- O
B Mc Genom |CS BioM\éd Central

Research article

Prognostic meta-signature of breast cancer developed by two-stage
mixture modeling of microarray data
Ronglai Shen!, Debashis Ghosh*! and Arul M Chinnaiyan*234

Address: 'Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA, 2Department of Pathology, University of Michigan, Ann
Arbor, MI 48109, USA, 3Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA and “The Comprehensive Cancer Center,
University of Michigan, Ann Arbor, MI 48109, USA

Email: Ronglai Shen - rlshen@umich.edu; Debashis Ghosh* - ghoshd@umich.edu; Arul M Chinnaiyan* - arul@umich.edu
* Corresponding authors

Published: 14 December 2004 Received: 30 June 2004
BMC Genomics 2004, 5:94  doi: 10.1186/1471-2164-5-94 Accepted: |4 December 2004
This article is available from: http://www.biomedcentral.com/1471-2164/5/94

© 2004 Shen et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: An increasing number of studies have profiled tumor specimens using distinct
microarray platforms and analysis techniques. With the accumulating amount of microarray data,
one of the most intriguing yet challenging tasks is to develop robust statistical models to integrate
the findings.

Results: By applying a two-stage Bayesian mixture modeling strategy, we were able to assimilate
and analyze four independent microarray studies to derive an inter-study validated "meta-
signature" associated with breast cancer prognosis. Combining multiple studies (n = 305 samples)
on a common probability scale, we developed a 90-gene meta-signature, which strongly associated
with survival in breast cancer patients. Given the set of independent studies using different
microarray platforms which included spotted cDNAs, Affymetrix GeneChip, and inkjet
oligonucleotides, the individually identified classifiers yielded gene sets predictive of survival in each
study cohort. The study-specific gene signatures, however, had minimal overlap with each other,
and performed poorly in pairwise cross-validation. The meta-signature, on the other hand,
accommodated such heterogeneity and achieved comparable or better prognostic performance
when compared with the individual signatures. Further by comparing to a global standardization
method, the mixture model based data transformation demonstrated superior properties for data
integration and provided solid basis for building classifiers at the second stage. Functional
annotation revealed that genes involved in cell cycle and signal transduction activities were over-
represented in the meta-signature.

Conclusion: The mixture modeling approach unifies disparate gene expression data on a common
probability scale allowing for robust, inter-study validated prognostic signatures to be obtained.
With the emerging utility of microarrays for cancer prognosis, it will be important to establish
paradigms to meta-analyze disparate gene expression data for prognostic signatures of potential

clinical use.
Introduction ful tool in various aspects of cancer research [1]. With the
DNA microarray analysis has been shown to be a power-  increasing availability of published microarray data sets,
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there is a tremendous need to develop approaches for val-
idating and integrating results across multiple studies. A
major concern in the meta-analysis of DNA microarrays is
the lack of a single standard experimental platform for
data generation. Expression profiling data based on differ-
ent technologies can vary significantly in measurement
scale and variation structure. It poses a great challenge to
compare and integrate results across independent micro-
array studies. In a recent study of diffuse large B cell lym-
phoma (DLBCL), Wright et al. [2] sought to bridge two
different microarray platforms by validating findings from
a ¢cDNA lymphochip microarray using an independent
dataset generated using Affymetrix oligonucleotide arrays.
Although the idea of training and testing classifiers is fre-
quently used for discriminant analysis, this application to
distinct expression array platforms is less common.

More systematic approaches have been proposed for inte-
gration of findings from multiple studies using different
array technologies. Rhodes et al. [3] have proposed meth-
ods to summarize significance levels of a gene in discrim-
inating cancer versus normal samples across multiple
gene profiling studies. By ranking the g-values [4] from
sets of combinations, a cohort of genes from the four stud-
ies was identified to be abnormally expressed in prostate
cancer. Choi et al. [5] suggested combining effect size
using a hierarchical model, where the estimated effect size
in individual studies follows a normal distribution with
mean zero and between study variance 72. The effect size
was defined to be the difference between the tumor and
normal sample means divided by pooled standard devia-
tion. From a Bayesian perspective, Wang et al. [6] used
data from one study to generate a prior distribution of the
differences in logarithm of gene expression between dis-
eased and normal groups, and subsequent microarray
studies updated the parameter values of the prior. Assum-
ing a normal error distribution, the differences were then
combined to form a posterior mean. Although phrased
using different model frameworks, these methods are sim-
ilar in the spirit of combining the standardized differences
between two sample means across multiple studies. It has
been shown, however, that the overlap between signifi-
cant gene detection on different array platforms is only
moderate due to low comparability of independent data
sets [7]. The large variability brought in by microarray
datasets using different platforms is expected to affect the
sensitivity and specificity of summary statistics con-
structed in various ways across studies. Given the inherent
differences of the microarray techniques, heterogeneity of
the sample populations, and low comparability of the
independently generated data sets, meta-analysis of
microarrays remains a difficult task.

