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Abstract
Background: Studies of the yeast protein interaction network have revealed distinct correlations
between the connectivity of individual proteins within the network and the average connectivity of
their neighbours. Although a number of biological mechanisms have been proposed to account for
these findings, the significance and influence of the specific datasets included in these studies has
not been appreciated adequately.

Results: We show how the use of different interaction data sets, such as those resulting from high-
throughput or small-scale studies, and different modelling methodologies for the derivation pair-
wise protein interactions, can dramatically change the topology of these networks. Furthermore,
we show that some of the previously reported features identified in these networks may simply be
the result of experimental or methodological errors and biases.

Conclusion: When performing network-based studies, it is essential to define what is meant by
the term "interaction" and this must be taken into account when interpreting the topologies of the
networks generated. Consideration must be given to the type of data included and appropriate
controls that take into account the idiosyncrasies of the data must be selected

Background
In recent years, there has been an unprecedented growth
in both the volume and the type of experimental data
available to researchers interested in elucidating the bio-
logical networks that underpin the functions of living
cells. To date, the majority of available eukaryotic data
comes from the yeast Saccharomyces cerevisiae, where a
variety of different networks have been subject to investi-
gation, including gene regulatory [1], metabolic [2-4] and
protein interaction networks [5]. As the majority of cellu-
lar processes are mediated by protein-protein interactions,
much attention has been focused on their study in the
hope that their investigation on a "global" scale will help

us to understand how a dynamically interconnected sys-
tem manages to perform multiple functionally related
tasks while maintaining stability against deleterious
perturbations.

The recent deluge of protein interaction data generated
from large-scale high-throughput systematic screens [6-9]
has presented us with an opportunity to create networks
consisting of thousands of interacting proteins. Analysis
of the resulting networks has shown that, in common
with other naturally occurring and artificial networks,
protein-interaction networks display a scale-free topology
[10,11] and exhibit "small-world" properties [12]. The
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scale-free property of these networks is thought to be of
particular biological significance as it confers robustness
to random node loss, allowing the network to maintain its
overall integrity even when a significant number of nodes
are removed [13]. The concept of network-mediated
robustness appears to be reinforced by the presence of a
correlation between the connectivity of neighbouring
nodes within the network (a feature not observed in ran-
dom networks) [14]. In the yeast protein-interaction net-
work, the observed negative correlation between the
connectivity of a protein and the average connectivity of
its binding partners has been seen as a possible adaptation
which allows the network to be resilient to the propaga-
tion of deleterious perturbations [14]. Recently, Pereira-
Leal and co-workers showed that this correlation is valid
only for the yeast protein-interaction network as a whole,
and that the network formed by the proteins essential for
yeast growth has its own unique topological properties,
including a very high degree of connectivity (97% of the
proteins form a single distinct sub-network), which they
postulate may have some implications for our under-
standing of the network's evolution [15].

Protein interaction networks are generally described using
a graph theoretical approach, in which proteins within the
graph (nodes) are connected by undirected links (edges)
if they are found to interact. While creating a representa-
tion of the network is relatively straight forward, deciding
what should be represented is often more difficult. Typi-
cally, networks are generated using interactions derived
from a plurality of different experimental types, which
may include protein interactions identified in both indi-
vidual small-scale studies and larger systematic genome-
scale screens – such as those from yeast two-hybrid (Y2H)
and affinity-purification experiments. More often than
not, less thought than appropriate is given to how the
interactions derived from these different systems have
been, or should be, combined and the possible implica-
tions that different methodologies for achieving this
might have on the outcome of analyses.

The issue of data handling is of particular importance in
the study of protein interactions derived from purified
protein complexes. For any given purified complex that
results from a FLAG or TAP tag-based experiment, it is very
unlikely that every "prey" protein identified within the
complex interacts directly with the "bait" protein. Other
proteins or molecules (such as RNA) present within the
mixture may act as scaffolds or bridges between the pro-
tein constituents. Consequently, we are unable to deter-
mine the true topology of the complex. In order to
integrate this type of data with those from other experi-
mental sources, we must first derive a set of hypothetical
pair-wise protein interactions using either a "spoke", or
"matrix" model [16]. The spoke model assumes that the

bait protein physically interacts with each of the prey pro-
teins in the complex but does not acknowledge any type
of association between the preys. In contrast, the matrix
model assumes that any two proteins within the "com-
plex" are connected.

