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Abstract

Background: Enzymes are known as the molecular machines that drive the metabolism of an organism; hence
identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that
species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of
the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more
pronounced in the metagenomic samples where even the species are not adequately cultured or characterized.
Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need
to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic
projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify
enzymes and enzyme classes and study the human gut metabolic pathways.

Results: ECemble method uses an ensemble of machine-learning methods to accurately model and predict
enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution.

A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme
classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of
enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict
enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played
by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to
canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which
demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily
involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids, cofactors and vitamins.

Conclusions: The ECemble method is able to hierarchically assign high quality enzyme annotations to genomic
and metagenomic data. This study demonstrated the real application of ECemble to understand the indispensable
role played by microbe-encoded enzymes in the healthy functioning of human metabolic systems.

Background

Enzymes represent a significant fraction of an individual
proteome [1] and catalyze a variety of specific reactions
in the cellular systems [2,3]. Hence, identification of the
functions of an entire complement of enzymes in an
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organism helps generate the metabolic blueprint of that
species. This will not only improve our understanding
of defined cellular processes of individual species but
also help study the metabolic interdependence of multi-
ple species in an ecosystem such as the human gut
microbiome.

The Enzyme Commission (EC) [4] has classified all
enzymes based on the enzymatic reactions they catalyze.
Each enzyme has an EC number, which is a hierarchical
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number that distinguishes enzymes by the type of reac-
tions they catalyze. The EC groups all enzymes into six
broad classes that include (1) oxidoreductases - catalyze
oxidoreduction reactions; (2) transferases - catalyze the
transfer of a chemical group from a donor to an accep-
tor; (3) hydrolases - catalyze the hydrolysis of various
bonds; (4) lyases - enzymes that cleave bonds by means
other than by hydrolysis; (5) isomerases - catalyze geome-
trical or structural changes within one molecule; and (6)
ligases - catalyze the joining of two molecules coupled
with hydrolysis of a pyrophosphate bond in ATP or a
similar triphosphate. The EC classification system assigns
a unique four-field number to each enzymatic activity
(such as EC 1.2.1.3 for aldehyde dehydrogenase (NAD+))
where, the first three numbers (a.k.a. levels) of an EC
number represent progressively finer description of the
enzymatic reaction, while the last level mostly represents
substrate specificity of a reaction [5,6].

Experimental characterization of the enzymatic reactions
of all enzymes in a genome or a metagenome is a tedious
and expensive task. With the exception of a few well-char-
acterized genomes such as Escherichia coli (E. coli) and
yeast, the fraction of experimentally annotated enzymes in
many sequenced genomes is very small. The problem is
more pronounced in the metagenomic samples where
even the species are not adequately cultured or character-
ized. To address this problem, computational approaches,
which can build accurate models from known data to pre-
dict the unknown data, have been employed. Such models
have been widely used to predict protein functions and
annotate newly sequenced genomes [7-10].

Several computational methods exist for predicting
enzyme classes (refer to our review [11]). Many of them
use electronically inferred annotations by transferring the
annotations (EC number, enzyme name and the reac-
tants) of a known enzyme to an unknown enzyme, if the
features of unknown match with the known. Most of the
methods differ by the type of features they use to match
proteins, which broadly include amino acid composition
[12], sequence or structure homology [13-15], domain
composition [16,17] and sequence motifs [18]. A variety
of machine learning (ML) and data mining algorithms,
including nearest-neighbor methods [19], support vector
machines (SVMs) [20,21], Bayesian [22,23] and ensemble
approaches [24,25] have been employed to build models
for enzyme classification. The performance of these
methods varies based on the classification algorithm,
input datasets and features used for model building.
Nevertheless, most of the existing methods fail to predict
EC levels 3 and 4 due to the increasing difficulty in pre-
dicting the finer levels in the hierarchy, thus offer only
limited value to enzyme annotations. Many enzyme pre-
diction methods exhibit a lack of balance between specifi-
city and sensitivity; EzyPred [17] and EFICAz2.5 [24]
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offer limited sensitivity for certain enzyme classes and/or
EC levels and run extremely slow with high false positive
rates. Hence, the existing methods are inadequate for
annotation of high-throughput sequences generated from
genomic and metagenomic projects, warranting the need
for developing a new computational method.

The current study requires the identification of all
enzymes encoded by the gut microbiome in human
because the enzymes encoded by the gut microbiota
play an extensive role in the human metabolism.
Human gut microbiome is the largest and most complex
of all microbial communities that harbor human body,
with a gene set that is about 150 times larger than that
of the human gene set [26]. Human gut microbiome
alone is estimated to contain about 1000-1500 different
species [26,27], but a majority of them are yet to be
characterized. These bacterial communities extensively
contribute to human gut metabolism by complementing
enzymes that are not encoded by the human genome,
but are essential for digestion of complex polysacchar-
ides, absorption, metabolism of amino acids and vita-
mins, shaping of the immunological environment and a
wide range of other metabolic functions [28-30].
Changes in the composition of human microbiota have
been linked to health conditions such as inflammatory
bowel disease (IBD), antibiotic-resistant infections, obe-
sity, colon cancer, symptomatic atherosclerosis and dia-
betes [31-33]. Hence, the identification and functional
characterization of gut microbial enzymes is a very
important step towards understanding the microbe-
dependent component of the human metabolism.

In this study, we developed a new hierarchical enzyme
classification method based on machine learning that
accurately predicts if a protein sequence is an enzyme or
a non-enzyme, and if an enzyme, what is the specific
enzymatic reaction (class and subclasses) it carries out.
We apply this method to identify the full enzyme com-
plements of 10 sequenced genomes of model organisms,
and also those of the microbial species in the metage-
nomic samples obtained from human gut microbiomes.
The methodology developed in this project and its appli-
cation to identifying the full complements of microbial
enzymes has made it feasible to study the role of
microbe-complemented enzymes in the human gut meta-
bolism. To our knowledge, this study represents a novel
and robust approach to studying the pathway level host-
pathogen interactions in the human gut metabolism.

Results and discussion

We describe the results and discussion in two separate
sections that include the method development followed
by its application to study the pathways in human gut
metabolism. Figure 1 shows a schematic of the method
and its application. An ensemble of five different
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Figure 1 Schematic representation of the ECemble method and its application.

machine-learning (ML) classifiers was used to build pre-
diction models based on protein domains that include
sequence or structure-derived features. Hence, this
method is named as ECemble (Enzyme Classification

using ensemble approach). Bayesian network [22] model
represents a set of random variables and their condi-
tional dependencies, whereas Naive Bayes [34] works
under the strong assumption that there is independence
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among the features. K-nearest neighbor (KNN) [35] is
‘instance based’ learning algorithm. Despite its simpli-
city, it can offer very good performance. We tried poly-
nomial and linear kernels in SVM [36] and polynomial
kernel was found to be working better than the linear
kernel. Random Forest classifiers (RFC) [37] work by
generating large number of decision trees in a specific
random way such that each one is de-correlated with
the others. Each classifier model generates a probability
distribution for all classes for each instance in the train
and test set and the class with the highest probability is
assigned as the predicted class.