A recent study proposed a Bayesian mixture model based
transformation of DNA mi-croarray data with potential
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features applicable to meta-analysis of microarray studies
[8]. The basic idea is to estimate the probability of over-,
under- or baseline expression for gene sample combina-
tions given the observed expression measurements. With
data-driven estimation of these quantities, one can trans-
late the raw expression measurement into a probability of
differential expression. As a result, poe (i.e., probability of
expression) was introduced as a new scale and used in the
context of molecular classification [8]. The platform-free
property of this scale, however, motivated us to incorpo-
rate poe in a framework to meta-analyze microarray data.
Several desirable features of using poe as a new expression
scale include the following: 1. poe provides a scaleless
measure and thereby facilitates data integration across
microarray platforms; 2. poe is a model-based transforma-
tion with direct biological implications in the context of
gene expression data, as it is estimated based on a method
that adopts an underlying mixture distribution that
accommodates over-, under-, and unchanged expression
categories; 3. poe unmasks differential expression patterns
in microarray data by offsetting the influence of extreme
expression values [9]; 4. Data integration based on poe
allows merging of samples on the unified scale rather than
using gene-specific summaries.

In recent publications of breast cancer microarray studies,
several groups have explored the hypothesis that the
capacity to metastasize is intrinsic to the tumor and there-
fore can be revealed by gene expression pattern. Four
independent studies have correlated gene expression pro-
files generated from distinct DNA microarray platforms to
breast cancer prognosis [10-13]. Among the four, Sorlie et
al. [10] and Sotiriou et al. [12], both cDNA microarray
studies, applied unsupervised clustering and identified
several breast cancer subtypes characterized by differential
expression of a cohort of genes. Further, they correlated
the tumor subtypes derived from the expression profile
with survival outcome and in both cases found that, as
expected, the ERBB2+ subtype correlated with shorter sur-
vival times. On the other hand, van't Veer et al. [11], an
inkjet oligonucleotide array study, and Huang et al. [13],
an Affymetrix GeneChip study, have built classification
models based on gene expression profiles to predict 5-year
or 3-year recurrence status. In all four studies, however,
the authors explored a common hypothesis that molecu-
lar profiles were able to provide a more accurate predic-
tion of patient survival compared with clinical/
pathological parameters. These studies therefore provided
an excellent basis for developing a meta-analysis of micro-
arrays with regard to disease prognosis.

In this proof-of-concept study, we propose a two-stage
meta-analysis of microarrays based on poe. We applied
our method to the aforementioned breast cancer DNA
microarray data sets. With the strength of the poe transfor-
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mation and data integration, our goal was to develop an
inter-study validated meta-signature that predicts relapse-
free survival in breast cancer patients with improved sta-
tistical power and reliability.

Results

Development of the two-stage Bayesian mixture modeling
approach for the meta-analysis of microarray data

Figure 1 outlines the two-stage Bayesian mixture mode-
ling strategy. The idea is to build a scale that can be com-
bined across different microarray platforms, and therefore
allows simultaneous examination of independent data
sets. The stage 1 of the analysis involves data-driven esti-
mation of posterior probability of differential expression,
namely poe. The Bayesian hierarchical model employed
for estimation borrows strength across genes by assuming
further distributions for the gene-specific parameters (see
Methods). For data integration purposes, we focused on a
common set of 2,555 genes that were profiled in each of
the four studies. Although the cost for compiling common
genes is a loss of potential predictive features, it is not
unreasonable to assume, given the analogous hypothesis
explored in each study, that the common set represents
the most relevant genes of interest for breast cancer prog-
nosis. The resulting values of poe represent signed proba-
bility of differential expression for gene j in sample i, and
thus provide a unified measure across studies. Further, the
transformation improves contrast in each data set by
removing the influence of extreme expression values. In
stage 2, the expression profile of tumor samples from
multiple studies were combined on the poe scale to gener-
ate a meta-cohort. The benefit of data integration using
poe is twofold. First, it improves power of statistical analy-
sis by increasing the sample size. Such integration of inde-
pendent data sets renders sensitivity to those small yet
consistent expression changes for certain genes. Second, it
reduces the chance of false positive features due to arti-
facts from a single study, and allows reliable findings
across studies. In this paper, we integrated four breast can-
cer microarray data sets of distinct platforms (Table 1),
and developed a prognostic meta-signature for disease
recurrence.