Here, we investigate the effect that the choice of datasets,
and modelling methodology (matrix or spoke), has on
the topological properties of the yeast protein interaction
network and discuss our results with respect to the notion
of a negative correlation between nodes within the net-
work (in some studies, this is referred to as an "anticorre-
lation"). We go on to investigate the notion of a highly
connected essential sub-network and, finally, we discuss
the nature of the term "interaction" and how the interpre-
tation of that term might affect research within the field.

Results
Data choice
The topology of the protein interaction network created
using data derived from the yeast-subset of the DIP data-
base (15,129 protein interactions involving 4,738 unique
proteins) [17] reveals that the nodes within the network
obey a power-law degree distribution as previously
described (data not shown) [10]. Analysis of node con-
nectivities also reveals the previously reported negative
correlation between the connectivity of a central reference
node (k0) and the mean connectivity of its neighbouring
nodes (<k1>). The previously reported difference between
the topologies of the global network and the network of
essential yeast proteins is also evident, with the essential
network displaying a markedly weaker negative correla-
tion than the global network. For k0 ≤ 60, the global net-
work has a correlation coefficient, rk0:k1 = -0.83 and slope,
αk0:k1 = -0.25; for the network of essential proteins, rk0:k1
= -0.39, αk0:k1 = -0.08 between log (<k1>) and log (k0)
(Figure 1) [14,15].

The yeast subset of the DIP database consists of interac-
tions derived from a range of different studies that
employed a variety of different experimental methods. It
is possible that biases within one or more of these individ-
ual datasets are having a measurable effect on the out-
come of the topological analysis. By performing analyses
on portions of the data extracted from the database, we
were able to begin to identify some of these biases. Figure
2 shows the topology of the network created from protein
interactions identified in protein interaction studies
(totalling 3,191 protein interactions involving 1,623 pro-
teins) that may be characterised as "small-scale", defined
as an experiment described in a published article listing
no more than 100 protein-protein interactions [18].
Again, we observed the previously identified power-law
degree distribution for nodes within the network (data
not shown). However, in this case, the differences
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between the topologies of the global and essential gene
networks are no longer evident, with both having similar
slopes (αk0:k1 -0.10 global v -0.09 essential) and correla-
tion coefficients (rk0:k1 -0.39 global v -0.34 essential)
between log(<k1>) and log(k0). This result suggests that
the significant negative correlation previously observed
within the global network results mainly from data gener-
ated using high-throughput methods.

Variation in modelling methodology
Following the dataset-dependent observations described
above, the impact of applying different modelling meth-
odologies to experimental data on protein complexes was
assessed. The application of the matrix model to the pro-
tein complex data contained within the cohort used in
Figure 1, and reanalysis of the resulting network, causes a
dramatic shift in the topology of the network. Again, the
power-law degree-distribution for nodes within the net-
work is found. However, the previously observed negative

correlation between log(<k1>) and log(k0) changes to a
positive correlation for both the global and essential sub-
networks, with both networks showing similar topologi-
cal characteristics (Figure 3) (for K0 ≤ 195, global network
rk0:k1 = 0.68 αk0:k1 = 0.17, essential sub-network; rk0:k1 =
0.88, αk0:k1 = 0.27).

Randomisation strategy
A second prominent finding of earlier work investigating
the yeast protein interaction network is that the essential
sub-network is very highly connected, with ≈ 97% of all
proteins within it being connected in a single giant com-
ponent [15]. The significance of this result was previously
highlighted using a standard randomisation strategy, in
which a number of nodes equivalent to that in the essen-
tial network were randomly selected from the global net-
work and the connectivity of the resultant sub-network
determined. To assess the validity of this finding, a
"biased" randomisation strategy was employed that took

DIP-based protein interaction network using the spoke modelFigure 1
DIP-based protein interaction network using the spoke model. Mean connectivity of neighbouring nodes (<k1>) as a 
function of the connectivity of the central node (k0) displayed on a log.-log. scale for the "global" network (blue) and "essential" 
sub-network (red), generated from interactions extracted from the yeast subset of the DIP database. Note the difference in 
topology between the two networks.
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into account the connectivity of the proteins within the
essential sub-network. By mimicking the degree
distribution of nodes within the essential network in the
generated random networks, the average number of nodes
encompassed within the largest connected component
increased from 33% (using a standard randomisation
strategy) to 88% over 1000 iterations. Although connec-
tivity levels equal to that of the essential sub-network were
not observed, levels as high as 92% connectivity were
achieved.