This is a hierarchical prediction method that predicts
enzymes and enzyme classes at 5 levels (henceforth
referred to as Ly, L;, Ly, L3 and L), where the first model
at Ly predicts if a protein is an enzyme or a non-enzyme,
and the subsequent models from L; to L, predict specific
class and subclass of an enzyme in the EC number hierar-
chy. The predictions are selected by a consensus approach,
i.e., only when at least two of the three top-performing ML
classifiers show consistent predictions. To demonstrate its
usefulness, we applied this method to predict the full
complement of enzymes from ten sequenced proteomes.
In addition, we also tested about 2.5 million protein
sequences that were obtained from metagenomic sequen-
cing and assembly of the human gut microbiome [26].
Using the full complements of enzymes from human and
human gut microbiomes, we further investigated the role
of microbe-derived enzymes in the human gut metabolism.

Development of ECemble method

Feature selection and optimization

We collected the known enzyme and non-enzyme pro-
tein sequences as positive and negative datasets, respec-
tively. Sequences were clustered at 70% identity to
generate 64,948 enzyme and 128,292 non-enzyme
sequences, where each sequence has mapping to at least
one of the following databases. These sequences were
mapped against three domain databases that include
Pfam [38], Superfamily [39] and Prosite [40] to extract
the enzyme-specific and non-enzyme-specific features (as
discussed in the Methods section). A protein domain is a
conserved part of a protein’s sequence or structure that
can evolve, function, and exist independently of the rest
of the protein chain. We used three domain databases
that include Pfam, Superfamily and Prosite to represent
the functional, structural and motif or active site regions
of protein domains, respectively. These domains are used
as features, where, in combination they offer a compre-
hensive feature set for ML methods to discriminate
between enzymes and non-enzymes. We extracted 5,045
and 9,196 overlapping features for enzyme and non-
enzyme datasets, respectively, from three domain data-
bases (Table 1).
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Table 1. Distribution of enzyme and non-enzyme
features

Feature Set Pfam  Prosite Superfamily ¥ (Pfam,
(PS) (SF) PS, SF)
Database 12273 1308 1962 15543
Enzyme Only 859 133 1 1103
Non-Enzyme Only 7658 525 1013 9196
*Common 2514 647 781 3942
features
Total unique 11031 1305 1905 14241
features

*Common between enzyme and non-enzyme sequences

To facilitate the building of an effective ML-based clas-
sifier, it is essential to represent the domain features of
each sequence in a binary format (feature vector), using
‘1’ for the presence and ‘0’ for the absence of a domain.
The size of the feature vector matrix is N x ¥ (P, Q, R),
where N is the total number of enzyme and non-enzyme
sequences, and P, Q and R represent the total number of
mapped domains in Pfam, Superfamily and Prosite,
respectively (Table 2). In theory, the dimensionality of
this vector gets very large; however, since each protein
sequence contains only a few domains, we used the
sparse-formatting option by storing the occurrence of
features with their locations in the feature space to signif-
icantly speed up the model building process.

Hierarchical design of prediction models

We applied five different machine-learning (ML) algo-
rithms to best exploit features from the training dataset
and optimize at each level. These include Naive Bayes,
k-Nearest Neighbor (KNN) classifier, Support Vector
Machine (SVM), Decision Stump (DS) [41] and Random
Forest (tree-based) classifiers (RFC). ML algorithms are
employed to learn discriminative features of classes from
the training data, build models, and test how related the
unknown instances (testing data) are to these models.
We used the WEKA (Waikato Environment for Knowl-
edge Analysis) [42] framework to build prediction models
in an iterative fashion at 5 different levels (L, to L,). As
part of the enzyme identification step, the first model at
Lo predicts if a protein sequence is an enzyme or not.
Only the sequences predicted as enzymes at L are for-
warded to build models for predicting enzyme classes

Table 2. Feature vectors and dimensionality for the
dataset

Dataset Number of feature Data
vectors dimensionality

Enzyme 64948 5045x64948

Sequences

Mixed® 193240 14241x193240

$Both enzyme and non-enzyme sequences



Mohammed and Guda BMC Genomics 2015, 16(Suppl 7):S16
http://www.biomedcentral.com/1471-2164/16/S7/516

and subclasses at L;-L,, sequentially. At Ly, there are only
two classes (enzyme vs. non-enzyme) and similarly, at L,
there are only 6 enzyme classes; hence, one model is suf-
ficient to predict classes at these two levels. However, the
six enzyme classes at L; are further divided into 51 sub-
classes at L. As a result, 6 prediction models are con-
structed to predict 51 subclasses at L,. Similarly, due to
the increasing number of subclasses at each subsequent
level, 51 and 169 models are constructed to predict 169
and 1,921 subclasses at L3 and Ly, respectively (Table 3).
This hierarchical design of prediction models ensures
that subclasses of a superclass are not predicted outside
of that superclass and hence minimize false positives. For
instance, members of EC 1.x.x.x superclass are never pre-
dicted as members of EC 2.x.x.x, and so on and so forth.

Evaluation of prediction performance

All feature vectors were randomly divided into 80 and 20
percent subsets for training and testing, respectively. Since
the datasets are unbalanced across classes (and subclasses),
class distributions are approximately preserved at all EC
levels using stratified partitioning for training and testing
sets. We used a two-step validation procedure that include
determining al0-fold cross-validation accuracy on the
training set, and the testing accuracy using the testing
dataset that is not a part of the training data. We also
report standard performance measures over each class at
each level, including true positive rate (TPR), false positive
rate (FPR), and receiver operating characteristic (ROC)
curves and the area under the curve (AUC). Please refer to
the Methods section for more details.