Building a gene expression meta-signature for breast
cancer prognosis

In the second stage of the analysis, We assessed the per-
formance of the genes found using the meta-analysis
methods based on classification accuracy. A complication
is that while most methods of classification deal with data
from two populations, the response with which we wish
to build classifiers to predict is time to breast cancer recur-
rence. While the ideal data would have information on
time to recurrence on all subjects (potentially censored),
not all studies have the time to recurrence information
available and instead provide data on recurrence within a
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certain time interval (e.g., recurrence within five years ver-
sus no recurrence within five years). To deal with this
issue, we utilized a dichotomization where a bad outcome
is recurrence during followup and a good outcome is
remaining recurrence-free for at least three years. The
additional constraint for the good outcome group is to
reduce potential bias introduced by short censoring due to
insufficient length of follow-up. This is particularly rele-
vant in cross-study analysis, given the heterogeneity in
patient recruitment criteria and study designs. Accord-
ingly, of the combined meta-cohort (n = 305) of breast
cancer patients, 48.9% were in the poor outcome group,
whereas 51.1% in the good outcome group. The sample
sizes for each study are shown in Table 1.

Each gene was then associated with the recurrence status
by a logistic regression within a leave-one-out cross vali-
dation scheme, and rank-ordered by the significance level
of the coefficient. As a result, 23 genes held up as signifi-
cant predictor of recurrence (P < 0.001) in all cross-valida-
tion steps, representing a cohort of essential genes
strongly associated with breast cancer recurrence. By ran-
dom chance, there would be on average 2.5 genes to be
found significant at P < 0.001 in a set of 2,555. By finding
23 genes with a P < 0.001, it is clear that there are much
more predictive features than would be expected by ran-
dom chance.

To identify a prognostic meta-signature, we define a risk
index (RI) as a linear combination of the poe profile and
the coefficient estimates from the univariate logistic
regression for each gene j. Large positive values of RI indi-
cate high risk of failure, whereas large negative values of RI
indicate low risk of failure. Classification of sample i to
the risk groups is then based on the it" leave-one-out risk

X _ I{RI; >c}, with ¢ being the
empirical quantiles of the risk indices. The number of
genes in a classifier is treated as a parameter and opti-
mized to minimize the prediction error rates. More details
on building a classifier at the second stage are described in
the Methods section.

index. The classifier is

The 90-gene expression meta-signature predicts clinical
outcome in breast cancer patients

By minimizing the misclassification error, we obtained a
90 gene meta-signature that reliably predicts outcome in
the meta-cohort. This meta-signature classified 122
patients into a high risk group, where 84 (69%) of them
had a recurrence. On the other hand, the signature classi-
fied 183 patients into a low risk group, where 118 (64%)
of them did not recur by the end of the followup. By cross-
tabulating the risk groups predicted by the meta-signature
and the actual recurrence status, we obtained an estimated
odds ratio of 4.0 (95% CI: 2.5-6.5, P < 0.0001). In spite
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Goals: Inter-study validation of microarray data to
obtain prognostic profiles.

Strategy: Two-stage Bayesian mixture modeling.

Collect microarray data from studies that address
similar questions.

\J

Obtain the set of genes that are present on each
independent array data, take base 2 logarithm and apply
proper normalization on each data set.

\J

Fit mixture models through a Markov Chain Monte
Carlo (MCMC) sampling algorithm on each

Stagel

independent raw data matrix and obtain poe(p”)
matrices by Bayes rule:

log, (Raw) poe
- 58 42 . . 0.8 0.6

-1.6 -3.1 . . -0.1 -02 . .
%
(=o0,0) (=L1)

\J

— Combine data on poe scale.

\J

Stage2 Build prognostic signature on combined data matrix.
(Can be generalized to any type of microarray data
analyses such as discriminant analysis, gene screening,
class identification and prediction, etc.)

Figure |
Meta-analysis of microarray data using a two-stage mixture model approach.
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Table I: Breast cancer gene expression data sets used in the prognostic meta-analysis. Bad outcome (Y = 1) is defined as recurrence
during follow-up, and good outcome (Y = 0) is defined as remaining recurrence-free for at least three years.