Discussion
In this study, we have shown how the choice of dataset
and modelling methodology can profoundly affect the
outcome of investigations into the topology of the yeast
protein interaction network. We show that, while these
variables have little effect on the apparent power-law
degree distribution of nodes within the network, they can
dramatically alter the correlation between the connectivi-

ties of neighbouring nodes. These results raise the ques-
tion of what data should be included in these studies and,
in the case of protein complex data, which of the two pro-
posed modelling methods is the most appropriate for its
incorporation? In a recent study, Bader and Hogue [16]
showed that pairs identified using the spoke model were
more likely to be correct (i.e. in agreement with published
literature) than interactions derived using the matrix
model. However, Cornell and co-workers [19] showed
that there is little difference between the two modelling
methods when the annotations of protein pairs found
using each model were compared. This indicates that pairs
derived using the matrix model are equally as meaningful
(in terms of their functional annotation) as those derived
using the spoke model, suggesting that either method pro-
vides a valid approach to modelling interactions. In fact,
if we wish to include the "classical" hand-annotated MIPS
complexes within our analyses, the matrix model
becomes our only viable option, as it is the only method

Protein interaction network generated using the results of "small-scale studies" onlyFigure 2
Protein interaction network generated using the results of "small-scale studies" only. Average value of k1 as a func-
tion of k0 displayed on a log.-log. scale for the network of non-essential proteins (red) and essential proteins (blue) generated 
from a dataset including only protein interactions derived from small-scale studies. Both the global and essential networks dis-
play similar topological properties with both only exhibiting a very weak negative correlation.
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that allows us to define a set of pair-wise interactions for
a protein complex whose topology is completely
unknown.

Given our results on the topology of the network, it is
hard to believe that changes in the strength and polarity of
the correlations observed, stem from some underlying
biological process [14,15]. Rather, they are presumably
the result of biases introduced either through experimen-
tal methodologies or the choice of analysis technique. As
an example, data from Y2H experiments show a signifi-
cant asymmetry between the connectivities of baits and
preys (i.e., the average connectivity of baits with at least
one interaction is almost double the same quantity meas-
ured for preys) [14]. This and other factors such as auto-
activation and the presence of "sticky-proteins" [20], if
not taken into account during network construction and
analysis, could create the false impression of a negative

correlation. In a similar way, it is obvious (from the vol-
ume of published literature) that yeast essential genes
have been subject to a greater degree of investigation than
non-essential genes, and are therefore liable to have more
documented interacting partners. It is possible that this
bias is responsible for the appearance of the topologically
distinct "essential" sub-network (first identified by
Pereira-Leal and co-workers [15], and shown here in Fig-
ure 1) because a more complete and "accurate" dataset is
available for analysis. This is supported by the fact that
this topology is only evident when multiple datasets
(which, if taken individually, often show an apparent neg-
ative correlation) are combined (Figure 4). Furthermore,
we have shown that, by changing the modelling method-
ology employed to derive pair-wise protein interactions, it
is relatively easy to change the overall topology of the
observed networks. Although the application of one
model seems to indicate the global and essential networks

DIP based protein interaction network using matrix modelFigure 3
DIP based protein interaction network using matrix model. Average value of k1 as a function of k0 displayed on a log.-
log. scale for the global network (blue) and essential network (red); generated by applying the matrix model to determine pair-
wise interactions from protein complex data. For both networks, the previously reported negative correlation reverts to a 
positive correlation, and the previously observed difference between the topologies of the two networks appears to have been 
lost.

1

10

100

1000

1 10 100 1000

k0
Page 5 of 8
(page number not for citation purposes)



BMC Genomics 2005, 6:131 http://www.biomedcentral.com/1471-2164/6/131
have distinct topological properties (Figure 1), by using
the same data and employing another (apparently equally
valid [19]) model, we show that the previously observed
negative correlation reverts to a positive correlation for
both the global and essential networks, and the topolo-
gies (in terms of both the correlation between log(k0) and
log (<k1>) and the slope of the resulting graphs) of both
also appear similar (Figure 3). The difference between the
topologies of the spoke and matrix model networks is
probably a consequence of the models themselves. In the
spoke model, bait proteins tend to have a higher degree
than prey proteins; thus typical interactions within the
network are between high-degree and low-degree mem-
bers. Conversely, in the matrix model, all proteins found
within a complex are assigned connections with all others;
thus typical interactions tend to be between proteins with

similar connectivities. The ease with which the overall
topology of the networks is flipped, and the disparity
between results given above, further highlights the degree
of caution that should be exercised when attempting to
draw biologically meaningful conclusions from studies of
this type.

