BIVIC Genomics

Research article

O

BiolVled Central

Whole-genome microarrays of fission yeast: characteristics,

accuracy, reproducibility, and processing of array data

Rachel Lyne'!12, Gavin Burnst!, Juan Mata!, Chris J Penkett!,

Gabiriella Rustici!, Dongrong Chen!, Cordelia Langford!, David Vetrie! and

Jirg Bahler*!

Address: 'The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, U.K and 2Present address: Department of Genetics, University of

Cambridge, Cambridge CB2 3EH, U.K

Email: Rachel Lyne - rachel@flymine.org; Gavin Burns - gpb@sanger.ac.uk; Juan Mata - jm6@sanger.ac.uk; Chris J Penkett - cjp@sanger.ac.uk;

Gabriella Rustici - gr2@sanger.ac.uk; Dongrong Chen - dem@sanger.ac.uk; Cordelia Langford - cfl@sanger.ac.uk;
David Vetrie - vt1 @sanger.ac.uk; Jirg Bahler* - jurg@sanger.ac.uk

* Corresponding author tEqual contributors

Published: 10 July 2003 Received: 20 March 2003
BMC Genomics 2003, 4:27 Accepted: 10 July 2003

This article is available from: http://www.biomedcentral.com/1471-2164/4/27

© 2003 Lyne et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all

media for any purpose, provided this notice is preserved along with the article's original URL.

Abstract

Background
DNA microarrays are currently one of the most powerful  allowing the study of genome-wide gene ex

Background: The genome of the fission yeast Schizosaccharomyces pombe has recently been
sequenced, setting the stage for the post-genomic era of this increasingly popular model organism.
We have built fission yeast microarrays, optimised protocols to improve array performance, and
carried out experiments to assess various characteristics of microarrays.

Results: We designed PCR primers to amplify specific probes (180-500 bp) for all known and
predicted fission yeast genes, which are printed in duplicate onto separate regions of glass slides
together with control elements (~13,000 spots/slide). Fluorescence signal intensities depended on
the size and intragenic position of the array elements, whereas the signal ratios were largely
independent of element properties. Only the coding strand is covalently linked to the slides, and
our array elements can discriminate transcriptional direction. The microarrays can distinguish
sequences with up to 70% identity, above which cross-hybridisation contributes to the signal
intensity. We tested the accuracy of signal ratios and measured the reproducibility of array data
caused by biological and technical factors. Because the technical variability is lower, it is best to use
samples prepared from independent biological experiments to obtain repeated measurements with
swapping of fluorochromes to prevent dye bias. We also developed a script that discards unreliable
data and performs a normalization to correct spatial artefacts.

Conclusions: This paper provides data for several microarray properties that are rarely
measured. The results define critical parameters for microarray design and experiments and
provide a framework to optimise and interpret array data. Our arrays give reproducible and
accurate expression ratios with high sensitivity. The scripts for primer design and initial data
processing as well as primer sequences and detailed protocols are available from our website.
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other global DNA-dependent processes (for reviews see
[1-3]). Glass microarray slides contain thousands of
nucleic acid features that can be interrogated in parallel.
In the popular two-colour assay, fluorescently labelled
samples prepared from RNA of two different cell popula-
tions are co-hybridised onto the microarray to measure
relative gene expression levels [4,5]. In the following, we
will refer to the known features spotted on the microarray
as 'array elements' and to the labelled cDNA hybridised to
the microarray as 'samples'.

Although becoming increasingly routine, DNA microar-
rays are still not a 'plug-and-play' technology, requiring
substantial optimisation for reliable performance. A wide
range of factors can affect data quality, and it is important
to understand various parameters involved [6-9]. This
includes conditions that lead to unwanted changes in
gene expression before RNA extraction, such as variations
in the environment (e.g., temperature shocks) or in the
genotype (e.g., auxotrophic markers). Other parameters,
including array and experimental design, protocols and
data processing procedures, can affect array data inde-
pendently of biological processes. To use microarrays to
their full potential, it also helps to know the performance
characteristics of a microarray platform. Important prop-
erties are data reproducibility within and between arrays,
effects of dye biases and other artefacts in the data struc-
ture, as well as the accuracy, specificity and sensitivity of
signal intensity measurements.

The fission yeast Schizosaccharomyces pombe is a popular
model organism whose genome has been fully sequenced
[10]. The genome is well annotated and contains some-
what less than 5000 predicted genes [11,12]. Fission yeast
has a low-complexity genome and similar experimental
advantages as the budding yeast Saccharomyces cerevisiae,
which has been widely used to pioneer functional genom-
ics approaches (reviewed in [13,14]). Experimental condi-
tions for yeast can be tightly controlled, and it is
straightforward to study homogeneous populations of
cells and to combine findings from global studies with
genetic data. Fission and budding yeasts are only distantly
related and separated >1000 million years ago according
to recent estimates [15]. S. pombe therefore provides a val-
uable complementary model system, and it should be
insightful to compare and contrast global datasets
obtained in these two unicellular eukaryotes.