Authors Array platform Number of array elements Sample size (n) Good outcome (ng) Bad outcome (n,)
Sorlie et al. Spotted cDNA 8102 58 23 35
van't Veer et al. Inkjet oligonucleotide 25000 78 44 34
Sotiriou et al. Spotted cDNA 7650 98 53 45
Huang et al. Affymetrix chip 12625 71 36 35

of the heterogeneity of the combined patient population,
the meta-signature predicted the odds of recurrence for a
patient showing a high risk signature as four times of the
odds of recurrence for a patient showing a low risk signa-
ture. Several studies have implicated that the lymph node
status is one of the principal clinical factors to classify
patients in relation to the risk of relapse of breast cancer
[14-16]. Although there have been controversial findings
with regard to its predictive values in breast cancer sur-
vival outcome, we have shown in the meta-cohort that the
nodal status is a significant risk factor of recurrence. The
estimated odds of recurrence for node-positive patients is
two times higher than the odds of recurrence for node-
negative patients (95% CI:1.3-3.2, P = 0.002) in the com-
bined samples.

Kaplan-Meier analysis provides further evidence that the
meta-signature was a significant prognostic index of
breast cancer recurrence in the meta-cohort (Figure 2).
The estimated three-year survival rate was 76.0%(+ 3.2%)
for low risk signature and 45.9%(+ 4.5%) for high risk sig-
nature. Nodal status, on the other hand, was less discrim-
inative at the three-year time point with an estimated
survival rate of 71.7%(+ 3.7%) for lymph node negative
patients and 56.2%(+ 4.0) for lymph node positive
patients. Node-negative patients, although generally con-
sidered to be at low risk of recurrence, are heterogeneous
in disease progression. About one third of node-negative
patients develop local recurrence [17]. Many studies have
therefore explored the potential of using molecular
biomarkers to further differentiate patient survival out-
come in nodal negative cohort [18-21]. As shown in Fig-
ure 2C and 2D, the meta-signature further differentiated
48 (31.6%) of the LN- patients to be at higher risk of
recurrence during followup (P < 0.0001). Similarly for
nodal positive patients, a cohort thought to be at high risk
of recurrence, the meta-signature identified 79 (51.6%) of
the LN+ patients to have, in fact, lower recurrence risk
over time (P < 0.0001, Figure 2D). In contrast, nodal sta-
tus failed to maintain its predictive power after control-
ling for the meta-signature risk groups (P = 0.05 and 0.12
in low risk signature and high risk signature group respec-
tively). A multivariate logistic regression model suggested
that the meta-signature is an independent predictor of the

recurrent status with respect to nodal status in the meta-
cohort (OR = 3.7(2.3-6.1), P < 0.0001).

Comparison of the meta-signature to the study-specific
signatures

To comprehend the potential gains of such two-stage
meta analysis over individual analysis in each single study
cohort, we constructed study-wise gene expression signa-
tures using the same method. By minimizing the misclas-
sification errors, we obtained a signature consisting 10,
60, 100, and 130 genes for Sorlie, van't Veer, Sotiriou, and
Huang study cohort respectively (Additional file 5). The
results of the classifiers are summarized in Table 2. In fact,
not only did the size of the study-specific signatures vary
significantly, but the elements of the signatures had very
little overlap. At most two genes appeared in more than
one signature among the four. In addition, signature iden-
tified in one study tended to have poor performance in
other studies. Table 3 lists the estimated odds ratios for
disease outcome and risk groups predicted by a gene
expression signature. An individual signature identified in
one study cohort demonstrated considerable shrinkage in
the odds ratio estimates and non-significant 95% confi-
dence intervals in the validation studies, indicating signif-
icantly reduced discriminative power in the testing
cohorts. Kaplan-Meier analysis provided further evidence
that the study-specific signatures performed poorly in
pairwise cross-validations (Additional file 6).

Meta-analysis accounts for such heterogeneity of the indi-
vidual signatures in two ways. First its overlap with the
study-specific signatures ranged from 3-40%. The
excluded genes are likely to be cohort-specific findings
that can not be replicated. Second, the meta-signature
recruited 41 genes not previously picked by any of the sin-
gle cohort signature, likely representing predictive features
with small but consistent effects previously masked in sin-
gle studies. When examining the performances of the gene
signatures, the meta-signature showed a comparable or
better performance compared with the individually opti-
mized signatures both in the odds ratio estimates (Bottom
row of Table 3) and in Kaplan-Meier analysis (Figure 3).
This shows that the meta-signature can serve as a common
breast cancer recurrence index that is able to predict
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Figure 2

The 90-gene meta-signature displayed greater performance than nodal status in predicting relapse-free survival in breast can-
cer, and it further predicts survival outcome in nodal status sub-cohorts. (A) Lymph node status correlates with survival out-
come (P = 0.0004). (B) The meta-signature correlates with survival outcome (P = 2 x 10-19). (C) The meta-signature
differentiates risk groups in nodal negative patients (P = 2.6 x 10-3). (D) The meta-signature predicts risk groups in nodal posi-

tive patients (P = 7.0 x 10-5).
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Table 2: Comparisons of the number of genes (Size), the number of elements overlap with the meta-signature (overlap), and the
prediction error rates for the signatures identified in individual study cohort and in the meta-cohort.

