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Abstract

Background: The lack of consensus among reported gene signature subsets (GSSs) in multi-gene biomarker
discovery studies is often a concern for researchers and clinicians. Subsequently, it discourages larger scale
prospective studies, prevents the translation of such knowledge into a practical clinical setting and ultimately
hinders the progress of the field of biomarker-based disease classification, prognosis and prediction.

Methods: We define all “gene identificators” (gIDs) as constituents of the entire potential disease biomarker space.
For each gID in a GSS of interest ("tested GSS'/1GSS), our method counts the empirical frequency of gID
co-occurrences/overlaps in other reference GSSs (rGSSs) and compares it with the expected frequency generated
via implementation of a randomized sampling procedure. Comparison of the empirical frequency distribution (EFD)
with the expected background frequency distribution (BFD) allows dichotomization of statistically novel (SN) and
common (SC) glDs within the tGSS.

Results: We identify SN or SC biomarkers for tGSSs obtained from previous studies of high-grade serous ovarian
cancer (HG-SOC) and breast cancer (BC). For each tGSS, the EFD of gID co-occurrences/overlaps with other rGSSs is
characterized by scale and context-dependent Pareto-like frequency distribution function. Our results indicate that
while independently there is little overlap between our tGSS with individual rGSSs, comparison of the EFD with
BFD suggests that beyond a confidence threshold, tested glDs become more common in rGSSs than expected.
This validates the use of our tGSS as individual or combined prognostic factors. Our method identifies SN and SC
genes of a 36-gene prognostic signature that stratify HG-SOC patients into subgroups with low, intermediate or
high-risk of the disease outcome. Using 70 BC rGSSs, the method also predicted SN and SC BC prognostic genes
from the tested obesity and IGF1 pathway GSSs.

Conclusions: Our method provides a strategy that identify/predict within a tGSS of interest, gD subsets that are
either SN or SC when compared to other rGSSs. Practically, our results suggest that there is a stronger association
of the IGF1 signature genes with the 70 BC rGSSs, than for the obesity-associated signature. Furthermore, both SC
and SN genes, in both signatures could be considered as perspective prognostic biomarkers of BCs that stratify the
patients onto low or high risks of cancer development.
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Background

Current technology encourages the study of biological
phenomena on a genome-wide scale. Technological plat-
forms such as microarrays, next-generation sequencing,
and mass spectrometry have resulted in generation of
data on an unprecedented scale [1,2]. Inadvertently, the
field of bioinformatics which includes high-performance
cloud computing, adaptation of statistical methods,
design of novel algorithms and generation of databases,
play critical roles in the analysis of these massive and
diverse datasets [3]. The variation in the type and amount
of biological data, coupled with the fact that investigators
may sometimes be confronted with a question that can-
not be answered using current statistical techniques or
algorithms [4], means that the field of statistical methods
and algorithms is under constant refinement, adaptation
and improvement [5].

Today, analysis of data from high-throughput experi-
ments often yields a set of high-dimensional variable
(HDV) list which typically represent a particular pheno-
type with respect to another. Such HDV lists commonly
include signature lists of expressed genes, loci or proteins.
Subsequent types of analysis to be performed on the gene
list, depend greatly on the biological question an investiga-
tor is interested in. The work has been greatly simplified,
partly due to the presence of many databases that were
created, mostly in recent years [6-8]. The wealth of raw or
curated, but nonetheless collated information in these
databases is often critical in the subsequent analysis of
gene (or other HDV) lists derived from these high-
throughput experiments.

One of the most common analyses one could perform
with a set of gene lists is an enrichment study of biologi-
cal functions, processes or pathways with respect to a
well-annotated reference gene list which commonly
includes all the annotated genes in the genome. This ana-
lysis is commonly termed gene ontology analysis [9]
which is based on simple statistical tests such as hyper-
geometric, binomial, or Chi-square tests [10]. These sta-
tistical tests could also be used if one is merely interested
in whether one list of genes is similar to another, e.g.
whether the gene products differentially expressed in
human breast cancer (BC) are similar to the gene pro-
ducts differentially expressed in human ovarian cancer
[8]. In addition, complementary methods such as Gene
Set Enrichment Analysis (GSEA) allow the assessment of
the relative relevance of one gene list of interest with
reference to the expression differences of ranked genes
between two phenotype cell classes of an organism [11].

Despite improvements in experimental technology and
techniques, poor reproducibility and stability of results
from independent but similar experiments can often hinder
scientific discovery. These issues can arise due to many
reasons such as small sample size [12,13], high-noise data
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[12-14], use of different technological platforms as well as
poorly reported clinical or research protocols (different
cohort classifications, treatment differences) [8,14-16].
In particular, small sample sizes, in combination with tech-
nical and biological noises, often complicate efforts to iden-
tify statistical differences of expression signals between
many functionally important genes of distinct tumor sub-
types or clinical groups. These limitations lead to bias in
signature predictions and poor consistency. Inconsistency,
divergence and poor overlap of many dozen of reported
signatures suggest that our knowledge of nature and space
dimensionality of tumor-associated genes and potential
biomarkers is essentially incomplete [13,14,16]. Identifica-
tion of potential biomarker space can reveal specific
genetic patterns of cancer cells, for example, cell junctions
in non-small cell lung cancer subtypes [17]. Our recent
integrative studies of microarray gene expression profiles
in lung adenocarcinoma (AC) versus normal adjacent lung
tissue suggested that space dimensionality of potential bio-
markers of lung adenocarcinoma (AC) is at least 2300
known genes [13]. Among these, hundreds of genes could
be essential for disease-driving because they encode pro-
teins containing mutagenesis sites, implying that these
genes could be considered as relevant for diagnostic or
prognostic applications [13]. In BC, the number of the
genes that grade primary tumor by its aggressiveness is
even larger; it consists of ~4000 microarray U133A
detected genes [16].