We have recently reported genome-wide expression pro-
files during sexual differentiation and stress responses in
fission yeast [16,17]. Here we describe the design of the
fission yeast microarrays together with experimental pro-
cedures and data evaluation pipeline. Various properties
and performance characteristics of our microarray system

http://www.biomedcentral.com/1471-2164/4/27

were measured, which help to understand the nature and
limitations of array data.

Results and Discussion

Effects of array element properties on fluorescence signals
and ratios

We have built a DNA microarray containing elements for
all the known and predicted open reading frames (ORFs)
of the fission yeast genome (see Methods). For each ORF,
we amplified 180-500 bp of exon sequence by PCR. To
test the effect of array element size on fluorescence signal
intensities, PCR products of a wider size range were used
for some genes (80-1500 bp). Although the signals
tended to increase with increasing element size, there was
only a ~2-fold difference between the lowest and highest
signal intensities (Figure 1A). Array elements larger than
~500 bp did not lead to increased signals, similar to what
has been reported before [18,19]. Importantly, the signal
ratios were independent of array element size, and they
were much less variable than the signal intensities, differ-
ing by only a few percents (Figure 1A).

The position of an array element within a gene also
affected the signal intensities. Figure 1B shows that tiles of
equal length selected closer to the 3' end of genes tend to
give higher signals than those closer to the 5' end, and
there was a ~3-fold difference between lowest and highest
signal intensities. This reflects the efficiency of reverse
transcription, which is primed from the polyA-tail of the
mRNAs. Again, the signal ratios showed little variation
and were independent of signal intensities, suggesting
that both fluorescence dyes are equally incorporated dur-
ing labelling and independently of array element posi-
tions (Figure 1B). Because signal intensities can affect
reproducibility, we maximized signals by selecting array
elements that were less than 2.5 kbp from the gene ends
(see Methods).

For each array element, we performed two rounds of PCR,
using gene-specific primer pairs for the first round and
gene-specific reverse primers in combination with a uni-
versal forward primer containing a 5'-aminolink for the
second round. This allowed covalent linkage of the coding
strand to the modified glass slides, thus providing a sin-
gle-stranded array element that is specific for transcrip-
tional direction. Available data strongly suggest that our
array elements are indeed strand-specific. For example,
mek1 transcripts did not give any microarray signals above
background in timecourse experiments of cells undergo-
ing meiosis and sporulation [16], although mekl is
induced during meiosis [20]; we later realized that the
primers for mek1 had been designed the wrong way round
and that our microarray had included only the anti-sense
strand of this gene. Moreover, the rec7 transcript showed
a different gene expression profile during the meiotic
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Effects of array element size and position on fluorescence signals and ratios. (A) PCR products of varying sizes (80—1500 bp)
were used as array elements for two genes (mid/ and cdcl 2). In all cases, the 3' ends of the array elements were kept constant
(~50 bp upstream of the stop codon). Top: fluorescence signals (local background subtracted) relative to array element size;
the means and standard deviations of eight signal measurements are shown (two self-self experiments with two replicate meas-
urements of both Cy3 and Cy5 each). Bottom: normalized ratios of signals (Cy5/Cy3) relative to array element size; the means
and standard deviations of four measurements are shown (two self-self experiments with two replicate measurements each).
(B) PCR products from varying positions within two genes (ags/ and tif471) were used as array elements. In all cases, the sizes
of array elements were similar (~500 bp). Top: fluorescence signals (local background subtracted) relative to array element
position (measured as distance of 3'ends of elements to stop codon); the means and standard deviations of eight signal meas-
urements are shown (two self-self experiments with two replicate measurements of both Cy3 and Cy5 each). Bottom: normal-
ized ratios of signals (Cy5/Cy3) relative to array element position; the means and standard deviations of four measurements
are shown (two self-self experiments with two replicate measurements each).

timecourse experiments compared to the overlapping
tos1, tos2, and tos3 that are transcribed from the opposite
strand [16,21]. The strand specificity was also evident
with genes for non-coding RNAs where we selected array
elements for both orientations (Table 1). In all cases, the
elements containing the coding strands produced strong
signals, whereas the signals from the non-coding strands
were too close to the background signals to pass our cutoff
criteria. We conclude that only the amino-modified

strands bind significantly to the slides. This allowed the
design of strand-specific array elements that can discrimi-
nate transcriptional directions and that minimize the
interference of complementary strands during hybridiza-
tion. Accordingly, single-stranded array elements give
higher signals than double-stranded elements of the same
size and sequence on Codelink slides (D.V., unpublished
observations).
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Table I: Strand-specific array elements report direction of transcription

Gene [Reference]

Array element direction 2

Mean signal +/- SD b

meiRNA [42] forward
reverse
meu3 [37] forward
reverse
meul | [37] forward
reverse
meul9 [37] forward
reverse
meu20 [37] forward

reverse

2790 +/- 850

30 +/- 17

25440 +/- 12210
40 +/- 37

1040 +/- 250
8+/-5

35960 +/- 13470
70 +/- 40

5100 +/-1050
30 +/-20

3 forward: coding strand contains 5'-amino modification; reverse: non-coding strand contains 5'-amino modification. ) Mean and standard deviation
of six fluorescence signals (3 experiments with two replicate measurements each) from meiotic pat/ timecourse at 5 hr timepoint [16].