Sorlie van't Veer Sotiriou Huang Meta-cohort
Size 10 60 90 140 90
Overlap 4 14 19 6 -
Prediction error rate 0.28 0.29 0.35 0.18 0.33

Table 3: Comparison of the performances of the individual signatures and the meta-signature in each single study cohort. Table lists
odds ratios (95% confidence interval) comparing the odds of actual recurrence for those being classified as high risk to the odds of
recurrence for those being classified as low risk of recurrence by each signature.

Cohort
Signature Sorlie (n = 58) van't Veer (n = 78) Sotiriou (n = 98) Huang (n =71)
Sorlie (D = 10) 18.6 (5.0, 69.5) 2.1 (0.8,54) 2.3 (1.0,5.3) 10.87 (3.5, 33.8)
van't Veer (D = 60) 3.0(1.1,9.2) 10.6 (3.3, 33.9) 4.1 (1.7,9.7) 1.3(0.5,34)
Sotiriou (D = 100) 1.7 (0.6, 5.0) 35(1.4,89) 7.8 (3.0, 20.1) 1.5 (0.6, 3.7)
Huang (D = 130) 5.1 (1.6, 15.7) 2.3 (0.9, 5.6) 0.9 (0.4, 2.0) 184.9 (30.1, 1137.2)
Meta (D = 90) 25.0 (4.2, 149.0) 4.1 (1.6, 10.6) 6.0 (2.5, 14.5) 5.8 (2.1, 16.5)

D is the number of genes in a signature. n is the sample size for each cohort.

patient survival in heterogeneous sample populations.
When a gene signature built in one study cohort performs
differently in another, such meta analysis provides a solu-
tion to identify a cross-study validated expression signa-
ture that holds across independent samples.

Comparison of data integration based on poe
transformation and simple linear rescaling

An alternative approach to integrating data across multi-
ple datasets is to perform a study-wise global normaliza-

tion. For one study, let x; = (x; —x)/s.d.(x;) be the

globally scaled expression value for gene j in sample i.
Each study dataset is then standardized to have zero mean
and unit standard deviation. The linearly rescaled values
can also be used for data integration purposes in that
expression values generated from different array platforms
are standardized to a common scale.

Such an approach is less computationally challenging
compared to the mixture model-based rescaling described
in the previous sections. However, there are several advan-
tages to the mixture model-based transformation. First,
the method incorporates biological information into esti-
mating the posterior probabilities of expression. The
transformed values carry meaningful interpretations as
signed probabilities of differential expression of a gene in
a particular sample. Second, the underlying normal and
uniform mixture distributions give equal density in the

tails and is effective in reducing the influence of extreme
expression values. And third, the Bayesian hierarchical
modeling approach borrows strength across genes result-
ing in shrinkage-type estimators for a large correlated
gene-specific parameter vector. This is a method in which
the high dimensional gene expression data are denoised.

To study the benefit of data integration based on poe com-
pared to that based on the linearly rescaled values, we
compared the model performances based on data integra-
tion by these two methods. Figure 4A shows that with the
poe transformation, misclassification rates steadily
decreases as more genes are used in the classifier. Perform-
ance based on linearly rescaled data (Figure 4B), however,
is unpredictable. Figure 4C and 4D uses a 90-gene meta-
signature based on poe and based on the global standard-
ization respectively in predicting survival. The signature
based on poe is noticeably better than the signature based
on global standardization in differentiating patients at
low risk of recurrence from those at high risk of recur-
rence. Taken together, the poe transformation outperforms
the linear rescaling method in combining multiple micro-
array data sets. The meta-signature identified based on poe
values therefore offers more reliable prediction of recur-
rence-free survival in the meta-cohort.
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Figure 3

The 90-gene meta-signature achieves similar or better performance than the individually optimized signatures. A and E com-
pare the Kaplan-Meier curves stratified by high versus low risk group predicted by the study-specific signature and by the meta-
signature respectively in the Sorlie study cohort; B and F show similar comparison in the van't Veer study cohort; C and G
show similar comparison in the Sotiriou study cohort; and D and H show comparison in the Huang study cohort.
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Figure 5