Table 4 shows the 10-fold accuracy and the testing
accuracy for each of the five ML algorithms (Additional
file 1: Figure S1). Overall, these two accuracies are con-
sistent across the five classifiers indicating that models
are not over trained. With the exception of decision
stump (DS) classifier, the other four classifiers achieved
at least 92.5% and 95.9% testing accuracies at Ly and L,
respectively. The three top performing classifiers are
KNN, SVM and RFC, where testing accuracies reached
at least 94.4% and 97.3% at Ly and Ly, respectively. At
the same time the false positive rates are very low; at LO

Table 3. Overall prediction accuracy of ECemble method
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Table 4. Ten-fold cross validation and testing accuracy
for enzyme identification and enzyme classification

Enzyme Identification Enzyme Classification

(EC Lo) (EC Ly)
Classifiers ~ Ten-fold Testing Ten-fold Testing
Accuracy* Accuracy Accuracy* Accuracy
DS 66.39 66.39 39.12 39.31
NBC 92.60 92.46 96.11 95.88
KNN 94.38 94.38 97.80 97.56
SVM 95.69 94.86 98.34 98.39
RFC 9842 94.60 97.50 97.28

*Ten-fold cross validation accuracy. At EC LO and EC L1 using ML classifiers,
Decision Stump (DS), Naive Bayes Classifier (NBC), K-Nearest Neighbor (KNN),
Support Vector Machine (SVM), and Random Forest Classifier (RFC). At EC LO,
train and test sets contain 154,592 and 38,648 sequences respectively,
whereas EC L1 contain train and test sets of 50,139 and 12,535, respectively.

and L1, the FPR for the top three methods ranges from
0.054 to 0.061 and 0.011 to 0.026, respectively.

Figure 2 illustrates ROC curves that show the relationship
between TPR (sensitivity) and FPR (1-specificity) for a single
class. An ideal ROC curve heads straight up on the Y-axis
and then to the right parallel to the X-axis of the graph; thus
maximizing the area under the curve (AUC). Such curves
indicate that the classifier is predicting maximum true posi-
tives with minimum false positives, with AUC values closer
to one. Figure 2 shows fairly consistent ROC curves for the
top performing three ML methods at Ly and L;, respectively.
AtL,, enzymes from ECG6 class are consistently the best pre-
dicted, while those from EC2 class showed relatively the least
performance. This is probably because EC2 is one of the
largest classes with most divergent subclass distribution,
while EC6 has the least number of subclasses. The minimum
AUC values at Ly and L; are 0.945 and 0.989, respectively,
indicating the superior performance of these three classifiers;
hence, we chose only these three classifiers (KNN, SVM,
RFC) for further use in this study.

Consensus-based ensemble approach

A consensus approach adds confidence to the prediction
accuracy and drastically reduces the false positives;
hence, we implemented it by considering only those pre-
dictions, where the same enzyme class is predicted for a

EC Level Number of Correctly % Overall Classes Model(s) Average # of features per model
Sequences Predicted* Accuracy

Level-0 193240 188866 97.74 2 1 14241

(Enzymes) (64948) (62674) (96.50)

Level-1 62674 62167 99.19 6 1 5045

Level-2 62167 61721 99.28 51 6 811

Level-3 61721 60931 98.72 169 51 95

Level-4 60931 60199 98.80 1921 169 30

*Correctly predicted: Instances predicted by at least 2 of top 3 classifiers. Level-0 represents the model to predict if a protein sequence is an enzyme or not.

Level 1-Level 4 represents corresponding levels of the EC number hierarchy.
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Figure 2 ROC curve at Level-0 and Level-1 using top 3 performing classifiers. (A) Testing at Level-0 using KNN, (B) Testing at level-0 using
RFC, (C) Testing at Level-0 using SVM, (D) Testing at Level-1 using KNN, (E) Testing at level-1 using RFC, (F) Testing at Level-1 using SVM. Due to
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sequence by at least two out of the top three classifiers.
Table 3 shows the overall prediction accuracy for testing
data at each level (Ly-L,) after using the consensus
approach. We achieved an overall accuracy of 97.7% at
Lo for identifying enzymes and non-enzymes, and at
least 98.7% accuracy using models at L; to L, for pre-
dicting enzyme classes and subclasses. These results are
very promising despite the fact that the size of the train-
ing data per model kept diminishing as the number of
models increase at the lower levels (L,-L,). It can also
be noted that at Ly, 96.7% of the correctly predicted
instances are consistent across the top three classifiers,
while at L;-Ly, over 99% of the correctly predicted
instances are consistent (Additional file 2: Table S1).

Effect of sequence identity in the training dataset

Sequence redundancy in the training datasets often results
in overtraining and inaccurate estimation of prediction
accuracy. To test the effect of sequence identity on the

prediction accuracy, we created four datasets at 70%, 60%,
50% and 40% sequence identities using the CD-HIT clus-
tering algorithm [43] and accordingly labeled as cdh70,
c¢dh60, cdh50, and cdh40. At lower sequence identity
thresholds like 40%, more sequences got removed result-
ing in a fewer number of sequences in each enzyme class
compared to datasets with higher sequence identities.
Similarly, the number of enzyme classes containing
minimum number of sequences (ten) for model building
started to go down from thresholds 70 to 40 percent
identity (Additional file 3: Figure S2A). We generated
the enzyme prediction models for EC levels Ly-L, for all
the 4 datasets (shown in Additional file 4: Table S2). We
needed at least 10 sequences in each subclass to build
models using 10-fold cross validation. Accuracy is the
highest for the cdh70 dataset (70% sequence identity)
compared to all other datasets (cdh60, cdh50, cdh40)
(Additional file 3: Figure S2B); hence, we used this data-
set for model building. The 70% sequence identity is
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considered an optimal threshold in many other ML
datasets, because the enzyme function starts to diverge
quickly when the sequence identity is below 70% [5].

Comparison of ECemble with other methods

We compared the performance of ECemble with that of
two existing methods, BLAST and EFICAz [24]. We chose
these two methods because a number of methods are
BLAST-based homology searching methods and EFICAz
is a popular open-source tool. We used the same train and
test datasets against these three methods to compare their
performance. In the first step, a BLAST database was cre-
ated with train dataset and the test data was queried
against it for enzyme identification. Because BLAST gener-
ates a number of hits for each query with varying levels of
confidence, only the top hit was considered (with a mini-
mum E-value threshold of 107 for blastp) as the predic-
tion for each sequence in the test set. To predict the
enzyme classes and subclasses, we performed a second
query against a BLAST database created using only the
enzyme sequences and used the same procedure as in the
first step. Similarly, EFICAz method was trained and
tested for both enzyme identification and classification.
We also used four different clustered datasets (using
CD-HIT) that were described earlier. For enzyme identifi-
cation, ECemble reports the highest accuracy (94.9%)
compared to BLAST (89%) and EFICAz (88.9%) using
cdh70 dataset (Figure 3A). It can also be seen that the
accuracy goes down as the percent identity in the datasets
goes down from 70 to 40; however, this effect is more pro-
nounced in the BLAST method compared to ECemble
and EFICAz suggesting that reduced identity has minimal
effect on these two methods. Similarly for enzyme classifi-
cation at L,, the overall accuracy of ECemble (98.4%) is
better than BLAST (28.43%) and EFICAz (93.36%) meth-
ods using cdh70 dataset (Figure 3B). We compared four
different sequence identity thresholds (70%, 60%, 50% and
40%) of this dataset and our method performed better
than others irrespective of the dataset used. These results
convincingly demonstrate that the ECemble method con-
sistently performed better than BLAST and EFICAz meth-
ods at all identity thresholds (70%, 60%, 50%, 40%), and
that it is also suitable for accurate annotation of protein
sequences with low sequence identity. Hence, in the next
section, we used ECemble to identify and annotate com-
plete enzyme complements of the sequenced genomes and
metagenomes and applied this method to study the role of
gut microbiome-derived enzymes in human metabolism.

