As a practical
measure, we found that applying both filters for too many
"NoCalls" in a training set and having a high variance in
pooled replicates was more effective than either measure
alone. We could identify 1/31 of the worst performing
SNPs (greater than 12% difference), by removing the
worst performing 5% of SNPs based on variance in pool
replicates and removing the worst performing 5% of SNPs
based on excessive "No Calls" when individually geno-
typed. Consequentially, the removal of those SNPs that
are either poorly called in a training set of individually
genotyped samples or highly variable across pooled repli-
cates significantly decreases the number of false positives.
The number of SNPs removed should maintain a balance

between retaining dense SNP coverage and excluding
those SNPs more likely to give false positives. Ultimately,
removing potential false positives will be a compromise
between the coverage of the SNP microarray and the
genetic diversity of the population.

It is of interest to note that allelic frequencies calculations
were more accurate as SNPs approached homozygosity.
For example, for those SNPs with allelic frequencies from
0% to 20% and from 80% to 100% the mean difference
was 5.2% vs. a mean difference of 7.1% for SNPs with
allelic frequencies between 20% and 80%. This finding
may be due to inaccuracies in the assays as SNPs approach
50%, since the variance for heterozygotes is higher than
the variance measured for homozygotes.

Identification of a disease locus from genotyping of pooled
samples

In order to assess whether it is feasible to use pooled gen-
otyping to identify the genetic locus for a disease, we
created case and control pools for the disease sudden
infant death with dysgenesis of the testes (SIDDT) and a
pool of Amish control individuals.

A test for proportions was employed to detect statistical
differences between cases and controls. This test-statistic is
more often used in pooled studies since frequency data
are generally not whole-integers [19]. Shown in equation
1 is the calculation for the test statistic (T) where f,,, is the
allele frequency for the case group and f,,,,,; is the allele
frequency for the control group.

— f case — f control
Val'(f case) + Var(f Control)

fcase (1 — fcase)
2Ncase ( ! )

var(fease) =
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Identification of the SIDDT locus from pooled genomic DNA by calculating the mean test-statistic for a rolling window of con-
secutive SNPs. The moving window was determined across the genome and the p-value was calculated from a distribution of
400 bootstraps of the original dataset. Mean window sizes of I, 3, 5, 10, 15, and 20 are shown and the SIDDT locus is high-
lighted in yellow. The SIDDT disease locus is the top region for window sizes of I, 5, 10, 15, and 20.

The distribution follows an approximate y2 distribution
with one degree of freedom. The SNP with the highest sig-
nificance, 1s949748, had a p-value of 0.00016 and was in
the SIDDT locus at chromosome 6q21. However, it is
expected that the SNP with the lowest p-value will not
always be at the correct disease locus. Even strong single
SNP association signals will likely be obscured in the
noise when 500,000+ SNPs are probed. Thus we
employed a moving window whereby the mean test-statis-
tic of several consecutive SNPs was calculated at each SNP
position across the genome. The objective of the moving
window was to leverage the fact that neighbouring SNPs
will likely be in linkage disequilibrium, whereby one SNP
is at least partially predictive of the neighbouring SNP.
The number of SNPs contained in the moving window
was varied between 1 and 25. Shown in table 2 is the rank
of the 6q21 region for varying window sizes. It is of inter-
est to assess sensitivity of this windowing approach to
SNPs within the region. Thus, we consecutively removed
the top three SNPs contributing to the overall association
signal. Removing the first two SNPs has little effect on

detecting the association signal. The 6q21 region remains
the most significant for window sizes of four and greater
even when these top two SNPs are removed. In compari-
son, all three top SNPs has a marginal effect, lowering the
rank of the region from highest to within the top ten.

To compute the statistical significance of averaged test-sta-
tistics, we used a permutation test. With this approach the
consecutive order of SNPs was randomized in four hun-
dred separate bootstrapped datasets. P-value statistics
were calculated from the distribution of these datasets.
Shown in Table 2, the SIDDT locus (6q22.1-q22.31) was
generally revealed as the most significant region of associ-
ation for window sizes between 4 and 20 SNPs.