The 90 gene meta-signature displayed two distinct patterns of expression in breast cancer groups. (A) Heat map representa-
tion of differential expression probabilities for the 90 gene meta-signature across the combined samples. The top set of genes
showed consistently high probability of over-expression (yellow) in the poor outcome group, and the bottom set of genes
showed consistently high probability of down-regulation (blue) in the poor outcome group. (B) Heat map of log-transformed
raw data. Individually generated heat maps of the raw measurements of gene expression confirmed the distinct expression pat-
terns of the meta-signature from independent studies. Red represents up-regulation while green represents down-regulation. R
(recurred) — poor outcome group; RF (recurrence-free) — good outcome group.
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The meta-signature displays two distinct expression
patterns

A heat map representation of the poe profile for the 90
gene meta-signature revealed two distinct patterns of dif-
ferential expression (Figure 5A). Genes in the top half of
the matrix displayed consistently high probability of over-
expression (yellow) in the recurrent samples (R). On the
other hand, genes in the bottom half displayed great
probability of under-expression (blue) in the recurrent
group. Individually generated heat maps of the raw data
confirmed such distinct patterns at raw measurement lev-
els (Figure 5B). Functional annotation revealed genes
involved in many important biological processes such as
cell cycle regulation (e.g., CDC28 protein kinase regulator
subunit 2), cell adhesion (e.g., chemokine C-X3-C motif
receptor 1), and apoptosis (e.g., secreted frizzled-related
protein 4). A complete list of the meta-signature genes can
be found in the Additional file 7. Some of the genes in the
meta-signature were previously shown to correlated with
breast cancer survival outcome. For example, Keyomarsi et
al. [22] demonstrated the association of the cell cycle reg-
ulator cyclin E and death due to breast cancer.

Enriched functional classes in the meta-signature

To gain a better understanding of the processes related to
disease recurrence, we examined whether a particular
functionally defined biological process is enriched in the
recurrence signature. Each of the ninety genes were
mapped to Gene ontology (GO) terms and then grouped
by functional classes. Based on the hypergeometric
distribution, we calculated the significance of over-repre-
sentation of a particular process in the signature. Figure 6
demonstrated the top seven enriched functional groups in
the meta-signature, comparing the total proportion (out
of 2310 annotated) and the signature proportion (out of
85 annotated) of genes in each group. Cell cycle regula-
tion is the most highly over-represented category (P =
0.001). All genes under this category except BCL2 dis-
played increased expression level, reflecting elevated cell
cycle activities. Signal transduction represents the largest
functional class over-represented in the meta-signature.
Genes involved in signalling pathways that regulate cell
growth (VEGF, PPP2R5C), immune response (TRAF3),
apoptosis (SFRP4), and other processes are found to con-
stitute 15.7% of the meta-signature compared to the 9.7%
in the entire gene set (the common set).

Discussion

Several important issues to consider when integrating
microarray studies include use of different gene expres-
sion measurement scales, varying analytical power and
reliability of the results for individual studies. To account
for these issues, we proposed a two-stage mixture mode-
ling strategy, the strength of which was built on the mix-
ture model based transformation and the subsequent data

http://www.biomedcentral.com/1471-2164/5/94

integration on the poe scale. In particular, poe provides a
unified platform-free scale, and simultaneously enhances
the intrinsic contrast in the expression data. Furthermore,
combining sample pools on the poe scale mitigates the
influence of potential artifacts from a single study. The
benefit of such data integration is reflected on two counts.
One, integrated sample cohorts improve the reliability of
the findings by guarding against false positive results from
a single study. Two, it increases the statistical power to
detect small consistent effects that can be otherwise
masked by inadequacy of the sample size of an individual
data set. By implementing this modeling approach, we
were able to combine information from four microarray
studies to build an inter-study validated meta-signature
for predicting survival in breast cancer patients.

As described earlier, a common set of 2555 genes was used
in this meta-analysis, as it is important to provide the
same context for data-driven estimation of the posterior
probabilities. Although we assume the common set com-
prises the most biologically relevant genes, the loss of
potential predictive genes, however, may offset the statis-
tical power of the analysis. For example, one of our recent
studies has established the polycomb protein EZH2 to be
an independent predictor of breast cancer survival out-
come|[23]. This gene was filtered out of the meta-analysis
as one of the studies [12] did not profile EZH2. However,
in each of the other three studies where EZH2 was profiled
on the array, its expression level was found to correlate
with survival (data not shown), which confirmed its role
as a prognostic marker. Alternative approaches to allow
genes profiled in some studies but not others is a topic for
future research.

Functional annotation of the meta-signature revealed
genes such as Cyclin E and BCL2, which were previously
shown to be correlated with survival outcome in breast
cancer [22,24]. A strength of the inter-study validated
signature is the capability of recruiting genes which may
not be significant in one study due to limiting sample size
or artifacts of the experiments. In this sense, the meta-sig-
nature will be more stable and less subjective to variations
in subsets of the samples. As a result, the predictive genes
in a meta-signature may carry more reliable information
about tumor progression and patient survival.