Initial data processing and normalization

We developed a script for data pre-processing and normal-
ization (for details, see Methods). To filter out unreliable
data, we only use signals from those spots with more than
50% of the pixels greater than two standard deviations
(SD) above local background signal in both channels.
Data from spots showing more than 95% of the pixels
greater than 2 SD above local background in one channel
are retained, even if the other channel does not pass the
normal cutoff. This prevents the elimination of data from
genes that are not or very weakly expressed in one condi-
tion, but show reliable expression in the other condition.
Although the absolute ratio values from such spots will
not be accurate, it is valuable to identify these genes as
they are expected to be clearly differentially expressed. The
script also provides a quality control report indicating the
number and percentages of discarded spots as well as data
of genes with low correlation between replicate spots.

DNA microarray data are based on signal ratios, and the
relative fluorescence intensities between the scanned
channels must be normalized to adjust for systematic
biases such as differences in RNA levels, dye incorpora-
tion, and detection efficiencies. To visualize the global
structure of microarray data, it is popular to use ratio-
intensity plots (also referred to as MA plots) [22,23].
These plots can reveal signal intensity-dependent biases in
ratio measurements caused by non-linear effects of fluo-
rescence dyes at extreme signals. Figure 2A shows that the
log signal ratios deviate from zero in the low signal range.
A proposed way to correct for such effects is by Lowess
normalization [8,24], although the actual reasons for the
imbalances that Lowess corrects are not well understood
[25]. After filtering out data from weak signals as
described above, the remaining signals do not appear to
show intensity-dependent biases (blue spots in Figure
2A). Moreover, results were very similar either with or

without Lowess normalization using GeneSpring (data
not shown). We therefore do not apply this type of nor-
malization to our data.

The positions of the spots on the array, unlike the signal
intensities, did have a pronounced effect on the signal
ratios in many of our arrays (Figure 3A). The pattern and
strength of these spatial effects varies from slide to slide.
For the purpose of illustration, we show an extreme case
of this phenomenon, but the effects we normally observe
are much milder. These spatial artifacts could be caused by
uneven slide surface or differences in hybridization condi-
tions across the array, by the scanning process, or by a
combination of all (unpublished observations; see also
[26]). The spatial effects varied continuously from region
to region and did not correlate with sub-grids of the array
that are printed with different spotting pins. It is therefore
unlikely that the observed irregularities are caused by the
spotting pins, although pin variations can lead to local
differences in signal ratios in some cases [24]. These spa-
tial artifacts cannot be corrected with a global normaliza-
tion, and our script therefore uses a local normalization
scheme. For each spot on the array, we apply a sliding
window of neighboring spots (see Methods for details).
Assuming that the median ratio of all spots showing
measurable signals within the sliding window should be
1, the script calculates a normalization factor for the signal
ratio of the central spot. The array elements are ordered
randomly on the array with regard to chromosome
position, minimizing the probability that our normaliza-
tion scheme masks any biological effects caused by
genome rearrangements such as deletions or duplications.

The application of this local normalization scheme leads
to ratios that are well balanced over the entire measurable
signal range (Figure 2B,2C) and that no longer show any
position-dependent effects (Figure 3B,3C). To further test
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Ratio-intensity plots before and after normalization. (A) log-transformed signal ratios (Cy3/Cy5) are plotted against the log-
transformed products of signal intensities. Grey spots: discarded data that were filtered out by initial data processing (see text
for details); blue spots: data used for further evaluation. Left side: temperature experiment with sample from cells grown at
25°C labelled with Cy5 and sample from cells grown at 30°C labelled with Cy3. Right side: identical sample labelled with Cy3
and Cy5 and hybridised on same array ('self-self' hybridisation): all signal ratios are expected to be |, and the absence of differ-
ential gene expression is reflected by a tighter distribution of the spots. The number of the blue spots that were retained for

data evaluation is 9161 (left) and 8560 (right). (B) As in (A) after normalization of the data using our local normalization
scheme. (C) Overlay of spots before (blue) and after (red) normalization.

Page 5 of 15

(page number not for citation purposes)



BMC Genomics 2003, 4 http://www.biomedcentral.com/1471-2164/4/27

A
2|l Before normalization. , - A v
Q
P
g
=1
c
o
7
0 : : - - t 0 . :
B

> 1 After normalization 21

Signal ratio

0 t f . + + 0 - -
Cc
24 S 2 2
2
=
£
=1 14
c
o
9]
0 } t t + t 0 T T
0 10000 20000 30000 40000 50000 2000 10000 18000
Y position {(um) X position {um)

