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Abstract

Background: RNA sequencing (RNA-seq) is a powerful tool for genome-wide expression profiling of biological
samples with the advantage of high-throughput and high resolution. There are many existing algorithms
nowadays for quantifying expression levels and detecting differential gene expression, but none of them takes the
misaligned reads that are mapped to non-exonic regions into account. We developed a novel algorithm, XBSeq,
where a statistical model was established based on the assumption that observed signals are the convolution of
true expression signals and sequencing noises. The mapped reads in non-exonic regions are considered as
sequencing noises, which follows a Poisson distribution. Given measureable observed and noise signals from RNA-
seq data, true expression signals, assuming governed by the negative binomial distribution, can be delineated and
thus the accurate detection of differential expressed genes.

Results: We implemented our novel XBSeq algorithm and evaluated it by using a set of simulated expression
datasets under different conditions, using a combination of negative binomial and Poisson distributions with
parameters derived from real RNA-seq data. We compared the performance of our method with other commonly
used differential expression analysis algorithms. We also evaluated the changes in true and false positive rates with
variations in biological replicates, differential fold changes, and expression levels in non-exonic regions. We also
tested the algorithm on a set of real RNA-seq data where the common and different detection results from
different algorithms were reported.

Conclusions: In this paper, we proposed a novel XBSeq, a differential expression analysis algorithm for RNA-seq
data that takes non-exonic mapped reads into consideration. When background noise is at baseline level, the
performance of XBSeq and DESeq are mostly equivalent. However, our method surpasses DESeq and other
algorithms with the increase of non-exonic mapped reads. Only in very low read count condition XBSeq had a
slightly higher false discovery rate, which may be improved by adjusting the background noise effect in this
situation. Taken together, by considering non-exonic mapped reads, XBSeq can provide accurate expression
measurement and thus detect differential expressed genes even in noisy conditions.

Background
Next-generation sequencing (NGS) has been widely used
in biological studies. RNA sequencing (RNA-seq) is the
most commonly used NGS technologies to investigate
the aberration of mRNA expression in disease and

normal condition comparison. Unlike microarray tech-
nology, which uses a short section of a gene as a probe to
determine the gene’s expression, RNA-seq provides mea-
surement across entire exonic region, enabling accurate
expression quantification and discovery of novel isoforms
and splicing junctions. With RNA-seq technology, thou-
sands of novel coding and non-coding genes, alternative
splice forms of known genes have been discovered.
Differential expression (DE) analysis using RNA-seq is

commonly employed to interrogate changes between
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different experimental conditions. While enormously
successful, DE analysis also suffers from systematic
noise and sequencing biases, such as sequence quality
bias, wrong base calls, variability in sequence depth
across the transcriptome, and the coverage depth differ-
ences of replicate samples [1]. There are already many
statistical testing methods for RNA-seq differential
expression analysis. One is to normalize the read counts
of target transcripts, converting them into reads per
kilobase per million mapped reads (RPKM) and then
perform linear modeling methods that are used in
microarray experiments [2]. However, the method
designed for microarray measurement may not fit the
characteristics of sequencing data properly. In past
years, algorithms have been developed specifically for
RNA-seq data analysis. Among them, two popular soft-
ware packages implemented the negative binomial (NB)
model that account for genome-wide read counts and
moderate dispersion estimates with different statistical
methods [3,4]. EdgeR [4] uses a trended-by-mean esti-
mate to moderate dispersion estimates, whereas DESeq
[3] takes account of the maximum of a fitted dispersion
mean or the feature-wise dispersion estimate, as
reviewed in [5]. However, neither of these methods con-
sidered the misaligned reads existing in the sequencing
data, which may play a significant role in detecting the
significance of target transcripts.
Here we propose a novel DE analysis algorithm -