In conclusion, a distinction of the analysis presented here
relative to those by other authors [3,6] is that we sought
to find genes that were predictive of recurrence rather than
predictive of diseased versus nondiseased status. Given
the heterogeneity of the tumors with respect to treatment
response and survival outcome, a prognostic prediction
analysis is generally more difficult because it is a more
complicated phenotype. Further, a prognostic signature
(classifier) of failure risk trained in one cohort is often
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Figure 6

TOP seven over-represen

ted functional classes in the meta-signature. Black bars represent proportion of genes associated with

each of the GO terms among the meta-signature, and white bars represent the corresponding proportion among the total

study population of 2555

genes. P-value represents the significance of over-representation based on a hypergeometric distribu-

tion, and is calculated as the probability of observing larger proportion of a particular functional group genes in the meta-signa-

ture than in the entire ge

ne set. The meta-signature genes are listed under each functional class.

times difficult to valid
meta-analysis method
provide more powerful

ate in independent cohorts. The = Methods
presented here may potentially  Data collection and preparation
gene signatures that are predictive =~ The breast cancer microarray data sets were obtained at

of prognosis because they are validated across multiple  the author's websites from four recently published studies

studies.

[10-13]. Each data were preprocessed, either by a lowess
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normalization for two-channel microarray data [25] or a
robust analysis for Affymetrix data [26]. We filtered for a
common set of 2,555 genes from these four studies by
Unigene Cluster IDs. Each data matrix of the 2,555 genes
was then normalized by median centering and dividing by
the standard deviation for each gene. Missing data were
imputed by the k-nearest neighbors imputation algorithm
[27].

Mixture modeling of microarray data

Each of the four raw data sets was treated as an expression
matrix X with elements x;; wherei=1, .., my,j=1,..,n(k
=1, ., 4 and n = 2,555). The expression measurement x;;
can be the ratio of the two fluorescent dye hybridization
intensities for the spotted cDNA arrays[10,12] and the
Intjek oligonucleotide array [11], or averaged difference
between the perfect match and mismatch probe
hybridizations for the Affymetrix gene chip [13]. Let E be
a latent class variable, and ¢; indicates over-, under- or
normal expression for each entry of the R matrices. We
have:

1 genej is overexpressed in sample i;
ejj =4 0 genej is normaly expressed in sample 7;

—1 genej is underexpressed in sample i.

The values of e; are latent and not directly observed from

the data. We were interested in estimating the probabili-
ties of ¢; being 1 or -1 given the observed raw expression

X

i which were denoted as p;]f =Pr(e; =1]x;) and

pij = Pr(eij =-1] xij) . Estimates of these latent quantities
were obtained under a Bayesian mixture model setting. In
particular, we assume the raw expression x;; falls into one
of the three expression categories. For each gene j, the

expression then arises from a mixture of three
distributions:

(xij|eij: 1) "’f1,j(')r (xij|eij: 0) "’fo,j(')f and (xij|eij: )~ f

1,1'( ).

In the mix.ture, fl,j'_ foj gnd f.1are the density functions of
the following distributions:

Ul +j, 06+ +x7), N(og+p;,07),  and U(—K] +a; + 1,05 + 1)

respectively. Here, U refers to a uniform distribution and
N refers to a normal distribution. ¢; + 4 is both the mean
of the normal distribution and the threshold point in the
uniform distribution. g is the gene effect and ¢; is the
j
form distribution in the mixture, and are set to be at least

sample effect. The K;-r and x; provide limits to the uni-

http://www.biomedcentral.com/1471-2164/5/94

30 71';r =P(e;=1)and 7; = Pe;=-1) are the multinomial
probabilities for e;. With the specifications of models, we
can calculate the latent quantities by Bayes' rule:

7 fr,j ()

w5 () + 77 fo () + (=7 =77 ) o, (%)

)

pj = Pleg =1]x;) =

i fo,(xy)

) i) + 7 o () + (=7 =75 )y ()

pij =Plej =—1|x;)= (2)

By noting that the supports for the two uniform distribu-
tions are disjoint, the probabilities of differential expres-
sion are mutually exclusive with the forms:

Lo otk ot o) e
()= It (-at —n)f, 0] o) [O,n’/k’-#(l—ﬂ*—n’)ﬁ]
A one dimension measure can thus be constructed as poe
= p*- p. As a result, poe ranges from -1 to 1, and can be
interpreted as the signed conditional probability of differ-
ential expression.