Figure 3

Correction of spatial artifacts by local normalization. (A) Distribution of signal ratios along the Y- (left) and X-axis (right) of
the microarray slide before normalization. The data are from the same array as in Figure 2 (left side). Only spots giving usable
data are shown. The groups of spots separated by small gaps reflect the 12 x 4 sub-grids of the array, each printed with a dif-
ferent spotting pin. (B) Distribution of signal ratios as in (A) after local normalization of the data. (C) Overlay of the data from
(A) and (B).
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Replicate data are more similar to each other after local normalization. The ratios of signal ratios from corresponding pairs of
replicate spots on the same array were determined for all array elements (Ratio | / Ratio 2). Increased agreement between
replicate measurements leads to ratios of signal ratios closer to |. The data are from the same array as in Figure 2 (left side)
and Figure 3. Left histogram: replicate data distribution before normalization; right histogram: replicate data distribution after

normalization.

whether our normalization scheme improves the data, we
compared data from replicate spots on an array before and
after normalization. Indeed, replicate data are in better
agreement with each other after local normalization, con-
sistent with higher data quality (Figure 4). While our nor-
malization performs well in most biological conditions,
the assumption that the median of ratios is 1 may not be
valid in some cases (e.g., in quiescent cells where much of
transcription is shut down). If there are large differences in
gene expression between the samples, it should be prefer-
able to use external controls for normalization.

Sensitivity, specificity, and accuracy of microarray data

The fission yeast microarrays contain a range of control
spots including elements for five bacterial genes (see
Methods). Spots with these bacterial genes do not pick up
any measurable signals when hybridized with fission
yeast cDNA (negative controls). Spiking of known quanti-
ties of the corresponding bacterial mRNAs into the label-
ling mix allows to estimate the linear range and sensitivity
of our arrays (Figure 5). The signal readout is linear over a
wide range of at least 3-3000 pg amount of transcript. We
can easily measure fluorescence signals from transcript
amounts as low as 3 pg (in a complex sample of 20 pg of

total RNA). This should allow detection of one mRNA
molecule in a population of at least 400,000, thus allow-
ing the measurement of very weakly expressed genes,
given the low-complexity fission yeast genome. The
number of genes that produce measurable signals
depends on biological conditions and on array quality.
For exponentially growing cells, we typically measure 80-
90% of all genes. Some 350 genes did not give measurable
signals in any of six self-self experiments of cells vegeta-
tively growing in rich (4 experiments) or minimal
medium (2 experiments), suggesting that these genes are
not or very lowly expressed in vegetative cells. There was
no significant difference in the number of measurable
genes between cells grown in rich vs minimal medium.
Although we cannot directly correlate these data with the
number of genes actually being expressed, it appears that
the majority of genes show at least a basal level of expres-
sion during exponential vegetative growth, given that neg-
ative control genes do not give any signals above
background. In humans fewer genes appear to be
expressed in a given cell line [27], although it can be as
high as 80% for some tissue culture samples [22].
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Linear readout range and detection limit of spiked RNA samples. 20 ng of S. pombe total RNA was spiked with five Bacillus sub-
tilis MRNAs at various concentrations. Left side: lysA (3 pg), pheB (15 pg), thrB (30 pg), dapB (150 pg), and trpC (300 pg); right
side: lysA (60 pg), pheB (300 pg), thrB (600 pg), and dapB (3000 pg). The median fluorescence intensities above local back-
ground of the B. subtilis control spots (determined from ~100 spots/transcript distributed evenly across the array) were plot-

ted as a function of transcript concentration.

The arrays also contain elements for a range of budding
yeast genes that show varying degrees of DNA sequence
identity to specific fission yeast genes (22 array elements
ranging from 30-79% identity to S. pombe elements). This
allows to estimate the level of sequence diversity required
between two genes to give specific signals. Figure 6 shows
hybridization data of the 13 array elements with the high-
est similarity to S. pombe genes. Both the absolute
'unspecific' signal intensities and the percentages of
'unspecific' relative to 'specific' signals are shown, because
highly expressed genes are expected to result in higher
absolute 'unspecific' signal intensities. Cross-hybridiza-
tion becomes apparent with array element sequence iden-
tities higher than ~70% under our optimized
hybridization and washing conditions. Array elements
with lower than 70% identity had very weak signals with-
out exception that would not pass our cutoff criteria. The
S. pombe array elements were selected to be less than
~70% identical to other regions in the genome wherever
possible (see Methods). We therefore expect that there
will be only few skewed data due to cross-hybridization.

We also determined the accuracy of the signal ratios meas-
ured with our arrays using the S. cerevisiae elements. To
this end, we spiked S. cerevisiae RNA in various amounts

into the labelling reactions and compared expected with
measured signal ratios after microarray hybridization
(Table 2). The median signal ratios were close to the
expected ratios in all cases and for a wide range of signal
intensities; the least accurate measurements were ~40%
lower than expected. S. cerevisiae array elements with
more than 70% homology to S. pombe genes gave lower
than expected ratios (probably due to competitive hybrid-
ization from S. pombe samples) and were not included in
the data of Table 2. We conclude that our arrays give accu-
rate data for signal ratios within the range tested.