Application of ECemble method

Annotation of full complements of enzymes in

sequenced genomes

The ability of ECemble to predict solely based on a pro-
tein sequence enables it to annotate full complements of
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enzymes from sequenced genomes as well as from
mixed genomes such as metagenomic samples. We
applied ECemble to annotate a large number of
unknown or unclassified enzyme sequences from 10
proteomes (that include reviewed and unreviewed pro-
teins from UniProt database [44]) of both eukaryotic
and prokaryotic model organisms (Additional file 5). As
seen in Figure 4, E. coli and yeast proteomes have a
high fraction of known enzymes (27% and 24%, respec-
tively) compared to less than 5% in most of the other
species. In contrast, the fractions of ECemble predicted
enzymes are smaller in E. coli and yeast (around 4.5%),
but reach up to 12% in chicken and zebrafish pro-
teomes. In human and mouse, the fractions of unknown
or unclassified enzymes predicted by ECemble account
to 7.4% and 8.1% of their proteomes, respectively. These
data underscore an important and generic application of
our method that is to annotate a large number of
unknown enzymes and enzyme classes in the sequenced
genomes.

We further investigated about 200 newly predicted
enzymes from the reviewed human proteome sequences
(from the SwissProt database [45]), that were either not
known as enzymes or had partially annotated enzyme
subclasses. These 200 enzymes map to 119 unique
enzyme reactions (with unique EC numbers), of which,
only 30 are not previously known to be in human. Table
5 lists these 30 enzymes with the current annotation in
UniProt and the predicted annotation by ECemble. Note
that despite the well-characterized nature of the
reviewed proteins, ECemble method is able to comple-
ment or correct the existing enzyme annotations
(marked with * in Table 5). For instance, human genes
such as FOXRED1 (FAD-dependent oxidoreductase
domain-containing protein 1) and SCCPDH (saccharo-
pine dehydrogenase-like oxidoreductase) have been
broadly known as oxidoreductases and accordingly
labeled as 1.-.-.-, in the UniProt database. ECemble
method predicted the specific reactions of these
enzymes as malate dehydrogenase (quinone) [EC 1.1.5.4]
and Saccharopine dehydrogenase (NADP(+), L-gluta-
mate-forming) [EC 1.5.1.10], respectively. In certain
cases (marked with ** in Table 5), ECemble predictions
differ only at the subclass levels (L,-L,4), while in a small
number of cases (marked with *** in Table 5), the pre-
dictions also differ from the current annotations at the
class level (L,). Hence, experimental validation of these
predictions is worth pursuing in the future. Because
ECemble prediction models are built only from reviewed
enzyme sequences, the accuracy and coverage of predic-
tion by our model will continue to improve as the newly
characterized enzymes from experimental studies
become available. These results prove that ECemble
method that solely uses protein sequences for prediction,



Mohammed and Guda BMC Genomics 2015, 16(Suppl 7):S16
http://www.biomedcentral.com/1471-2164/16/S7/516

Page 8 of 19

A) Method Comparison for Enzyme Identification
=l BLAST EFICAz =#==ECemble
100
95 L ~— * —
_ 90 B-
& g5
>
s 80
g 75
<
70
65
60
cdh70 cdh60 cdh50 cdh40
Percentage Sequence Identity
B) Method Comparison for Enzyme Classification
== BLAST EFICAz =¢=ECemble
1gg G— —C - &
80
T 70
> 60
g 50
3 40
[¥]
< 30 O— i -—
20 —i
10
0
cdh70 cdh60 cdh50 cdh40
Percentage Sequence Identity
Figure 3 Comparison of ECemble with BLAST and EFICAz methods.

is highly promising for the identification and classifica-
tion of full complements of enzymes in the sequenced
genomes.

Prediction of enzymes from the gut microbiome

To understand the role played by the most densely colo-
nized human microbiome (gut microbiome) in human
metabolism, we would require a catalogue of all the

enzymes that can potentially exist in the human gut
environment. There are several hundreds to thousands
of microbial species that inhabit human gut and many
of them are unknown, under characterized or not cul-
turable in laboratory conditions, which would have
made our goal impossible to accomplish. However,
Next-Generation Sequencing (NGS) data from metage-
nomic samples could be used for de novo assembly of



Mohammed and Guda BMC Genomics 2015, 16(Suppl 7):S16
http://www.biomedcentral.com/1471-2164/16/S7/516

Page 9 of 19

® % Known Enzyme Sequences

Known and ECemble Predicted Enzymes in Uniprot

m % ECemble predicted Sequences

N w
[¥,] o
1 I

N
o
]

=
]
1

=
o O
l 1

Percentage of proteome

o
|

Illlllll[

.QQ/ @) ()
‘(l/ \Q @ \2\0

-

Proteome

Figure 4 Fractions of known and ECemble predicted enzymes in the proteomes of 10 model organisms from UniProt. The data are
sorted from highest to lowest known enzyme fractions. Both reviewed and unreviewed sequences from UniProt were used.

\,
{\Q

Q@

&
&”

microbial genomes, and consequently for the prediction
of the translated proteomes from the assembled scaf-
folds. We applied the ECemble method on 2.5 million
proteins from metagenomic sequences (discussed in the
Methods section) and assigned 213,313 (8.53%)
sequences to 513 distinct enzymatic reactions (Addi-
tional file 6). Of these, 276 reactions are also encoded in
human, leaving 237 reactions that are exclusively
encoded by human gut microbial genomes. Of these,
222 enzymes are known gut bacterial enzymes in Swis-
sProt database, while the remaining 15 enzymes are
newly predicted by the ECemble method.