To borrow strength across genes, the estimation of the
gene-specific parameters was formulated under a Bayesian
hierarchical model setting. Given the large amount of
parameters, prior distributions were specified to model
the variation of the gene-specific parameter estimates, in
particular,

i~ NOuTh)i k] ~Exp(65); logit(n]) ~ N(67 77 );

=2 . — - . - - -
0j° ~ Gamma(r, 4); Kj ~Exp(6;); logit(z;) ~ N(6g,17).

We followed the recommendations of Parmigiani et al. [8]
in terms of the prior choices. A Metropolis-Hastings
MCMC sampling algorithm was then implemented to
approximate the posterior distributions of the parameters.
Data augmentation started at a set of data-driven
initiating parameter values. For example, trimmed means
and variances across samples were used as the initial val-
ues for the parameters in the normal distribution of the
mixture. Further details of the Bayesian hierarchical mix-
ture model used here can be found in Parmigiani et al. [8].

Matrices of poe(p* = p* —p~) were obtained for each of
the five data sets (Additional files 1, 2, 3, 4).

Leave-one-out cross validation and risk index computation
For the combined sample pool of the breast cancer
patients (the meta-cohort), we defined outcome groups as
recurred during followup and remained relapse-free for at
least 3 years. In particular, Let T; be the event time for sub-
ject i, C; be the censoring time for subject i, and &, = 1{T;

Page 13 of 16

(page number not for citation purposes)



BMC Genomics 2004, 5:94

<C;} be the censoring indicator. Define a new outcome
variable,

1, 51' =1

0, §;=0and C; =1,

where t* can be specified with clinical knowledge. We
chose t* = 3 years in this study. We then consider
constructing classifiers using y; note that y = 1 corresponds
to the poor outcome group and y = 0 to the good outcome

group. The sample sizes for each study are shown in Table
1.

Vi =

Logistic regression was used to build a classifier for prog-
nosis. For each gene j, we fit the following univariate logis-
tic regression model using data from all studies:

logit{Pr(y; =1| x;)} =n; + Bjx;j,
where x* is the rescaled value that allows data integration

across multiple studies. The esti-mated values of £, B i

are then used to form a risk score using a variation of the
compound covariate predictor method [28,29]; for a
given set of covariate values x;, ..., xp, the risk index is

given as Rl = Z?:lﬁjxj .

If we want to assess the performance of the classifier, we
must deal with the issue of training and testing the model
using the same data. An "honest" estimate of the predic-
tion error rate is obtained using leave-one-out cross-vali-

. o D 5 x
dation. Define a risk index RI; = 2].:1 Bj—ixij , where

. K 5 . .
i= 1,...,21.:1 my, , and ,3]-,_1- is the effect estimate for gene

j in the combined meta-cohort without the i sample. The
risk index for sample i is a weighted linear combination of
the expression profiles of the top D genes, where the rank-
ing of the genes is based on their corresponding signifi-
cance in the univariate logistic model fit. Classification of
sample i to the risk groups is then based on the i leave-

one-outrisk index, i.e., C(X*) = I{RI;>c} with ¢ being the
empirical quantiles (40" - 70%) of the RI's. The number of
genes D in a classifier is treated as a parameter and opti-
mized to minimize the prediction error rates.

The list of the top cumulative genes in the meta-signature
was obtained by ranking all 2,555 genes by the number of
times in the leave-one-out cross-validation steps that each
one had a P-value from the univariate logistic regression
less than 0.001.

http://www.biomedcentral.com/1471-2164/5/94

Heat map display

We used the treeview software [30] to generate a heat map
representation of the poe pro-files of the meta-signature.
Yellow represents high probability of over-expression and
blue represents high probability of under-expression. For
heat maps of raw data matrices, we preprocessed the data
by mean centering and then dividing by the standard devi-
ation for each row. The means and the standard devia-
tions used in the normalization were the relapse-free (RF)
sample means and variances for each study data. The val-
ues for the recurrence (R) samples after standardizing then
represented the number of standard deviations over or
under the mean RF sample expression.
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Additional File 1

POE imputation of the Sorlie data. The excel file contains a table of
imputed signed probability matrix transformed from the Sorlie et al. study
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study data (2,555 times 78 in dimension).
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POE imputation of the Sotiriou data. The excel file contains a table of
imputed signed probability matrix transformed from the Sotiriou et al.
study data (2,555 times 98 in dimension).
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2164-5-94-S3 xls|

Additional File 4

POE imputation of the Huang data. The excel file contains a table of
imputed signed probability matrix transformed from the Huang et al.
study data (2,555 times 71 in dimension).
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