To the best of our knowledge, current statistical analysis
of matched lists mostly centres on comparison of two lists
[18,19]. For example, independent studies of prostate can-
cer from two different countries may each yield a set of
gene lists where genes are ranked by biological relevance,
either by the magnitude of fold change, statistical signifi-
cance of differential expression or other statistical mea-
sures. The comparison of the two gene lists based on
robustness and stability can then be evaluated using a
recently published method, which incorporates permuta-
tion studies and uses Canberra distance as the measure of
dissimilarity [18]. However, methods which evaluate ele-
ments of one (new) list with reference to many other
(known) lists is required in certain disciplines, including
bioinformatics, genome-associated disease studies, medical
statistics, epidemiology, ecology and authorship identifica-
tion etc [20].

In cancer research, advances in high-throughput experi-
mental techniques as well as statistical algorithms have
resulted in the discovery of many gene signature sets
(GSSs) which are representative of a particular cancer phe-
notype based on patient prognosis, tumor subtypes or
other molecular features. However, it was reported that
many of the GSSs generally do not show strong consensus
for a given disease, even for more clinically homogeneous
sub-groups of a disease (e.g. stage, tumor subtype) when
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independent patient cohorts are compared [12,13,21].
In BC, two well-known signatures which predict BC recur-
rence, comprising of 79 and 76 genes were derived inde-
pendently in Amsterdam and Rotterdam cohorts
respectively [15,22]. However, only three genes were found
to be common. Nevertheless, it was stated that the rest of
the unique genes could share similar pathways and be
associated with similar mechanisms leading to the disease.

Recently, a systematic collection of gene expression sig-
natures in cancers have been identified and collected in
several databases [6-8]. For example, Abba et al. have col-
lected 42 BC gene expression signatures in an effort to
identify the most relevant BC biomarkers [23]. Compari-
son of these 42 signatures revealed limited or zero overlap
between signatures. Specifically, comparison of the 3427
distinct gene symbols revealed that only 15 genes (RRM2,
MELK, MAD2L1, MYBL2, BIRCS, PTTG1, AURKA, PRC]1,
CKS2, CDCAS8, MKI67, UBE2C, DUSP4, CENPF and
CDC2) are found in at least 10 signatures, which indicates
the great disparity across gene signatures. The reasons for
the disparity have been attributed to differences in clinical
attributes of patients analysed which include ER status,
stages, histological patterns, disease subtypes and treat-
ment received by the patients.

Also, it is likely that each of the signatures represented
only a partial picture of the heterogeneous and complex
BC biology, which subsequently limits its potential for
clinical implementation. The authors demonstrated that
selection of several of these signatures having better con-
sensus may provide more relevant and robust cancer bio-
markers [23]. However, their strategy has a bias towards
the larger size signatures and over-representation of cell
cycle related genes. Other authors published a systematic
review of gene expression signatures in colorectal cancer
and identified 31 prognostic gene signatures [24]. It was
reported that these gene lists, comprising a total of 1530
genes do not show great overlap, as there were only two
common genes in four signatures, 10 common genes in
three signatures, and 102 common genes in two signa-
tures. It was stated by the authors that “the lack of gene
overlap is generally interpreted as if each signature is a
random sampling of a small subset of genes from a larger
signature that represent the involved pathways [24].” How-
ever, without strong agreement and reproducibility of the
gene signatures from independent studies, future large-
scale prospective validation studies are unlikely to proceed,
and may prove to be a major hindrance in achieving the
desired goals of biomarker-based disease diagnosis, prog-
nosis and prediction of therapeutic efficacy.

Many of the available biomarkers were generated in
connection with biological functions of a given medical
condition/disease. However, identity of the biomarkers
for the same medical condition/disease could be quite
different due to differences in the study design or
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analytical methods. Generally, it is very difficult to com-
pare the GSSs due to such poorly-controlled variations
in the process of discovery. However at times, it would
be interesting to know how many times a particular gID
in a newly derived signature has been reported in other
known and reference GSSs (rGSSs) and whether the
presence of the gID in these rGSSs occurs more fre-
quently than expected by chance.

In our work, we address medical bioinformatics issues
via computational intelligence, statistical analysis and
computational simulation. Here, we proposed that a ran-
domized sampling approach can provide a confidence
indication of whether a gene is likely to be a common
(and perhaps relatively more reliable) potential biomarker
present in many other GSSs, or whether it is a relatively
unique biomarker specific to a particular biological or
disease state.