Role of gut microbial enzymes on human metabolism

Application of ECemble to identify the enzymes and
enzyme classes in human and gut microbial species has
enabled us to ask the following questions. Which gut
microbial enzymes are involved in human metabolism?
Which human pathways are partly or fully driven by
microbe-derived enzymes? Are there any previously
unknown microbial enzymes that are involved in human
gut metabolism? Even though, gut microbiome can con-
tains bacteria, fungi and other small eukaryotes, about
98% of the gut microbial enzymes used in this study

originated from bacteria [26], hence we limited this
study only to bacteria-derived enzymes. To answer these
questions, we created 4 different sets of enzymes. (i)
Known human enzyme reactions (with unique EC num-
bers) (1,271), (ii) Unknown human enzyme reactions
that are predicted by ECemble (19), (iii) Known bacterial
enzyme reactions in the gut microflora predicted by
ECemble (222) and (iv) Unknown gut bacterial enzyme
reactions that are predicted by ECemble (15). For
human and bacteria, known enzymes were obtained
from SwissProt and KEGG (Kyoto Encyclopedia of
Genes and Genomes) [46] databases (Additional file 7
shows known human enzyme reactions).

We mapped both human- and gut bacteria-encoded
enzymes to the KEGG reference pathways to identify 48
human metabolic pathways, where each pathway con-
tains both human- and bacteria-encoded enzymes plus
at least one of them is predicted by ECemble. We refer
to them henceforth as gut microbe complemented
(GMC) pathways. The first set (39 pathways) contains
human enzymes that are complemented by known gut
bacterial enzymes. This set serves to validate the known
role of gut bacteria in human metabolism (Additional
file 8: Figure S3). The second set (9 pathways) is same
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Table 5. ECemble predicted enzymes from reviewed human proteome

Gene Name Accession *UniProt Annotation New ECemble Prediction

EC Description of
Enzyme Function

DHRS7 Q9Y394 1.1-- 1.1.1.n4*
GFOD1 QONXC2 1-m- 1.1.1.n6*
FOXRED1 Q96CU9 1--- 1.1.54%
ALOX12B 075342 11311~ 1.13.11.02%
ALDH8AT Q9H2A2 1.2.1- 1.21.16*
SCCPDH Q8NBX0 1--- 1.5.1.10%
TFBIM Q9UNQ2 211~ 2.1.1.182%
METTL1S A6NJ78 PARN 2.1.1.199*
METTL15P1 POC7v9 210~ 2.1.1.199*
PYROXD2 Q8N2H3 [ 2.1.1.74%
GOTIL1 Q8NHS2 26.1- 26.19*
FGGY Q96C11 2.7.1- 2.7.1.6*
ISPD A4D126 2.7.7- 2.7.7.60*
GDPD3 Q7L5L3 31-- 3.1446*
TLLT 043897 34.24- 342421
TASP1 Q9H6P5 34.25- 34252%
ADAL Q6DHV7 354- 354.2%
IREB2 P48200 None 4.2.1.33%
TYRPI P17643 1.14.18- 1.14.11.03*
HSD1182 P80365 1.0 1.3.1.9%
NDOR1 QoUHB4 16-- 1.8.1.2%*
ENDOV Q8N8Q3 3.1.26- 3.1.21.7%%
ENPP5 Q9UJA9 301~ 3.6.1.27%
MPPED?2 Q15777 301 3.6.141%
THNSL2 Q86YJ6 423- 4.2.1.20%
ALOXE3 Q9BYJ1 544- 10311020
ABHD2 P08910 31.1- 2.3.1.31%%*
ABHD1 Q96SE0 31.1- 23131
ABHD3 Q8wue7 31.0- 2.3.1.84%
SDR42ET Q8WUS8 1.1.1- 5.1.3.20%**

(-)-trans-carveol dehydrogenase
D-chiro-inositol 3-dehydrogenase
Malate dehydrogenase (quinone)

Linoleate 13S-lipoxygenase
Succinate-semialdehyde dehydrogenase (NAD(P)(+))
Saccharopine dehydrogenase (NADP(+), L-glutamate-forming)
16S rRNA (adenine(1518)-N(6)/adenine(1519)-N(6))-dimethyltransferase
16S rRNA (cytosine(1402)-N(4))-methyltransferase
16S rRNA (cytosine(1402)-N(4))-methyltransferase
(FADH(2)-oxidizing)
Histidinol-phosphate transaminase
Ribulokinase
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase
Glycerophosphodiester phosphodiesterase
Astacin
HslU-HslV peptidase
Adenine deaminase
3-isopropylmalate dehydratase
Gibberellin 2-beta-dioxygenase
Enoyl-[acyl-carrier-protein] reductase (NADH)
Sulfite reductase (NADPH)
Deoxyribonuclease V
Undecaprenyl-diphosphate phosphatase
Bis(5"-nucleosyl)-tetraphosphatase (symmetrical)
Tryptophan synthase
Linoleate 13S-lipoxygenase
Homoserine O-acetyltransferase
Homoserine O-acetyltransferase
Alcohol O-acetyltransferase
ADP-glyceromanno-heptose 6-epimerase

SCurrent annotation is based on UniProt database

n Preliminary EC numbers include an ‘n’ as part of the fourth digit in ENZYME database

* Good predictions that complement the current annotations

** Predictions that differ from the current annotations only at the subclass level

*** Predictions that differ from the current annotations at the class level

as the first one; in addition, contains predicted enzymes
(previously unknown) from gut bacterial species. These
nine GMC pathways reveal the role of newly discovered
gut bacterial enzymes in human gut metabolism, which is
made possible with the ECemble method (Additional file
9: Figure S4). All the 48 pathways are mapped with
enzymes (EC numbers) using a color-coded format. Light
red colored enzymes represent known human enzymes,
pink represents unknown human enzymes that are pre-
dicted by ECemble, light green represents known bacter-
ial enzyme reactions in the gut microflora predicted by
ECemble and light blue represents unknown gut bacterial
enzyme reactions that are predicted by ECemble.
Functional distribution of GMC pathways is shown in
Figure 5A and a full list of 48 pathways is given in