Reproducibility of array data

Information from repeatedly spotted array elements and
repeatedly hybridised experiments help to assess data
quality and reliability. Reproducibility can be measured at
different levels: 1) duplicate spots within an array, 2)
hybridisation of an identical sample to different arrays
(technical repeats), and 3) hybridisation of independent
samples from two identical experiments (biological
repeats). As measures for reproducibility, we have calcu-
lated the standard deviation (SD) and coefficient of varia-
tion (CV) between repeatedly measured signal ratios
(Table 3). Generally, the microarrays give highly repro-
ducible results with typically no or very few genes
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Unspecific hybridisation to similar array elements. PCR products from S. cerevisiae genes with various sequence similarities to S.
pombe genes were used as array elements and hybridised with S. pombe samples. Hybridisation data are shown for |3 such
genes showing 51%-79% identity to S. pombe genes across their entire lengths of ~200 bp. Blue bars: fluorescence signals (local
background subtracted) picked up by the S. cerevisiae array elements; the means and standard deviations of four signal measure-
ments are shown (one self-self experiment with two replicate measurements of both Cy3 and Cy5 each). Yellow bars: relative
amount (in percentages) of 'unspecific' signals from S. cerevisiae array elements compared to 'specific’ signals from the corre-
sponding S. pombe array elements. Array elements for the following S. cerevisiae genes were used (increasing similarity; corre-
sponding S. pombe genes in parentheses): HDA| (SPAC8C9.06c); RPLI8A (rpll8-1); CDC2 (cdc6); CDCI9 (pykl); RPLI8A (rpll 8-
2); URA7 (SPACI0F6.03c); RPL27A (rpl27-2); HOGI (styl); YPTI (ypt2); ACTI (actl); HTAI (htal); HTBI (htbl); ACTI (actl).

Table 2: Accuracy of signal ratios determined by spiking of S. cerevisiae RNA

Spiked ratios 2 Measured median ratios (range)® Range of signals©)

1:2 1.9 (1.8-2.1) 490/270 — 62,080/32,060
1:5 5.5 (4.3-7.2) 420/90 — 58,320/10,990
1:10 9.7 (5.8-11.1) 380/40 — 35,890/5620
1:20 19.6 (12.2-23.6) 340/20 — 56,900/3110

3) Total S. cerevisiae RNA was used in the following amounts: 3 pg:6 ug; 2 pug:10 pg; | pg:10 pg; 0.5 pug:10 ng. For normalization, 10 g of total S.
pombe RNA was included in each labelling reaction. ®) Medians of 30 signal ratios (15 S. cerevisiae array elements with two replicate measurements
each). The range indicates the lowest and highest signal ratios measured. <) The S. cerevisiae array elements produce a wide range of signals; the low-
est and largest signal pairs used to determine signal ratios are shown.

Page 9 of 15

(page number not for citation purposes)



BMC Genomics 2003, 4

Table 3: Reproducibility of array data

http://www.biomedcentral.com/1471-2164/4/27

Measurement Mean SD (Range)

CV (Range) b

Within array replicates 9
Technical repeats 9
Biological repeats ©

0.04 (0.03-0.06)
0.04 (0.02-0.06)
0.07 (0.05-0.10)

4.4% (3.1-6.2%)
4.5% (2.5-6.3%)
6.4% (4.9-8.1%)

3) Standard deviation (SD) of signal ratios were calculated for each measurable pair of array elements, and the mean SDs of all repeated measure-
ments are indicated. The range indicates the lowest and highest mean SDs obtained from several pairs of comparisons. b)) CV: Coefficient of varia-
tion: [(SD of signal ratios X 100)/mean of signal ratios] was calculated for each measurable pair of array elements, and the mean CVs of all repeated
measurements are indicated. The range indicates the lowest and highest mean CVs obtained from several pairs of comparisons. 9 Determined from
10 arrays of experiments used in this study (4 self-self, | temperature, 4 media, and | harvesting experiment; see Methods). 9 Determined from 7
pairs of arrays from this study (4 self-self, 4 media) and from [17](oxidative stress); for each pair identical RNA samples were used that were
labelled independently and with reverse colors for the two hybridisations. Within array replicate data were averaged before analysis. © Determined
from 9 pairs of arrays from this study (4 self-self, 4 media) and from [|7](oxidative stress); for each pair RNA samples from identical but independ-
ent biological experiments were used that were labelled with reverse colors for the two hybridisations. Within array replicate data were averaged

before analysis.

showing greater than 2-fold differences between different
measurements (Figure 7A). Technical and biological
repeats were compared after averaging data from dupli-
cate spots within one array, which produces more accurate
measurements and reduces variability. For
straightforward biological experiments (such as the com-
parison of cells logarithmically growing in different
media, Figure 7A), biological repeats gave similar repro-
ducibility to technical repeats. However, the variability of
biological repeats tended to be higher than for technical
repeats in many experiments where biological conditions
could not be as tightly controlled (Table 3). Because the
technical variability is consistently low in our arrays, we
always use samples prepared from independent biological
experiments to obtain repeated measurements on differ-
ent arrays. This is the most effective use of microarrays as
the biological variability, which is the source of the great-
est noise in most cases, is included in the repeated meas-
urements (see also [6]).