Results

Definition of novel or common biomarkers

Traditional definition of novel biomarkers typically
involves an absolute threshold value of 0, where only bio-
markers which are not present in other published refer-
ence gene signature subsets (rGSSs) are defined as novel
biomarkers (Figure 1A). In contrast, biomarkers which
are present in at least one published rGSS are defined as
“known” biomarkers. However, this definition does not
account for the number of rGSSs under comparison, as
well as ignore the variation in the number of biomarkers
across rGSSs. For example, a biomarker present in only
one of hundreds of rGSSs might be considered as a
“statistically novel (SN) biomarker”.

To address the above-mentioned issues, we first propose
the construction of the observed frequency distribution
function that describes the number of published rGSSs
that contain each of the genes from the gene signature of
interest. This function has a skewed shape with long right
side tail. More precisely, the observed frequencies have
the following characteristics in common: there are few
frequent, and many rare events (clusters, interactions,
co-occurrence etc). Such skewed functions are often
observed in many natural and technological processes (the
birth-death processes, biological evolution, interaction
events in genome, transcriptome and proteome scales,
artificial complex systems, physics phenomena, biological
and social networks, industry incidences [25,26]. Sampling
from such populations could be commonly fitted by the
Pareto-like frequency distribution function, which is sam-
ple-size and context-dependent [25,26]. In practical appli-
cations, the left side of the observed skewed distribution
could be enriched with ‘admixture’ events which consist of
‘null’ or ‘background’ additive noise events due to error
measurements. In comparison with the Pareto-like fre-
quency distribution function, such additional (‘admixture’)
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Figure 1 Definition of novel or common biomarkers. (A) Traditional definition of novel or common biomarkers. (B) Statistical definition of
novel or common biomarkers. A further vertical dimension is extended which provides a statistical measure of whether the signature gene is
considered “novel”.

-

null or background frequency distribution (BFD) has a  function is a great challenge, specifically when sample
relatively shorter right-side tail. Such function could be  sizes are relatively small [25,26].

described by the exponential distribution function or Poi- We propose a simulation-based approach of random
son distribution function. The identification of BFD and  sampling to generate an expected BFD of the number of
‘de-noising’ of the empirical Pareto-like distribution  published rGSSs expected by chance to contain each of
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the genes from the GSS of interest (or “tested GSS"/
tGSS) (Figure 1B). The method of random sampling to
generate the BFD provides a fair basis of evaluating a
significance measure of the empirical frequency of the
number of the published rGSSs that contain each of the
genes from the signature of interest. Implicitly, it takes
into account the number of rGSSs under comparison, as
well as taking into account the size variation across
rGSSs. Effectively, it extends a vertical dimension (of
expected and actual frequencies of the published rGSSs)
to facilitate identification of statistically novel (SN) or
common (SC) biomarkers (Figure 1B).

To discriminate between SN and SC biomarkers within
tGSS derived from genome-scale data, we assume that the
identity of individual element (potential biomarker repre-
sented by gene and/or probesets ID) is sufficiently well
recorded as a potential biomarker, if that element
appeared in the other lists more than r times (Figure 1B).
With this assumption, we can compare the null BFD with
actual empirical frequency distribution (EFD) and at the
given confidence level, estimate a critical cut-off value of
signature co-occurrences which subsequently allows us to
discriminate biomarkers as SN or SC.

Description of method

An illustration of our proposed methodology is shown in
Figure 2. We first define a background gene list which is a
superset of all gene signatures. Appropriately, a back-
ground gene list could be defined as all human gene sym-
bols or a subset of genes such as only those represented
on a particular microarray platform. Genes in signatures
which are not in the background gene list are removed.
For each gene in a newly derived gene signature (ASy), the
number of co-occurrences in M other published rGSSs is
counted (AS; _ 1,3.M) (Figure 2A). The EFD of number of
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genes for each co-occurrence events with the published
rGSSs can be counted and plotted.

To generate the null BFD, several rounds of simula-
tion are performed. In each simulation, random gene
lists RS; _ 12,3.m of equal sizes (where |RS;;| = |AS;| for
gene lists i = 1,2,3...M) are generated from the back-
ground gene list, without replacement within each simu-
lation and with replacement between two simulations
(Figure 2B). The number of co-occurrences of overlap
between genes in ASy with RS; _ ;53.M are counted in
each simulation, and summed across all simulations.
Subsequently, a null BED of the number of gID matches
with the random gene lists can be generated, which
represents the expected frequency distribution of gID
matches.

Effect of background gene list
We first performed studies on simulated data to estab-
lish the family of null distributions that may result from
this analysis. Specifically, the effect of the size of the
background gene list, i.e. the effect of biomarker space
on the null BFD is of interest. The background gene list,
D, is first assumed to comprise of 20,000 genes. We
assume that our gene signature, AS, contains 100 genes,
i.e. |ASy| = 100. Next, we assume that 10 other well-
defined gene signatures are reported in the literature,
each containing an unequal number of genes, e.g. |AS,|
=20, |AS,|=40, |AS3]|=60, |AS4|=80, |AS5|=100, |AS]
=120, |AS;|=140, |ASg|=160, |ASo|=180 and |AS;,|=200.
Subsequently, we performed 100 simulations where in
each simulation, the actual gene sets (AS;) are simulated
by sampling the same number of genes independently
from D without replacement. The expected frequency of
observed co-occurrences of each gene in our gene signa-
ture can be determined.