In addition to the observations made about the correla-
tions between neighbouring nodes, we have also shown
the importance of using the correct control when selecting
nodes for randomization studies involving network con-
nectivity. We found that, by simply matching the degree
distribution of the nodes within the essential network in
that of the randomly selected sample (composed entirely
of non-essential genes), we were able to achieve very sim-
ilar levels of network connectivity. This result suggests that

Effect of combining data on network topologyFigure 4
Effect of combining data on network topology. Average value of k1 as a function of k0 displayed on a log.-log. scale for the 
network composed of essential yeast genes. In each case, where the dataset includes information derived from protein com-
plex analysis pair-wise interactions are determined using the spoke model. Green: network resulting from the incorporation of 
all protein interactions not classified as being obtained in "small-scale" studies. Brown: network resulting from the protein com-
plex study performed by Ho and co-workers [7]. Purple: network resulting from Y2H interactions identified by Ito and co-
workers [8]. Note that the relatively strong negative correlation present within the two networks generated using data from 
individual high-throughput studies (brown and purple on the graph) is significantly reduced when all available high throughput 
data are combined (green).

1

10

100

1 10 100

k0
Page 6 of 8
(page number not for citation purposes)



BMC Genomics 2005, 6:131 http://www.biomedcentral.com/1471-2164/6/131
the highly connected nature of the sub-network of essen-
tial proteins previously reported by Pereira-Leal and co-
workers is primarily a consequence of the high-degree bias
of its nodes, rather than a manifestation of some specific
evolutionary process.

Conclusion
We conclude that, before embarking on these network-
based analyses, we must first be clear as to what we mean
when we use the term "interaction". Interactions derived
from direct physical studies, such as Y2H experiments, are
very different from those found in synthetic genetic
screens, which (in turn) are different again from "associa-
tions" between the proteins found within protein com-
plexes. However, in several recent studies, many of these
different interaction types have been lumped together as
though they were equivalent and directly comparable. For
instance, both Y2H data and synthetic lethal gene pairs
count as 'interactions' in the GRID database [18],
although the protein products of the latter rarely interact
physically [21].

While graph theoretical analysis approaches have been
successfully applied to a number of man-made and natu-
rally occurring networks [22], these networks differ from
the biological systems investigated in that every link
between pairs of nodes within the network is of the same
type and is generally independent of other factors. For
example, analysis of the HTML pages that make up the
content of the World Wide Web is relatively simple. In this
network, both the nature of the relationships (hyperlinks)
between nodes (pages) and the nodes themselves are usu-
ally homogeneous and well-defined. Therefore, meaning-
ful and representative visualizations and quantifications
of the structure of the network and its properties are pos-
sible. However, the "biological networks" we construct are
not representative of the underlying system. Biological
systems essentially comprise protein "machines" [23] and
biological function is mediated through associations
between proteins, either directly through physical contact,
or indirectly within protein complexes, or as part of the
same biological pathway. Although it is technically possi-
ble to create an abstract representation of these associa-
tions; in reality, heterogeneity and the spatial and
temporal restrictions imposed upon the links mean that
the resulting topology and parameters of the network
need not convey biologically meaningful information.

Methods
Network analysis was performed by extracting all
machine-readable, yeast-derived protein interactions
from the DIP database (release 20050605). Node connec-
tivities and network topology were investigated using cus-
tom software written in the Perl programming language.
Random networks were generated from a pool of non-

essential proteins only. Construction of the random net-
work continued until the appropriate number of proteins
had been selected, whose degree distribution within the
sample was similar to that actually observed in the essen-
tial network. This was done using an algorithm that cre-
ated a sample of nodes that, at each level of connectivity,
matched as closely as possible (data-permitting) the
observed node numbers in the essential network. In
instances where an exact match was not possible, another
node with a degree within the same range of the desired
node was selected. The essential sub-network is defined by
taking into consideration only interactions between
essential genes, as defined by the Saccharomyces Gene
Deletion Project [24]. Correlations between variables
were determined by computing the Pearson's correlation
coefficient, r. We also report the slope, α, of a linear fit to
the data.
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