Additional file 10. GMC pathways contribute to the
metabolism of a variety of nutrients that primarily
include carbohydrates, amino acids, vitamins and cofac-
tors. Thus, the metabolic role of GMC pathways closely
matches with the known nutritional requirements of
humans. Our results show that gut microbial enzymes
also play a role in lipid and energy metabolism and also
in the metabolism of terpenoids, polyketides and derived
amino acids such as taurine, D-glutamine, etc. Our
method predicted 27 Carbohydrate active enzymes
(CAZymes) (Additional file 11) in the human gut micro-
biome that include carbohydrate esterases, glycoside
hydrolases, glycosyl transferases and polysaccharide
lyases, which are primarily involved in carbohydrate
metabolic pathways. As shown in Figure 5B, human- and
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microbe-derived enzymes complement different cate-
gories of human metabolic pathways. Note that 64, 60
and 30 exclusively microbe-derived enzymes complement
the amino acid, carbohydrate and vitamin/cofactor meta-
bolic pathways, respectively, which underscores their
pivotal role as well as the dependency of human path-
ways on microbe-derived enzymes. Microbes not only
complement, but also supplement some of the enzyme
functions that are common to both human and microbes.
For instance, we found that 518 enzymatic reactions are
shared between human and gut-bacterial species; and we
hypothesize that some of these common enzymes that
are secreted by bacteria could supplement to perform
human metabolic functions, and vice-versa. These com-
mon enzymes are highlighted in blue color in the
Additional file 12. These results empirically support the

argument that symbiotic gut microbiome has coevolved
with human (or the coelomate animals) and they play a
huge role in the metabolic interactions between host-gut
microbiota [32].

Humans lack the enzymes needed to degrade oxalate
[47]. It has been shown that the bacterial degradation of
oxalate is carried by Oxalobacter formigenes in the
human intestinal tract and the absence of Oxalobacter
formigenes is considered a risk factor for urolithiasis [48].
Similarly Choline, an essential dietary nutrient, is found
to be metabolized in the liver by the gut microbial
enzymes. Thus conversion of dietary choline is used as a
metabolic hallmark for liver and cardiovascular diseases
[49]. Similarly, nitrate reductase that converts nitrate into
nitrite and nitric oxide, is synthesized only by gut micro-
biome; elevated levels of nitric oxide have been associated
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with both IBD and obesity-induced insulin resistance
[31]. Gut microbiome also plays a crucial role in the
metabolism of xenobiotics; at least thirty commercially
available drugs are shown to be metabolized as substrates
by bacterial enzymes [50,51]. On the other hand, gut
microbiome is also a source of inflammatory molecules
such as lipopolysaccharide and peptidoglycan that may
contribute to metabolic diseases [52].

Gut microbe-complemented pathways for dietary
carbohydrate metabolism

Carbohydrates are a major component of the human diet
that includes starch (amylose and amylopectin) and dis-
accharides such as sucrose, lactose, and maltose. Human
gut bacteria produce a vast panel of CAZymes to degrade
components of dietary fiber into metabolisable monosac-
charides and disaccharides [33]. The human genome
encodes at best 17 digestive enzymes [53]; for ex. lactase,
a-amylase, maltase, isomaltase and sucrose. It has been
known that human enzymes can hydrolyze disaccharides
(sucrose, lactose and maltose, etc.) and starch, but not
other complex polysaccharides [54]. Hence, our ability to
digest dietary plant carbohydrates resides entirely in our
gut, where gut microbe-derived enzymes can hydrolyze
complex dietary carbohydrates by producing a variety of
CAZymes [55]. Thirteen gut bacterial enzymes predicted
by ECemble were mapped in starch and sucrose metabo-
lism pathway as shown in Figure 6. Enzymes responsible
for the conversion of sucrose to glucose and bacterial
degradation of pectin (a common component of dietary
fibers) and xylan (polysaccharides in plant cell walls) are
shown in the Table 6. These enzymes are predicted by
our ECemble method from the gut microbial metage-
nomic data.

Another GMC pathway, fructose and mannose metabo-
lism, explains how bacterial enzymes complement human
enzymes to metabolize dietary sugars (Figure 7). Fructose
occurs as a free monosaccharide and an isomer of glucose.
In Figure 7, predicted bacteria-encoded enzymes and
known human-encoded enzymes are shown, where
D-Fructose (fructose) is catalyzed by bacterial enzymes,
Protein-N (pi) -phosphohistidine-sugar phosphotransfer-
ase (2.7.1.69) and Fructokinase (2.7.1.4) into D-Fructose-1
Phosphate and B-D-Fructose-6 Phosphate, respectively.
B-D-Fructose-6P is metabolized to Glyceraldehyde-3P
using human-encoded enzymes Phosphofructokinase
(2.7.1.11) and Fructose-biphosphate aldolase (4.1.2.13).
The Glyceraldehyde-3P compound is a part of the glycoly-
sis (normal metabolism of sugars) pathway, which is the
main energy generating mechanism in the body. This
pathway demonstrates that the bacteria- and human-
encoded enzymes complement and work in unison in the
digestion and energy metabolism pathways.
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Analysis of enzyme profiles of obese and IBD subjects

A recent study published the metagenomic profiles of
obese, lean and Inflammatory Bowel Disease (IBD) sub-
jects [26]. This study also reported the translated gene
products of gut microbiome from 124 metagenomic
subject samples. We used these protein sequences to
predict all the enzymes in each subject with our ECem-
ble method, and analyzed the enzyme profiles of ‘obese
versus lean’ (42 obese/82 lean) and ‘IBD versus non-
IBD’ (25 IBD/99 Non-IBD) subjects. We identified 237
unique bacterial enzymes that are not encoded in
human from the metagenomic samples of obesity, lean,
IBD and non-IBD subjects. These include 222 known
and 15 previously unknown enzymes in gut bacterial
species. Details on how these enzyme reactions maps to
KEGG human pathways are shown in Additional files 13
and 14. The taxonomic distribution of bacterial species
from metagenomic samples is also shown in Additional
file 15. The frequencies of enzymes present in the sub-
jects were normalized based on the number of subjects
in the obese/lean and IBD/non-IBD comparison groups
and a Fisher’s exact-test (P-value <0.05) using R [56]
was conducted to determine the significantly enriched
or depleted enzymes in the obese and IBD subjects
(Additional files 16 and 17). Of the obesity-enriched
enzymes, the most significant enzyme (P-value, 9.84E%)
is polygalacturonase (EC 3.2.1.15), which is encoded by
Bacteroides and Prevotella species, and carries out pen-
tose and glucuronate interconversions in starch and
sucrose metabolism (Additional file 16). In contrary,
urease (EC: 3.5.1.5) encoding bacteria are found in fewer
number of obese subjects compared to lean subjects
(obese/lean ratio = 0.88, P-value = 0.0179), suggesting
that the loss or absence of this enzyme may be asso-
ciated with obesity. In our analysis of IBD bacterial
enzymes (Additional file 17), we found that non-IBD
subjects predominantly host bacterial populations that
contain an enzyme, Glucose-1-phosphate thymidylyl-
transferase (EC: 2.7.7.24, IBD/Non-IBD ratio= 0.06;
P-value = 2.9E%) compared to the IBD group. This
enzyme is involved in the biosynthesis of L-rhamnose in
bacteria. While there is no direct evidence to link lower
levels of L-rhamnose to IBD, increased lactulose/L-
rhamnose permeability ratio or decreased L-rhamnose
in human intestinal permeability is found to be associated
with IBD [57,58]. Hence, the consequences of the absence
of bacterial populations that produce L-rhamnose in the
IBD patients is worth investigating by experimental
studies. The distribution of significant (p-value <0.05)
enzymes in obese/lean and IBD/Non-IBD groups is pre-
sented in Figure 8. The comprehensive list of enzymes in
each category (obese/lean and IBD/Non-IBD) is given in
Additional files 16 and 17.
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Table 6. Enzymes and their function in starch and sucrose metabolism pathway