A) Actual observations

Figure 2 Schema of gene list comparison with other defined sets. (A) Actual observations of gene lists overlap between single list of
interest (ASe) with other defined sets. (B) Observations of gene lists overlap in a simulation where other defined gene sets are randomly and
independently sampled without replacement. AS and RS denote actual and random set respectively. Oy, and RO,, denotes overlap segments
and random overlap segments respectively. Blue solid circle represents our gene list of interest (ASo). Green oval, red rectangle and yellow
triangle represent 3 other defined set of genes with sizes |AS; = 1|, |ASi = 2|, |ASi = 3| respectively.

B) Observations in jt" simulation:
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Similar analyses are performed by repeating the proce-
dures with reduced background gene lists (|]D| = 10000,
5000, 1000, 500 genes). The effect of the size of the back-
ground gene lists can be observed in Figure 3. In addition,
the expected null BFD can be approximated and fitted
using Weibull or Sigmoid functions.

Analysis of 36-genes prognostic signature for epithelial
ovarian cancer

In our previous work [27], we studied expression and clin-
ical data from patients diagnosed with high-grade serous
ovarian cancer, and subsequently identified a 36-mRNA
signature (assigned as the tGSS in this analysis) which
stratifies patients into subgroups with very distinct and
varied overall survival rates: low, intermediate or high-risk,
with 5 year overall survival rates of 65%, 20% and 10%
respectively. In addition to its prognostic significance, the
36-mRNA signature is also predictive of patients’ response
to chemo-therapy.

We compared our 36-gene tGSS with other published
rGSSs of ovarian cancer. From the literature, we collected
63 rGSSs which were previously reported to show asso-
ciations with survival, disease subtype, chemo-sensitivity,
disease detection, development, progression or recur-
rence (Additional file 1). We restrict our analysis to
official gene symbols present in the background gene set
(RefGene version 30™ November 2012). After pre-
processing of the gene symbols, each of the 63 rGSSs
contain between 1 to 966 gene symbols. Subsequently,
via 100 independent simulations, we generated a null
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BFD of overlap between our tGSS (comprising of 36
genes) with the randomly generated lists of signatures.
Additionally, to understand the effect of the number of
simulations on the null BFDs, we performed 1000 and
10000 independent simulations.

The results of the comparison of our tGSS with other
rGSSs are shown in Table 1 and Figure 4A (see also
Additional file 3).

Analysis of obesity and IGF1 signatures in breast cancer

Recently, the link between obesity and its contribution
to poorer disease outcome in BC has been reported.
Creighton and Sada et al. studied the effects of obesity
on primary breast tumor gene expression and their
results revealed an obesity-associated cancer transcrip-
tional signature of 662 genes (assigned as the tGSS in
this analysis) [28]. After preprocessing, this tGSS con-
tains 683 RefSeq gene symbols (Additional file 2). Sub-
sequently, we investigate whether individual genes in
this obesity-associated tGSS derived from BC tumors
are significantly enriched among the 70 BC rGSSs which
were previously reported to be associated with clinical
observations such as response to chemotherapy, distant
metastasis, ER-alpha status, tumor subtypes and grades,
as well as clinical outcomes such as patient prognosis.
The 70 rGSSs comprise 42 gene signatures reviewed by
Abba et al. [23] as well as those manually curated by us
(Additional file 2). The background gene list consists of
all RefGene symbols downloaded from UCSC Genome
Browser on 30™ November 2012 and any gene that is
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Figure 3 Family of null frequency distribution of expected co-occurrences of our signature genes with other signatures. The horizontal
axis represents the number of samples that contain the gene from our signature of interest. The dotted lines represent the fitted curves of
Weibull function whereas the dashed lines represent the fitted curves of Sigmoid function
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Table 1. Analysis of occurrence events for genes in the ovarian cancer prognostic gene signature set

#Number of *Expected Actual Enrichment  Number Genes from our signature
signatures Percentage Percentage (actual/ of genes
with gene (100 expected) from our
simulations) signature
0 80.89 52.78 0.65 19 POLA2, NCAPG2, PLAUR, FZD1, CCT2, DNMTI, PIK3R1, POLR2J, TGFBR2, VCL,

NCAPD2, POLR2D, HGF, FGFRI, MIS12, ARPCIB, CD93, CDK4, NCAPH

1 17.14 13.89 0.81 5 MMP13, CBX3, CHEK1, LAMA4, TCP1
2 1.89 1944 1029 7 CDCé6, CAV2, GNG12, CD44, MCM2, CALD1, CFD
3 0.08 5.56 66.67 2 CCL2, PDGFRA
4 0.00 278 Not 1 TUBB
applicable
5 0.00 2.78 Not 1 EDNRA
applicable
6 0.00 2.78 Not 1 COL3AT
applicable

Expected and actual frequency of co-occurrences of 36 genes in our prognostic signature with 60 other reference gene signature subsets. All signatures are
ovarian cancer-related.