To check for systematic biases in fluorescent dye incorpo-
ration, we performed a series of self-self hybridisations,
i.e., an identical sample was labelled with both the Cy3
and Cy5 fluorochrome and hybridised on the same array.
A typical scatter plot of such a hybridisation is shown in
Figure 7B. The great majority of genes appeared to be sim-
ilarly labelled with both dyes, and amongst the spots with
good data (blue) no signal intensities were greater than 2-
fold different in the two channels. The average SD of sig-
nal ratios from self-self experiments was 0.08. However, if
self-self experiments were repeated using the same sam-
ple, a number of genes appeared as significantly
differentially expressed. For example, using significance
analysis of microarrays (SAM) allowing one false positive
[28], no genes appeared as differentially expressed with
up to three technical repeats, but 108 genes were identi-
fied as 'differentially expressed' with four technical

repeats. If the signal ratios from two of these self-self
experiments were inverted, no differentially expressed
genes were found by SAM. This indicates that the 108 'sig-
nificant' genes do not reflect a stochastic process but a sys-
tematic bias for some genes, most likely in dye
incorporation. This bias is too subtle to be evident with
few repeats, but became statistically significant if the
experiment was repeated more than three times. To pre-
vent this dye bias, we routinely swap the dyes during
labelling for repeated hybridisations.

Conclusions

We present a complete description of our microarray plat-
form for fission yeast together with various data on array
performance and properties that are rarely reported. This
helps to compare our microarrays with other platforms,
and it provides a framework to put array data into context
and understand their potential and limits. We also report
straightforward and reliable experimental procedures
together with a data evaluation pipeline optimised for the
fission yeast microarrays. This results in accurate, sensi-
tive, and highly reproducible data, allowing reliable meas-
urements of expression ratios of the great majority of all
fission yeast genes. The reported procedures and resources
should also be useful for other microarray systems. To get
the best data out of a limited number of arrays, we recom-
mend to use samples from independent biological exper-
iments and to swap the fluorescent dyes for repeated
hybridisations. All experimental protocols, primer
sequences, and the scripts for primer design and initial
data processing are available from our website [29].

Methods

Microarray construction: primer design, PCR reactions,
and arraying

We generated each array element by polymerase chain
reaction (PCR) using gene-specific primer pairs (GenSet)
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Reproducibility of signal ratios and intensities. (A) Scatter plot showing the reproducibility between two biological repeats of
an experiment where cells grown in minimal or rich media were directly compared to each other. The plot represents 4245
genes that gave measurable data in both experiments. The CV for the repeated experiment shown here is 5%. Just one gene
shows an ~2-fold difference in ratios between the two experiments (just outside the outer lines). (B) Autocorrelation plot
showing the distribution of Cy5 and Cy3 signal intensities from a single self-self experiment. Median signal intensities minus
median local background intensities were determined and signals from replicate spots were averaged. Grey spots: data from
790 spots that were flagged 'absent' during analysis or initial data processing (see Methods). Blue spots: data from 4260 spots
that were retained for evaluation. All the signal intensities from the blue spots are <2-fold different from each other (within

outer lines).

selected for each of the predicted and known ORFs in the
annotated S. pombe genome sequence [10,11]. We wrote a
Perl script (available at our website: [29]) to batch process
EMBL format files for exon selection and primer process-
ing. PRIMER3 [30,31] was used to determine primer
sequences matching defined criterions. The majority of
primers were 18-22 bp long with melting temperatures
between 58-62°C and GC contents between 40-60%.
Primers were selected such that the resulting amplicons
were 180-500 bp long and contained 100% exon
sequence, and the reverse primers were positioned <2500
bp upstream of the stop codon. All the forward primers
had an additional 8 bp universal sequence at their 5' end
(5'-TGACCATG-3'), which is not included in above
parameters. All primer and amplicon sequences were
blasted against the S. pombe genome. Only primers and
amplicons that showed no significant similarity to other
sequences in the genome were used (i.e., primers with a
blast score of <70 and amplicons with a blast score of
<400, the latter corresponding to less than ~70%
sequence identity). For ~50 genes, we amplified up to 150

bp of 3'- or 5'-untranslated regions to obtain more specific
array elements. In a few cases of highly similar genes, we
had to use less specific array elements (blast score of
<1000 with other sequences in the genome); this affected
~140 genes, including many ribosomal protein and trans-
poson-related genes.

In addition to the predicted ORFs, we amplified fragments
of the 11 mitochondrial genes, 19 pseudogenes, various
RNA genes (a few genes for ribosomal RNA, tRNAs, and
snRNAs as well as 68 other larger genes for 'miscellaneous
RNAs' [32]), 114 very hypothetical ORFs, 33 large introns,
as well as centromeric repeats and ars elements. The latest
microarrays contain elements for 5269 different genes
and other genomic features of fission yeast. Some genes
are represented by two or more different array elements.
We also designed array elements from 22 S. cerevisiae
genes showing varying degrees of similarity to S. pombe
genes to control for cross-hybridization. The arrays also
contain elements for several widely used markers and
epitope tagging sequences: Kan-MX, GFP, GST, Myc, and
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3HA [33]; TAP [34]; and Pk [35]. A detailed file containing
all the primer sequences and parameters is available from
our website [29]. PCR products of five genes from the
prokaryote Bacillus subtilis were used as control elements
on the array (lysA, pheB, dapB, thrB, and trpC). These can
be used as positive controls by spiking in a 'cocktail’ of the
corresponding bacterial mRNAs in known quantities (for
details on control genes and preparation of mRNA 'cock-
tails' by in vitro transcription, see [36]).