Function Enzyme used EC Number
Sucrose — Sucrose-6P Protein-N(pi)-phosphohistidine-sugar phosphotransferase 2.7.1.69
Sucrose-6P — a-D-Glucose-6P (glucose) Beta-fructofuranosidase 32.1.26
Pectin — Pectate Pectinesterase EARRE
Pectate — Galacturonate Polygalacturonase 32.1.15
Xylan — Xylose Xylan 1,4-beta-xylosidase 32137
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Conclusions

A consensus-based ensemble method, ECemble, was
implemented to identify enzymes from non-enzymes,
and to hierarchically predict the class and subclasses of
an enzyme up to L, of the EC number. Comparison
against BLAST and EFICAz methods showed superior
performance of ECemble, both in coverage and accuracy.
The superior coverage can be attributed to the generic
protein domain feature space used in this method, while
the improved accuracy resulted from the stringent con-
sensus-based ensemble approach. Application of ECem-
ble to predict full complements of enzymes from 10
sequenced genomes of model organisms has generated
new annotations for unknown enzymes as well as full
annotations for undercharacterized enzymes. Similarly,
ECemble method enabled us to predict bacterial enzymes
present in the gut microbiome and consequently use
them to study the dependence of human metabolism on
gut microbe-derived enzymes. Mapping of human and
microbe-derived enzymes to KEGG metabolic pathways
revealed that gut microbe-derived enzymes, especially

those involved in the digestion of dietary nutrients, are
essential components of a number of human pathways.
Further application of this method to study the profiles
of gut microbe-derived enzymes in lean versus obese,
and IBD versus non-IBD subjects showed that certain
enzymes were significantly enriched or depleted in these
comparison groups, warranting further studies to under-
stand the role of these enzymes on certain disease condi-
tions. Two important merits of ECemble are that it can
predict solely based on the protein sequence and also
fully annotates enzymes by hierarchically assigning
classes and subclasses up to L,. Hence, it can be a valu-
able tool for accurately annotating the entire enzyme
complements of individual genomes as well as the mixed
genomes from metagenomic studies. As evident from
this study, ECemble can be effectively used to study the
metabolic interactions between the host and microbes or
those among the members of a community in a micro-
flora. Being a generic method, it can be applied to study
the systems level pathway interactions in any organism
or microbial community.
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Methods

ECemble dataset

The dataset include enzyme sequences taken from the
EXPASY enzyme database [59], which is built based on
SwissProt database [45] that contains reviewed and experi-
mentally determined annotations on enzymes. We applied
the following filters to obtain high-quality data for testing
and training our program: duplicate sequences, sequences
annotated as ‘fragments’ and those shorter than 50 resi-
dues in length were removed; sequences having more than
one EC number were also removed. To avoid redundancy
in the dataset, no more than 70% sequence identity was
allowed among sequences within a class for each of the
six EC classes, using the CD-HIT program [43]. Conse-
quently, 64,950 non-redundant enzyme sequences (posi-
tive dataset) were collected that broadly cover all the
known enzyme classes and subclasses. Similarly, a negative
dataset (non-enzymes) of 128,475 sequences were
collected from a SwissProt database by following the same
filtering steps as mentioned above. A class-wise distribu-
tion of known enzyme sequences is listed in Table 7.
Sequence to domain mapping was done for enzyme and
non-enzyme sequences based on the Pfam [38] and Super-
family [39] databases using HMMSCAN [60], and the
Prosite database using PSSCAN [61].

Feature databases

The most important features of enzymes that differ-
entiate them from non-enzymes are their structure,
function and catalytic sites. The feature set we used for
machine learning in this study was based on the func-
tional and structural domains, and sequence motifs.
Structural domains define evolutionarily conserved
region of proteins that can fold independently, while
functional domains define evolutionarily conserved
regions that can independently perform a specific bio-
logical function. Similarly, short sequence motifs define
the catalytic or binding sites of enzymes. Machine
learning algorithms exploit these different sets of fea-
tures from enzyme and non-enzyme data in differen-
tiating one from other.
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Three popular domain databases - Pfam, Superfamily
and Prosite - were used to extract the domain features
of enzyme and non-enzyme sequences for building the
ECemble method. Pfam (Protein Family) database
contains functional domain information for protein
sequences; Prosite database is a collection of biologically
important sites, patterns and sequence motifs associated
with protein functions; and the Superfamily database
contains sets of homologous proteins that conserve
structural and active site features. Together, these three
databases provide a comprehensive coverage of func-
tional, active site and structure-based features of enzyme
and non-enzyme protein sequences.

Machine learning methods

We selected five diverse and most popular machine
learning classifiers; Naive Bayes [34], k-Nearest Neighbor
(KNN) [35] classifier, Support Vector Machine (SVM)
[36], Decision Stump (DS) [41] and Random Forest (tree-
based) classifiers (RFC) [37], to build models for enzyme
identification and classification. We used the WEKA
3.7.5 [42] package, which is an open-source, Java-based
framework to build classification models using different
ML techniques.

Ten proteome datasets

We downloaded the proteomes of ten model organisms
from the SwissProt database [45], ranging from animal,
plant, fungal and bacterial species such as Saccharomyces
cerevisiae (yeast), Caenorhibditis elegans (C. elegans),
Drosophila melanogaster (fruitfly), Danio rerio (zebra-
fish), Gallus gallus (chicken), Mus musculus (mouse),
Homo sapiens (human), Escherichia coli (E. coli), Oryza
sativa (rice) and Arabidopsis thaliana (Arabidopsis). We
filtered out the experimentally known enzyme sequences
from each of the ten proteomes and tested the unclassi-
fied sequences with ECemble.