*The expected percentage from 1000 and 10000 simulations can be found in Additional file 3.
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Figure 4 Actual and expected frequency distribution of gene overlap from a query signature with other reference signatures.
Comparison of genes from (A) 36-gene ovarian cancer prognostic gene signature, (B) tumor breast obesity gene signature and (C) tumor breast
IGF1 gene signature, with other reference gene signatures for that disease. (D) Comparison of the actual frequency distribution generated from
tumor breast obesity (From B) and tumor breast IGF1 (From C). The expected frequency distributions were generated via performing N
simulations, where N is 100, 1000 or 10000. The y-axis is log10 transformed. p1 denotes the two-sided p-value from Kolmogorov-Smirmnov statistic
which tests if the actual and expected (for N = 100) distribution are similar. p2 denotes the p-value that represents the significance of that
threshold in dichotomizing statistically novel or common biomarkers from a GSS of interest.
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not found within the background gene list is excluded
from subsequent analysis.

As described in the methods, we performed 100 inde-
pendent simulations and the enrichment of the genes in
rGSSs relative to random expectation are shown in
Figure 4B (Additional file 4). Overall, our results indi-
cated that a large proportion of the obesity-associated
tGSS genes have been reported as biomarkers in more
BC rGSSs than expected from random simulations. For
instance, based on random simulations, only 13.0% of
the obesity-associated signature is expected to be found
in at least 2 other rGSSs. However, 161 of 683 (23.6%)
genes from the obesity-associated tGSS are actually
found in at least 2 other rGSSs.

Also, it has been suggested that the link between obesity
and BC outcome could be due to increased endocrine sig-
naling involving insulin and insulin-like growth factors
(IGFs) [28]. Specifically IGF1, whose expression is elevated
in human breast cancer [29], is known to increase breast
cancer cell growth and invasion [30]. Furthermore, activa-
tion of IGF1 pathway is correlated with early recurrence
and decreased relapse-free survival [31].

Therefore, in subsequent analysis, we studied an IGF1
pathway gene signature (assigned as the tGSS in this
analysis) whose genes were differentially expressed in
MCE-7 BC cell line after IGF1 stimulation and which
were correlated with several poor prognostic factors and
disease outcome in patients with BC [32]. This IGF1
pathway tGSS contains 925 genes after gene identifier
conversion and preprocessing. Similar analyses were
performed for this tGSS with respect to the 70 other BC
rGSSs and the results are shown in Figure 4C (Addi-
tional file 5). Similar to the obesity-associated tGSS, our
results indicated that genes belonging to the IGF1-tGSS
are generally found to co-occur in more rGSSs than
expected from random simulations. Specifically, 43.6%
of the IGF1-signature genes are found in at least
2 rGSSs, which is 3.3 times more than expected.

When we compared the EFDs for both the obesity-asso-
ciated tGSS and IGF1 pathway tGSS, results suggested
that there is a stronger association of the IGF1 pathway
tGSS’s genes with the 70 BC rGSSs than observed for the
obesity-associated tGSS’s genes with the 70 BC rGSSs
(Figure 4D).

Next, we studied both the obesity and IGF1 tGSSs of BC
with respect to the MAPK signalling pathway. From the
KEGG database, the MAPK signalling pathway comprises
of 267 genes, which included a list of 31 genes (ATF2,
CHUK, DDIT3, DUSP4, DUSPS5, DUSP6, DUSPS8, FGF13,
FGFR2, FGFR4, FLNA, FOS, GADD45G, HRAS, IKBKB,
ILIRI1, MAP2K4, MAP2K6, MAP3KS8, MAP4K3, MAPKY,
MAPKAPKS, MAX, PAK2, PPM1B, PPP3R1, RAPGEF2,
RASAI, RPS6KA3, RPS6KA4 and SOS1) which are present
in either or both of obesity-associated tGSS and the IGF1
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pathway tGSS (Table 2). Subject to a minimum threshold
of four rGSSs, genes present in at least one of the obesity
or IGF1 tGSSs could be considered as SC gIDs. On the
other hand, genes in either the obesity or IGF1-associated
tGSSs that occur in three or less rGSSs are termed SN
gIDs (Table 2). Typically, such genes which individually
occur less frequently in other rGSSs are not easily inter-
preted with respect to their association with disease path-
ways or phenotypes. On the other hand, our method
identifies many dozen genes of MAPK signalling pathway
which have not been considered as a common BC signa-
ture in context of their functional association of obesity,
IGF1 pathway and BC.

Discussion

In this work, we developed a method for the identifica-
tion of gene subsets that are statistically novel (SN) or
common (SC) in a newly defined signature of interest
when compared to other (known) reference gene signa-
ture sets (rGSSs) that are representative of a medical
condition (e.g., breast cancer).

We first provide an application of our methodology to
one of our gene signature previously identified for the
prognosis of patients diagnosed with high-grade serous
ovarian cancer [27]. Our prognostic signature comprise
of 36 mRNA genes (Signature#1 of Additional file 1).
For this analysis, we manually curate 63 gene sets from
the literature which were reported to show associations
with survival, disease subtype, chemo-sensitivity, disease
detection, development, progression or recurrence
(Additional file 1). Our analysis revealed that more than
50% of the genes in our 36-gene prognostic signature
were not previously considered as potential biomarkers
in any of the curated publications (Table 1). These
genes include ARPCIB, CCT2, CD93, CDK4, DNMT]I,
FGFR1, FZD1, HGF, MIS12, NCAPD2, NCAPG2,
NCAPH, PIK3R1, PLAUR, POLA2, POLR2D, POLR2],
TGFBR2 and VCL. Despite the absence of these genes
in currently known gene sets associated with the differ-
ent aspects of ovarian cancers, some of these were none-
theless shown to play critical roles in cancer
development and progression. For instance, it was
shown that the majority of epithelial ovarian cancer
tumors exhibited positive staining for FZD1 [33], and it
was associated with chemo-resistance via the Wnt/Beta-
catenin pathway [34,35]. Similarly for HGF, deregulated
HGF/MET signaling is a common hallmark of many
tumors and is associated with various aspects of tumor
progression [36]. Furthermore, elevated HGF serum
levels could predict poor prognosis in advanced ovarian
cancers [37]. To the best of our knowledge, although
FZDI and HGF have not been reported as high-confi-
dence biomarkers in ovarian cancer, their values as
prognostic markers should not be neglected as is often
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Table 2. Occurrence of MAP kinases signalling pathway genes in the studied breast tissue/cell signatures