XBSeq, which is derived from DESeq, where we take the
non-exonic reads of RNA-seq data into consideration.
In conventional RNA-seq analysis, reads mapped to the
exons are counted as the expression of a gene, whereas
reads aligned to the intronic and inter-genic regions are
generally ignored. Those non-exonic hits exist because
of: sequencing error, mapping error, contamination by
genomic DNA, unannotated genes, and nascent tran-
scription and co-transcriptional splicing [6]. Our model
treats these sequence reads as sequencing noises that

exist across the entire genome, both exonic and non-
exonic regions. Therefore, the observed read counts can
be decomposed into two components: true signals that
are directly derived from transcripts expression, and the
others from the random noises. We model true expres-
sion signals by a negative binomial distribution and
assume sequencing background noises possess a Poisson
distribution. With non-exonic read counts, we can esti-
mate the parameter li of the Poisson distribution of
each gene. Afterwards, we remove sequencing noise
effect from observed signals and retrieve the back-
ground-corrected mean and variance parameters for the
NB model of true expression signals.
To study the robustness of the algorithm, we have

built a simulation framework that generates RNA-seq
data by combining the true signals in NB distribution
with different levels of non-exonic reads from Poisson
distribution. We demonstrate our method by applying it
to the simulated data and examine how it performs
comparing with other common DE analysis algorithms.

Methods
Non-exonic sequence read count
For a typical transcriptome profiling by RNA-seq, we
detect read count of each gene by using HTSeq algo-
rithm [7]. Given exons’ locations of every gene, HTSeq
counts sequence reads aligned to the genic regions. In
order to capture the reads in non-exonic regions, we
preserved the structure information of each gene (tran-
script length, exon size, etc) by shifting start and end
positions of each exon to a nearby intronic or inter-
genic region (See Figure 1A). We have defined non-exo-
nic regions for each species by the following steps:
1) Download refFlat table from UCSC database

(http://genome.ucsc.edu) and create the preliminary list
of gene-free regions,
2) Download tables of (a) all_mrna; (b) ensGene; (c)

pseudoYale60Gene; (d) vegaGene;, (e)xenoMrna, and (f)

Figure 1 (A) Illustration of exonic and non-exonic reads. (B) Histogram of sequence read counts in RPKM. The histogram of observed
signal (X) is plotted in blue and the histogram of non-exonic read counts (B) in pink.
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xenoRefGene from UCSC database and remove regions
appear in any of them from the gene-free regions,
3) To guarantee gene-free regions are far enough from

exonic regions, trim 100 bps from both sides of intronic
regions and 1,000 bps from both sides of inter-genic
regions,
4) Shift each exon of a gene to the right nearest gene-

free region. Most of the shifted genes remain the same
as the original structures of the genes,
5) If the nearby gene-free region is too short, we may

only preserve the exon size features but not the whole
gene structure. The priority of shifting a region is: i)
nearest right gene-free region, 2) nearest left gene-free
region; 3) the second right nearest gene-free region and
so on until the shift region of the original exon fits, and
6) At last, we considered the shifted regions as the non-

exonic regions for each gene and a final .gtf file was
created.
To extract non-exonic read counts, HTSeq was per-

formed second time to generate an equivalent read
count for each gene over an exactly same length of non-
exonic region. By doing so we guarantee an equivalent
read count from non-exonic region for each gene.
The histogram of a RNA-seq data in RPKM unit was

plotted in Figure 1B. The blue histogram was derived from
the observed read counts genome-wide, while the red one
was derived from the non-exonic read counts after shifting
the exons’ position. As illustrated in the figure, the hump
of the red histogram overlaps with the left tail of the blue
histogram, indicating the existence of sequencing noises in
commonly reported gene expression levels, particularly
when gene expression level is low. Based on this observa-
tion, we hypothesize that the read count of ith gene (e.g.,
observed by HTSeq), defined as Xi, is composed of true sig-
nal Si (not measurable directly) and background noise Bi

(measured over our uniquely defined non-exonic regions).