Human gut metagenomic samples
We used a study on the human gut microbiome from
the Beijing Genomics Institute’s (BGI) Metagenomic

Table 7. Class-wise statistics on the number of enzyme sequences, and the subclasses at each level

EC Level-1(6 Classes)
(Example:1.x.x.x)

Total Sequences Subclasses at

EC Level-2 (example:1.1.x.x)

Subclasses at
EC Level-4 (example:1.1.1.1)

Subclasses at
EC Level-3 (example:1.1.1.x)

EC1: Oxidoreductases 8662 22
EC2: Transferases 23604 9
EC3: Hydrolases 15183 11
EC4: Lyases 5525 7
EC5: Isomerases 4146

EC6: Ligases 7830

Total 64950 61

90 658
31 751
49 781
15 268
17 127
11 109
213 2693

There are 6 major classes at Level-1 that expand into 61, 213 and 2,693 subclasses at Levels 2, 3 and 4, respectively.
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Sequencing Project [26] that describes a set of about 3.3
million microbial genes sequenced and assembled from
fecal samples of 124 individuals (Additional file 18
represent the patient profiles and health status), to study
the impact of human gut microbiome on human meta-
bolism. As part of the filtering steps, sequences mapped
to viruses, archaea, eukaryota, unclassified and unknown
sequences were removed. About 2.5 million translated
protein sequences from the assembled scaffolds of bac-
terial genomes were predicted by our ECemble method
to identify all the bacterial enzymes in the human gut
microbiome. The diversity of taxonomic groups of bac-
teria at each level is given in Additional file 19: Figure S5.

KEGG database

We used Kyoto Encyclopedia of Genes and Genomes
(KEGQG) [46], the most comprehensive database source
that integrates genomic, proteomic and systemic func-
tional information for pathway analysis. The KEGG
Pathway suite is a collection of manually drawn maps
demonstrating the existing knowledge on the molecular
interaction and reaction networks. KEGG pathways were
used as reference pathways to map human and gut
metagenomic enzymes for analysis of gut microbe-
complemented human metabolic pathways.

Performance measurements

We used standard evaluation metrics that include 10-fold
cross validation and ROC curves. In 10-fold cross-valida-
tion, sequences at each level are divided into ten parts,
models are built using nine parts, and predictions are gen-
erated and evaluated on the data contained in one part.
This procedure is repeated ten times, where each part is
tested against the models built from nine other parts. The
average performance of the ten models is considered as an
unbiased estimate of the training model performance.
After cross-validation, we assessed the performance of the
fully trained classifier models using the test set (20% of
original data) that were hidden from the classifiers. We
report standard performance measures over each enzyme
class including the following: true positives (TP) as the
number of sequences that are correctly identified in a class
that belongs to them; false negatives (FN) as the number
of sequences that are not identified in a class that belongs
to them; true negatives (TN) as the number of sequences
that are not found in a class that does not belong to them;
false positives (FP) as the number of sequences that are
identified in a class that does not belong to them; sensitiv-
ity as the proportion of true positives that are predicted as
positives; specificity is the proportion of true negatives that
are predicted as negatives. The sensitivity and specificity
are given by, sensitivity = TP/ (TP + FN); specificity =
TN/ (TN + FP).
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We also report accuracy in a class as the ratio of the
number of correctly predicted enzyme sequences to the
total number of sequences in that class. We optimize and
validate the accuracy of ECemble by selecting the optimal
model(s) that has maximum true positive rate (sensitivity)
and minimum false positive rate (1-specificity). Finally, we
show ROC (Receiver Operating Characteristic) curves as a
graphical means of measuring the performance for each
class at each level of the prediction process, and the area
under the curve (AUC) as a numeric measure of perfor-
mance depicted by ROC curves.

Additional material

Additional file 1: Figure S1. 10-fold cross validation and testing
accuracies. A) For enzyme identification at EC Level-0 using ML classifiers
Decision Stump (DS), Naive Bayes Classifier (NBC), K-Nearest Neighbor
(KNN), Support Vector Machine (SVM), and Random Forest Classifier (RFC).
B) For enzyme classification at EC Level-1 using ML classifiers Decision
Stump (DS), Naive Bayes Classifier (NBC), K-Nearest Neighbor (KNN),
Support vector Machine (SVM), and Random Forest Classifier (RFC).

Additional file 2: Table S1. Overall predictions of 2 classifiers vs. 3
classifiers.

Additional file 3: Figure S2. Accuracy and distribution of enzyme
sequence and class. A) Distribution of enzyme sequence and class
coverage for cdh70, cdh60, cdh50 and cdh40 datasets. B) Accuracy at
each EC level for cdh70, cdh60, cdh50 and cdh40 datasets.

Additional file 4: Table S2. Accuracy of ECemble method using cdh70,
cdh60, cdh50 and cdh40 datasets

Additional file 5: Statistics for Known and ECemble predicted
enzyme sequences from ten proteomes. The proteomes contains
both reviewed and unreviewed sequences from UniProt (Data Sheet
‘ReviewedAndUnreviewed'). The ECemble predictions for the reviewed
sequences from 10 proteomes are given in Data Sheet
‘PredictionsReviewedSet'.

Additional file 6: ECemble predicted gut microbial enzymes.

Additional file 7: Known human enzyme reactions from SwissProt
and KEGG.

Additional file 8: Figure S3. GMC pathways that validate the role of gut
bacteria in human metabolism

Additional file 9: Figure S4. GMC pathways that reveal the newly
discovered role of gut bacteria in human metabolism

Additional file 10: Mapped human pathways in major pathway
categories.

Additional file 11: CAZymes found in metagenomic samples using
ECemble.

Additional file 12: Known enzymes common in both human and
bacteria.

Additional file 13: Known bacterial enzyme reactions in the gut
microflora predicted by ECemble

Additional file 14: Unknown gut bacterial enzyme reactions that are
predicted by ECemble.

Additional file 15: ECemble predicted gut bacterial enzymes with
subject information.

Additional file 16: Obesity/Lean enzymes from metagenomic samples
using Fisher-exact test. Obese_Normalized is calculated as the ratio of
number of obese subjects having a particular enzyme to the total
number of obese subjects (42). Similarly, Lean_Normalized is calculated
as the ratio of number of lean subjects having a particular enzyme to

the total number of lean subjects (82).
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Additional file 17: IBD/Non-IBD enzymes from metagenomic samples
using Fisher-exact test. IBD_Normalized is calculated as the ratio of
number of IBD subjects having a particular enzyme to the total number
of IBD subjects (25). Similarly, Non-IBD_Normalized is calculated as the
ratio of number of Non-IBD subjects having a particular enzyme to the
total number of Non-IBD subjects (99).

Additional file 18: Metagenomic samples profile.

Additional file 19: Figure S5. Taxonomic distribution of bacterial
species from metagenomic samples.
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