Gene In obesity signature? In IGF1 signature? Number of reference signatures containing Statistically novel (SN) or
Symbol (Yes/No) (Yes/No) gene (out of 70) common (SC)

ATF2 Y N 0 SN
DUSP8 N Y 0 SN
GADD45G Y N 0 SN
HRAS N Y 0 SN
IKBKB Y N 0 SN
MAPAK3 Y N 0 SN
MAPK9 N Y 0 SN
MAPKAPK5 N Y 0 SN
MAX Y N 0 SN
PPM1B Y N 0 SN
PPP3R1 N Y 0 SN
RAPGEF2 Y N 0 SN
RPS6KA4 N Y 0 SN
SOs1 Y N 0 SN
CHUK N Y 1 SN
FGFI13 N Y 1 SN
FGFR2 N Y 1 SN
MAP2K6 N Y 1 SN
PAK2 Y N 1 SN
RASAT Y N 1 SN
RPS6KA3 N Y 1 SN
DDIT3 N Y 2 SN
FLNA N Y 2 SN
ILTRT N Y 2 SN
MAP2K4 Y N 2 SN
FGFR4 Y N 3 SN
DUSP5 N Y 4 SC
MAP3K8 N Y 4 SC
DUSP6 Y Y 8 SC
FOS N Y 8 SC
DUSP4 Y Y 12 SC

the case. In fact in our previous analysis of high-grade
serous ovarian cancer patients, both FZDI and HGF
exhibited significant prognostic properties (Figure 5A-B).

On the other hand, genes such as CCL2, PDGFRA,
TUBB, COL3A1 and EDNRA have previously been iden-
tified as relevant biomarkers in at least 3 other pub-
lished gene sets (Table 1). For instance, EDNRA, either
independently or in combination with other biomarkers,
was reported to be able to predict benign and malignant
tumors from borderline tumors [38], tumor subtype
classification [39,40] and classification of tumors related
to cell plasticity [41]. COL3A1 is also a commonly stu-
died gene in ovarian cancer, where it was revealed that
it is one of the most expressed proteins in advanced
relative to local ovarian adenocarcinoma [42], and that
its expression was observed to be higher in platinum-
resistant relative to platinum-sensitive cells [43]. Its use
as a biomarker in prediction of chemo-sensitivity or

platinum-sensitivity [43,44], determination of tumor
subtype [39] or molecular subtype [40], and classifica-
tion of tumors related to cell plasticity [41] was pre-
viously reported. Our data also indicated that both
EDNRA and COL3A1 showed significant prognostic
properties in patients diagnosed with high-grade serous
ovarian cancer (Figure 5C-D).

In fact, our signature was originally derived for patient
prognosis and prediction of chemo-sensitivity. In this ana-
lysis, we further found that certain genes in our 36-gene
signature could be also relevant in tumor subtype classifi-
cation. Also, we show that survival curves of several of our
biomarkers show significance in patient stratification,
regardless of whether they have been or not been reported
in previous publications of ovarian cancer (Figure 5).

Next, we also studied two BC signatures from two pub-
lished research reports (Signatures#1-2 of Additional file 2).
The first signature was derived from differential expression
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analysis of obese versus non-obese BC patients [28]. The
second signature was derived from differentially regulated
genes in MCF-7 cells after IGF1 stimulation [32]. Indepen-
dent comparison of these two signatures with the 70 BC
rGSSs revealed that a larger proportion of genes from the
IGF1 pathway gene signature were more likely to be repre-
sented in the rGSSs when compared to expectations from
random simulation (Figure 4D, Additional files 3, 4). This
might suggest a tighter association between the IGF1 sig-
naling pathway with clinical observations such as response
to chemotherapy, distant metastasis, ER-alpha status,
tumor subtypes and grades, as well as clinical outcomes
such as patient prognosis. In contrast, while we showed
slight association between the obesity-associated gene sig-
nature with the rGSSs (Figure 4B,Additional file 4), this
association appear to be weaker when compared to that of
the IGF1 signaling pathway (Figure 4C, Additional file 5).
This seems to suggest that the probable effects of obesity
on cancer association could be less specific or directed,
when compared to that of the IGF1 signaling pathway. Our
method allows us to quantify a measure of associations
between obesity, IGF1 pathway and BC signatures, as well
as predict potentially SC and SN therapeutic target genes.