PCR reactions were performed in 96-well plates (Costar)
using a Tetrad thermocycler (M] Research). For each array
element, two rounds of PCR reactions were performed.
For the first PCR reaction, we used gene-specific primer
pairs, with forward primers containing an additional uni-
versal sequence (see above). As a template, we used
genomic DNA prepared with a simple glass bead protocol
[33]. To amplify array elements from genes containing
only small exons (<250 bp), we used pools of cDNA
libraries as a template ([37,38]; pREP3X: constructed by B.
Edgar and C. Norbury; Clontech). PCR products from the
first round were used as templates for the second round of
PCR reactions, together with gene-specific reverse primers
and a universal forward primer containing a 5'-amino
modification (5'-GCTGAACAGCTATGACCATG-3";
Oswel). Details of the PCR reaction mixes and cycling
parameters are available from our website [29]. All PCR
products were checked for single strong bands of expected
sizes on 2.5% agarose 1x TBE slab gels. Typically, the fail-
ure rate was <3%. Failed PCR reactions were repeated, and
new primer sequences were ordered in cases where PCR
reactions failed repeatedly. At the time of writing, array
elements for all predicted genes had been successfully
amplified. The gene-specific primer pairs together with
the two sequential and independent PCR reactions make
it highly unlikely that array elements are assigned to
wrong genes.

Spotting buffer was added to the PCR products at a final
concentration of 250 mM sodium phosphate pH 8.5,
0.00025% Sarkosyl, followed by spin filtration using 96-
well filtration plates (Millipore). The filtered array ele-
ments with spotting buffer (15 ul total volume) were then
re-arrayed into 384 well plates (Genetix), snap frozen on
dry ice, and stored at -70°C. These array elements were
printed without any further purification onto activated
amine-binding slides (Codelink, Amersham) using a
BioRobotics TAS arrayer with a 48-pin tool. All array ele-
ments are printed in duplicate onto each slide (~13,000
spots/slide). The replicate spots are printed in separate
halves of the slides and with different spotting pins to
obtain two measurements that are as independent as pos-
sible [6], and to prevent local depletion of the sample and
minimize the chance of losing both measurements of a
gene due to local hybridisation problems (unpublished
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observations). One array of each batch was quality control
tested by hybridization. Array elements were dried com-
pletely in a vacuum concentrator and stored at -70°C in
sealed plates between print rounds. Before printing, array
elements were reconstituted by addition of HPLC water
(BDH) and left to dissolve o/n at 4° C. Details of the array-
ing and post-processing procedures are available from the
website of the Microarray Facility at the Sanger Institute
[36].

RNA isolation from fission yeast

We used the S. pombe wild-type strain 972 h-for all exper-
iments [39]. Standard media and growth conditions were
used [40], and cells were harvested from liquid cultures at
mid-exponential phase (ODg,, 0.1-0.4), unless stated
otherwise. For the spike-in experiment (Table 2), S. cerevi-
siae cells (strain AB1380) were grown in YPD medium to
ODg 0.3, and RNA was extracted as described below for
S. pombe cells.

Cells were harvested either by mild centrifugation (2 min,
800 rcf), and the pellet was snap frozen in liquid nitrogen
after discarding the supernatant, or by rapid filtration
(Millipore), and the filters were snap frozen in liquid
nitrogen after transfer into a 50 ml tube. To see whether
these two methods of cell harvesting affect gene
expression, we used a microarray to directly compare RNA
samples obtained after cell filtration or centrifugation of
the same culture grown in EMM medium. The data
obtained from the two samples were very similar to each
other (SD of signal ratios: 0.08), and only two mitochon-
drial genes were 2-fold different between the samples. We
conclude that the two methods of cell harvesting that we
routinely use do not lead to significant differences in gene
expression.

Total RNA was isolated from S. pombe cells using a hot
phenol method followed by phenol-chloroform extrac-
tions, precipitation, and purification using Qiagen RNe-
asy columns. (We had also experimented with isolating
mRNA before labelling, and only a few genes give differ-
ent results compared to total RNA. Because mRNA isola-
tion requires much larger cell samples and potentially
introduces biases, we routinely use total RNA for label-
ling.) RNA quality was determined by gel electrophoresis
and spectrophotometry. A detailed protocol is available
from our website [29].

Sample labelling and microarray hybridisation

To generate fluorescently labelled samples for microarray
hybridisation, we used a direct labelling protocol. 10-20
pg of total RNA was reverse transcribed into cDNA with
Superscript enzyme (GibcoBRL) and an oligo-dT,, primer
in the presence of Cy3- or Cy5-dCTP (PerkinElmer). We
have also experimented with a mix of random nonamer
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and oligo(dT) primers for labelling; although this will
lead to amplification of non-coding RNAs, it does not give
increased background, and significantly improves the sig-
nal intensities of most spots. Only a few genes are differ-
entially labelled when comparing the two priming
methods. One advantage of using a random primer is that
mRNAs without or with short polyA tails will also be rep-
resented in the hybridisation. The labelled cDNAs were
purified using AutoSeq G-50 columns (Amersham) and
precipitation. Hybridization was performed at 49°C in a
buffer containing 48% formamide using LifterSlips (Erie
Scientific) and a hybridisation oven with humid chamber
(Boekel Scientific). Slides were washed at room
temperature and stored in the dark for scanning. A
detailed protocol for labelling, hybridisation, and slide
washing is available from our website [29].