It will not always be the case that SNPs are in linkage dis-
equilibrium and a windowing-based approach will be
effective. The permutation statistics can be used to test this
scenario in order to see if the frequency of a given mean
window test-statistic is indeed significant. The Old Order
Amish and Mennonite populations used in this study
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Table 2: Identification of disease locus using a moving window. SNPs were ranked by test statistics and sorted by physical position. The
average was calculated for a moving window of consecutive SNPs across the genome. The region 6q22.1 was already known to contain
the mutation leading to the SIDDT. The rank of region 6q22.1 for a various window sizes in shown in the second column. In the 3rd,
4th, and 5th columns, the top |, 2, and 3 SNPs were removed from the 6q22.1 regions to probe sensitivity of window size.

# SNPs Averaged in 6q22.1 Rank Region (All

6q22.1 Region Rank

6q22.1 Region Rank 6q22.1 Region Rank

Moving Window SNPs) (Exclude Top | SNP in  (Exclude Top 2 SNPsin (Exclude Top 3 SNPs in
Region) Region) Region)
| | 22 24 60
2 I I 19 I
3 6 6 6 14
4 | | | 2
5 | | | 8
6 2 2 2 3
7 | | | 13
8 | [ | 3
9 | | | 9
10 | | | 3

arise from a population founded in approximately the six-
teenth century with expectedly larger regions of identity
by descent. The Amish and Mennonites are not one large
isolated population. It is more accurate to say that both
these populations derive from the Swiss Anabaptists (circa
1525). These groups are socially and genetically unique
even though both came from the same geographical
region. Thus undoubtedly some stratification exists
between our two cohorts and it is encouraging that the
correct region was easily identifiable despite any stratifica-
tion [21].

Based on previous research in this population, the 10K
Mapping Array was anticipated to be of sufficient density
whereby many of the SNPs would be in relative linkage
disequilibrium throughout this regional population.
Indeed, the permutation statistics of moving windows
support this notion as the 6q21 region shows a p-value of
<le-6 for window sizes of 10 SNPs and greater, far lower
than would be expected with ~10,000 SNP measure-
ments. Other methods have been developed that reduce
noise using haplotype data from SNPs in linkage disequi-
librium [22]. In the absence of this haplotype data, which
may often be the case, it is encouraging that the very
straightforward statistical approach described here is
effective at identifying the correct locus.

Discussion

Our results show that (1) pooling genomic samples is
highly accurate; (2) unreliable SNPs most likely to give
false-positives can be largely identified and removed prior
to association analysis; and (3) a moving window of aver-
aged test-statistics can be used to detect association sig-

nals. Additionally, we have described modifications as to
how allelic frequencies are calculated from RAS values of
pooled samples that remove systematic biases.

Pioneering work on pooling studies by other research
groups has shown that the average Relative Allele Signal
(RAS,,.) can be effectively used to derive k-correction fac-
tors by k = RAS,y/(1-(RAS,y:), and as such, can be used
to accurately predict allelic frequencies [8,11,12]. Pooling
studies are intended to be screening approaches. RAS val-
ues are highly convenient since they are generated by the
Affymetrix GDAS software on the 10K platform and fairly
intuitive to understand. We suggest significant improve-
ments to this innovative approach that will remove biases;
allow for continued use of RAS values; and result in more
accurate predictions. These improvements focus on lower-
ing the number of false positives due to added variance or
systematic biases, since the utility of pooling-based
approaches will be based on how one can detect associa-
tion signals given a high number of false positives.

First, RAS1 and RAS2 should not be averaged since they
are separate probe sets with distinct variances. One may
unnecessarily propagate unwanted variance by averaging.
For example in Figure 1b, it is clearly visible that RAS2 is
highly predictable of the particular SNP allele whereas
RAS1 is highly inaccurate. In this case, averaging RAS2 and
RAS1 will produce a RAS,y; value that is less accurate than
RAS2 alone. We suggest instead that these values be
treated as separate measures, each with their distinct vari-
ance. In the case of RAS values with a large variance, these
values should not be used due to the increased chance of
a false positive.
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Second, we highly recommend that RAS values for each
SNP be normalized prior to calculation of allelic
frequencies. When these values are not normalized prior
to calculating a predicted allelic frequency a significant
bias is introduced since the RAS values, as produced by the
Affymetrix GDAS software, generally are not 0.0 or 1.0 for
homozygous BB and AA respective alleles. Indeed, on a
training set of 1000 individuals we found that 34% of
SNPs who were called AA had a RAS value less than 0.9
and 35% of SNPs called BB had a RAS value greater than
0.1. This bias can be seen in an example calculation using
k-correction factors derived from a typical RAS value
directly obtained from the GDAS software. For example,
the average RAS1 for a given SNP of an AA individual may
be 0.9, the average RAS1 for a heterozygous individual
may be 0.5, and the average RAS2 for a BB individual may
be 0.1. When one uses the approach outlined by Butcher,
et al, the k-correction factor is 1.0, whereby the RAS value
of the average heterozygote is divided by one minus this
value [10]. In a pooled sample, the same SNP is expected
to have a RAS value of 0.9 if it is completely homozygous
for AA. However, using the k-correction approach on non-
normalized RAS values, one would predict an allelic fre-
quency of 90%, whereas the actual frequency is 100%, a
bias of 10%. These biases would be most pronounced as
pools approach dominance by one allele type, as would
often be the case for a SNP highly associated to a disease.