Additionally, using our published data-driven prognostic
analytical method [45], we studied the survival significance
of SN gIDs (PIK3C3 and APPBP2) and SC gIDs (IL6ST and
DUSP6) of BC (Figure 6). Expression levels of SC gIDs
such as IL6ST and DUSP6, which were found in 7 and 8
BC rGSSs respectively (Additional files 4 and 5), were
found to be able to stratify both Stockholm and Uppsala
BC patient cohorts into two survival significant subgroups
via the data-driven grouping method (Figures 6C-D). Genes
that were less studied and less represented in other rGSSs
were traditionally neglected in terms of their prognostic
capability. However, we show that expression levels of
genes such as PIK3C3 and APPBP2, which were not found
in any of the 70 BC rGSSs (Additional files 4 and 5), could
also stratify both Stockholm and Uppsala patient cohort
into two survival significant subgroups (Figures 6A-B).

While our general schema allows us to uncover the null
background frequency distribution (BFD) of expected co-
occurrences of our tSS’s genes with other well-defined
rGSSs, the specific use of this approach requires a careful
formulation of the null hypothesis. Therefore, the back-
ground gene set D needs to be judiciously defined. In our
example studies of BC and HG-SOC, we have defined the
background gene set D as all annotated RefSeq gene sym-
bols. However, sometimes it may be necessary to restrict
the set of background gene list D to the list of genes that
are tested, e.g. probesets on a microarray platform. The
effect of a smaller background gene set D is non-trivial.
Our simulated experiments on reduced background gene
sets (|D| = 20000, 10000, 5000, 1000, 500) clearly revealed
the rightward shift of the null BFD as the background
gene set becomes more restricted (Figure 3). The interpre-
tation of the actual empirical frequency distribution (EFD)
and null BFD is therefore context-dependent and depends
on the selection of the background gene list and other
rGSSs. Therefore, the selection of the background set is
non-trivial, and should generally be guided by the design
of the experiments or formulation of the hypotheses.

We also studied the effect of the number of simulations
on the null BED. For each of the three tGSSs analysed, we
generated null BED from 100, 1000 or 10000 random and
independent simulations (see Methods). Our results show
that generally, 100 simulations are sufficient to uncover
the structure and shape of the null BFD, which is repre-
sentative of the percentage of tGSS that is expected to be
found in the rGSSs at various levels of overlap counts.
Increasing the number of simulations (1000 or 10000)
might increase the sensitivity of our method in detecting
random genes that likely appear in more rGSSs, but this is
at the expense of higher computational cost.

Finally, in order to obtain a meaningful expected null
BED, the use of the method requires a considerable size
of the signature of interest (|ASy|) and the number of
other well-defined rGSSs (M). Therefore, the rapidly
growing number of databases as well as the accumulating
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wealth at databases including but not limited to Gene
Expression Omnibus (GEO) [6], ArrayExpress [7], Gene-
SigDB [8], meant that analysis of a newly generated gene
lists with these previously defined gene sets could
become more feasible. Certainly, the selection of the pre-
viously defined gene sets from the public repositories or
literatures requires careful consideration as the eventual
null BFD is representative of a scenario subject to the
assumptions and conditions.

Conclusions

The accumulating wealth of molecular signatures in
publications and public repositories for a wide range of
disease types and experimental conditions is a useful
resource for any researcher. Importantly, it allows pro-
jection of a newly-derived GSS onto published, defined
and well-annotated GSSs and subsequently identifies
individual gIDs that are also independently associated
with another feature. Our randomized sampling
approach allows the generation of a null background
frequency distribution, which could be used to identify a
preliminary co-occurrence threshold and subsequently
select subsets of the signature genes as statistically
unique or significantly associated with another molecu-
lar feature. We have successfully applied our method to
expression microarray and clinical data. In particular,
our results suggest that there is a stronger association of
the IGF1 signature genes with 70 BC rGSSs, than for

the obesity-associated signature. Also, both SN and SC
gIDs could be considered as perspective prognostic bio-
markers of BCs. Our method identifies many dozen
genes which have not been considered in context of
their functional association of obesity and BC. In parti-
cular, our analysis suggests a close association of many
genes expressed in MAPK pathways with obesity, IGF1
and BC pathways. We propose that the method reported
in this study could also be applicable and of interest to
researchers in other fields including but not limited to
social science, epidemiology, linguistics, forensic analysis
and internet networks.

Methods
Collection of gene sets
In our previous work, we identified 36 mRNA genes that are
associated with overall survival and chemotherapeutic
response of patients diagnosed with high-grade serous ovar-
ian carcinoma [27]. This 36-gene signature is used as the
testing signature of interest (or tGSS) for ovarian cancer
(Signature#1 of Additional file 1). For breast cancer, we
downloaded and analyzed two independent gene sets asso-
ciated with obesity and IGF1 pathway respectively [28,32].
These two gene sets are defined as our testing signatures (or
tGSS) of interest for BC (Signatures#1-2 of Additional file 2).
For the reference gene signature subsets (rGSSs), we
compiled gene sets associated with BC and ovarian cancer
from the literature. A total of 70 and 63 gene signature
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sets were collected for breast and ovarian cancers respec-
tively. For BC gene sets, they were reported to predict clin-
ical observations such as response to chemotherapy,
distant metastasis, ER-alpha status, tumor subtypes and
grades, as well as clinical outcomes such as patient prog-
nosis (Additional file 2). The ovarian cancer gene sets
were known to show associations with survival, disease
subtype, chemo-sensitivity, disease detection, develop-
ment, progression or recurrence (Additional file 1).