Data acquisition, processing, normalization, and
evaluation

Microarrays were scanned using a GenePix 4000 B laser
scanner, and fluorescence signals were analysed using
GenePix Pro software (Axon Instruments). Array images
that did not pass minimal quality thresholds were not
used (median signal-to-background >3; median signal-to-
noise >5; mean of median background signal <200).
Technically flawed spots were removed either automati-
cally by the GenePix software or through manual investi-
gation of the array images, and such spots were flagged as
‘absent' in the GenePix results files.

For subsequent data processing and normalization, we
developed a Perl script that uses GenePix results files as
input (script available from or website [29]). This script
discards data from spots with failed or faulty PCR prod-
ucts by masking them 'absent'. Data from spots with low
array element concentration (as judged by PCR product
staining on gel) or PCR products where the reverse primer
is located 2500-3500 bp from the gene end are flagged
'marginal’. All genes on the array are also represented by
at least one good array element, and 'marginal' data from
sub-optimal array elements are only used as a backup if
other data from a given gene are not available. The script
also applies cut-off criteria to discard data from weak sig-
nals: spots with <50% of pixels >2 SD above median local
background signal in one or both channels are flagged
‘absent’, unless one channel shows >95% of the pixels >2
SD above local background. The SD was calculated using
only the lower 55% of the pixel intensities (called SD2 in
GenePix Pro), as this measure is less susceptible to being
skewed by bright pixels. The script provides a quality con-
trol report showing the numbers and percentages of spots
discarded during the various steps of the data analysis
pipeline as well as data of replicate spots with signal ratios
>2-fold different from each other.

http://www.biomedcentral.com/1471-2164/4/27

The script also performs a local normalization using a
sliding square window of spots surrounding each spot. A
user-defined minimum number of spots is chosen to be
used with which to normalize over (default is 400). The
window size default is 16 spots. This means the square
contains 33 x 33 spots (1089) surrounding central spots,
33 x 17 spots (561) surrounding spots at the edge of the
array, and 17 x 17 spots (289) surrounding spots in a cor-
ner of the array. Only spots that are flagged 'present’ are
used for the normalization. Hence, using a window of 16
means that sometimes, especially for spots close to the
corners of the array, less than 400 spots may actually be
used for the normalization. In cases where the block size
chosen is small, the window size is increased up to a user-
defined maximum window size (default is 24) so that at
least 600 total spots are in the square. This means the
block size used with this window change is larger than
may be necessary to optimise the chances of having 400
'present' spots to use for normalization. This is a heuristic
to make the algorithm faster for the majority of spots,
since counting the number of 'present' spots in the initial
square uses a relatively large amount of computational
time. If, during normalisation, the number of spots is still
found to be less than 400, the window is increased further
until the maximum window size is reached. In these cases,
the spots that do use less than 400 spots for normalisation
are reported in the output log file. The script then calcu-
lates a normalization factor such that the median signal
ratio of all measurable spots within the square equals 1,
and this factor is then used to scale the signal ratio for the
central spot. The signal ratios used for normalization cor-
respond to the median of all pixel-by-pixel ratios of sig-
nals minus median local background for each pixel of a
given spot (called 'median of ratios' in GenePix Pro). This
measures ratios more reliably and is less affected by
unspecific signals than the 'ratio of medians' (see also
[41]). In the rare cases where the 'median of ratios' was
zero, the 'ratio of medians' was used instead for data eval-
uation. Finally, the script averages the normalized data
from all replicate spots that produced measurable signal
ratios of the same genomic element. These mean normal-
ized ratios were then used for downstream data evalua-
tion and mining using GeneSpring (Silicon Genetics) and
SAM [28].

Microarray experiments used in this study

Self-self experiments were performed with RNA isolated
from exponentially growing cells, followed by labelling
identical samples with both Cy3 and Cy5 fluorochromes
and hybridising on the same array (six experiments in
total). Self-self experiments were used for data in Figure 1,
Figure 2 (right), Figure 5, Figure 6, Figure 7B, Table 2, and
Table 3. For experiments showing differential gene expres-
sion, we compared samples from cells growing at 25°C vs
30°C (one experiment; used for Figure 2 [left], Figures
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3,4,5, and Table 3), samples from cells growing in full vs
minimal medium (four experiments; used in Figure 7A
and Table 3), as well as samples from cells harvested by
centrifugation vs filtration (one experiment; used in Table
3). Some data were acquired from previously published
experiments, including samples from meiotic vs vegeta-
tive cells ([16]; Table 1) and samples from oxidatively
stressed vs unstressed cells ([17]; Table 3).
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