While RAS values are readily obtainable from the Affyme-
trix software for the 10K GeneChip® arrays, they are not
provided for the 100K or 500K. This is partly due to the
fact that RAS values are no longer used to make a SNP call.
We have developed a simple Perl script which generates
RAS values, still useful in pooling, for the 100K and 500K
Affymetrix GeneChip® platform from CHP files. This tool
is available on our website [23]. While one may use these
RAS values to find obvious differences in cases and con-
trols, for many SNPs allelic frequencies are not linearly
dependent on the RAS values; thus, one should calculate
allelic frequencies when possible to reduce uneven biases
between different SNPs.

Additionally, we are making public on the same site both
normalized and non-normalized k-correction factors
derived from over 3,000 genotyped individuals for the
10K version 2.0 SNP genotyping platform. Other research
groups have created central repositories for k-corrections
using non-normalized RAS values and we will work with
these teams to contribute these values to this valuable cen-
tralized resource [11].

Conclusion

Prior to the investment of large resources into individual
genotyping thousands of individuals, one may first con-
sider pooling samples at a low cost to rapidly ascertain

http://www.biomedcentral.com/1471-2164/6/138

gross population stratification concerns and potentially
identify the regions of the genome with the strongest asso-
ciation to the trait. The sheer number of SNPs interrogated
will lead to a high number of false positives, due to both
actual variation in genotype frequencies of the underlying
groups and to technical variance. We demonstrate that
technical variance can be detected a priori for each SNP
using training sets from large numbers of individual
microarrays or by replicates of pooled samples. We further
show that despite the issues of population stratification,
admixture, and subgroups that are difficult to detect when
pooling, the cost savings make pooling a first step that we
suggest should logically precede the investment of mil-
lions of dollars. We describe here a method by which
100K and 500K Affymetrix SNP array data can be parsed
into RAS scores and pooled inbalances accurately assessed
in an outbred population.

Methods

10K GeneChip® Mapping Array Genotyping

10K SNP genotyping was performed as detailed by
Affymetrix on the 10K GeneChip® Mapping 1.0 and 2.0
Arrays [5]. In short, 250 ng of genomic DNA was digested
with 10 units of Xba I (New England Biolabs, Beverly,
MA) for 2 hours at 37°C. Adaptor Xba (P/N 900410,
Affymetrix, Santa Clara, CA) was then ligated onto the
digested ends with T4 DNA Ligase for 2 hours at 16°C.
After dilution with water, samples were subjected to PCR
using primers specific to the adaptor sequence (P/N
900409, Affymetrix) with the following amplification
parameters: 95°C for 3 minutes initial denaturation,
95°C 20 seconds, 59°C 15 seconds, 72°C 15 seconds for
a total of 35 cycles, followed by 72°C for 7 minutes final
extension. PCR products were then purified and frag-
mented using 0.24 units of DNase I at 37°C for 30 min-
utes. The fragmented DNA was then end-labeled with
biotin using 100 units of terminal deoxynucleotidyl trans-
ferase at 37°C for 2 hours. Labeled DNA was then hybrid-
ized onto the 10K Mapping Array at 48°C for 16-18 hours
at 60 rpm. The hybridized array was washed, stained, and
scanned according to the manufacturer's instructions.

The chp_2_ras.pl script processes one or more CHP text
files from Affymetrix 10K and 100K SNP chips, calculates
RAS1 and RAS2 scores and outputs them in an Excel
spreadsheet. Testing shows that for 10K chips,
chp_2_ras.pl produces the same scores as those produced
by Affymetrix' GDAS software. chp_2_ras.pl is distributed
as part of TGen-Array, a collection of Perl scripts and mod-
ules that provide parsing and object-oriented interfaces to
common microarray files. The script can be downloaded
at the TGen bioinformatics website [23].
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