All gene accession identifiers are converted to official
gene symbols.

Definition of biomarker space

In this work, we defined the biomarker space as the offi-
cial gene symbols represented on the RefGene database
(downloaded from the UCSC genome browser on 30"
November 2012).

Frequency distribution of actual gene occurrences in
reference gene subsets
The visual representation as well as the notations of our
methodology is shown in Figure 2. Assume that the entire
biomarker space, D is well-defined and contains |D| genes.
For example, a probable biomarker space could be defined
by the number of reliable microarray probe-sets used for
expression signal detection. Let AS; denote the actual set
of genes, where i = 0 for a newly derived GSS (e.g. our
gene signature or “testing GSS"/tGSS), and i = 1,2,3..M for
M other reference GSSs (rGSSs), each containing a list of
genes with size |AS;|>0. We assume that |AS;|<<|D| for
i=123.M.

Within our actual gene set AS,, the number of genes
that are found in m other gene sets are denoted by
observations, Oy, - 123.m Where

all segments with m observations
Om=1,23..M = D_s_soqment Om,s (1)

Also, the number of genes in our gene set (ASy) can
be denoted by |ASy| where

|ASol = SM  Om =01 +0y+ 03 +...+ Oy )

The observed normalized frequency Oy, - 1,2.3..Mm iS
denoted by Fy, - 13..m where
Om

F,,.- = 3
me123.m = g (3)

Generation of random reference gene subsets via random
sampling

For j* of N simulations, RS;; denotes a randomly and
independently generated set of genes with size equal to
AS;, ie. [RS;| = |[AS;| for gene lists i = 1,2,3..M. Each RS;;
is sampled randomly without replacement from the
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biomarker space D. Thus, the lists are produced by ran-
domly sampling without replacement from biomarker
space D, but the intensity of sampling might differ from
list to list. In statistical literature such random collection
was called a multiple record system [46].

The procedure is repeated N times, for N simulations.

Frequency distribution of expected gene occur-
rences in reference gene subsets

Next, the background model of the expected biomar-
ker co-occurrence across other gene signatures is devel-
oped via sampling and simulations.

For j'™ simulation, the number of genes in our gene set
(ASo) that are also found in m gene sets RS;; _ 1,2,3..m is
denoted by ROjm - 1,23,.m Where

all segments with m observations
ROj,m:l,Z,S...M = Zs:segment Roj,m,s (4)

The expected normalized frequency of ROy, - 123,.Mm
after N simulations is

N
Zj:l ROjm
N x |ASo|

(5)

EFy-123.M =

Comparison of the expected and actual frequency
distribution of gene overlaps with other signatures
Subsequently, the observed and expected frequency of
gene overlaps with other signatures can be seen, by
comparing F, and EF,, for m = 1,2,3,..M.

Statistics of differences and identification of threshold
stratifying statistically novel and common biomarkers of
a signature

Initially, to assess the statistical differences between the
observed normalized frequency (F) and expected nor-
malized frequency (EF), we use Kolmogorov-Smirnov
statistics to assess the statistical differences between the
reverse cumulative frequency of F and EF.

When the difference between F and EF is significant,
we aim to discriminate between statistically novel (SN)
or common (SC) gIDs within a GSS of interest, by
assuming that the biomarker is sufficiently well recorded
as a potential marker if that biomarker appears in other
rGSSs more than r times (Figure 1B).

For each discrete value r, where r > 0, the p-value
representing the significance of that threshold in strati-
fying SN or SC gIDs from a GSS of interest can be cal-
culated from the ratio of the cumulative frequencies
(expected with respect to actual) at that discrete value.

Additional material

Additional file 1: Gene sets compiled from published studies of
ovarian cancer.
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Additional file 2: Analysis of occurrence events for genes in the
ovarian cancer gene signature set. Expected and actual frequency of
co-occurrences of 36 genes in the ovarian cancer signature with other
60 gene signatures. All signatures are ovarian cancer-related.

Additional file 3: Gene sets compiled from published studies of
breast cancer.

Additional file 4: Analysis of occurrence events for genes in the
tumor breast obesity gene signature set. Expected and actual
frequency of co-occurrences of 683 genes in the tumor breast obesity
signature with other 70 gene signatures. All signatures are breast cancer-
related.

Additional file 5: Analysis of occurrence events for genes in the
tumor breast IGF1 gene signature set. Expected and actual frequency
of co-occurrences of 925 genes in the tumor breast IGF1 signature with
other 70 gene signatures. All signatures are breast cancer-related.

List of abbreviations used

AC Adenocarcinoma

BC Breast cancer

BFD Background frequency distribution

EFD Empirical frequency distribution

glD Gene identificator

HDV High-dimensional variable

HG-SOC High-grade serous ovarian carcinoma
ID Identifier

IGF1 Insulin-like growth factor 1 (somatomedin C)
GEO Gene Expression Omnibus

GSS Gene signature subset

ncRNA Non-coding RNA

RefSeq Reference sequence

SC Statistically common

SN Statistically novel

rGSS Reference GSS
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