Poisson-negative binomial model
We assume that read count of ith gene can be decom-
posed into two components: true signal Si that directly
derived from transcript expression, and background
noise Bi due to sequencing error or misalignment.
Therefore, the observed signal Xi is

Xi = Si + Bi

Si ∼ NB
(
ri, pi

)

Bi ∼ Poisson (λi)

(1)

where ri, pi are parameters (number successes and prob-
ability of success, respectively) of NB distribution and li is
the rate parameter of Poisson distribution. We further
assume that the true expression signal Si and background
noise B are independent. Given the observed signal Xi to be
the sum of a NB and a Poisson, the probability distribution

of Xi is governed by a Delaporte distribution, which is the
convolution of a NB distribution with a Poisson distribu-
tion [8,9]. When there is no background noise (which is the
assumption of many other RNA-seq algorithms), the
observed signal is simply governed by a NB distribution,

Estimation of distribution parameters
The two NB parameters ri and pi can be estimated by
the background corrected mean and variance of gene i;
and with the non-exonic read counts, the Poisson para-
meter li can be determined easily. We further assume
that genes are independent to each other, acknowled-
ging that some genes are dependent within pathways or
other reasons. Hence, the objective is to estimate all
parameters of each gene in order to obtain the NB
model fitted to the true expression signals.
The estimation of Poisson parameter l is relative sim-

ple, we assume that the read count derived from the
non-exonic regions representing the background com-
ponent B and independent of S. Therefore, we can
obtain l of each gene, being the average of total non-
exonic read counts across all m replicates.

λi =
1
m

m∑
j=1

bij (2)

where bij is the non-exonic read count of ith gene
from jth sample. After the estimation of Poisson para-
meter, we can calculate the true expression signals ’
mean μSi and variance σ 2

Si of each gene as follows,

μSi = E(Si) = E (Xi) − E(Bi) (3)

σ 2
Si
= σ 2

Xi
+ σ 2

Bi
− 2ρσXiσBi , (4)

where σ 2
Bi
= λi. Note that observable X and back-

ground B are not independent. As we mentioned earlier,
observed read count X follows a Delaporte distribution,
which has no closed form [8,9]. The parameters of Dela-
porte distribution, D(l, a, b), however, is known as
μ = λ + αβ, and σ 2 = λ + αβ (1 + β), where λ can be con-
sidered as the parameter of Poisson distribution. When
λ = 0, the Delaporte reduces to NB distribution, similar
to what we have in Eqs. (3) and (4). The same variance
correction method in DESeq is subsequently used to
adjust σ 2

Si in order to get precise estimate of the variance
when the number of replicates is small [3]. After obtain-
ing the adjusted true expression signal mean and var-
iance, μS and σ

′2
Si , from Eqs. (3) and (4), the two NB

parameters ri and pi are further estimated by,

ri = μ2
Si
/
(
σ

′2
Si

− μSi

)
(5)

pi = μSi/σ
′2
Si (6)
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Testing for differential expression
After estimating the NB parameters in both experimen-
tal conditions, differential expression analysis between
the two conditions can be tested. Designed similarly to
DESeq method, we use a Fisher’s exact test approach to
estimate the P value of each gene [3]. In short, suppose
we have x and y reads of a gene in each condition, we
compute every possible p(a, b), where the sum of the
variables a and b equal to Ktotal (Ktotal = × + y). By
assuming the independence of two test conditions, we
have p(a, b) = Pr(a) Pr(b), where Pr(a) and Pr(b) are the
probabilities in NB distribution that we have estimated
for each condition. Therefore, the P value is the propor-
tion of the sum of possible probabilities less than the
probability of actual read counts among the sum of all
probabilities as follows,

p =

∑
p(a,b)≤p(x,y) p(a, b)∑

all p(a, b)

Equation 7 is evaluated gene-wise, and for simplicity,
we omitted subscript i.

Simulation
In order to evaluate the performance of different RNA-
seq algorithms, we generated a set of simulated data
where we could control the differential expression status
for a given set of genes, as well as noise level for all
genes. In this study, true signal S and background signal
B were simulated based on a negative binomial distribu-
tion and a Poisson distribution, respectively, with para-
meters estimated from real RNA-seq data.
We followed a similar simulation framework used by

edgeR-robust [5]. Firstly, genes from real RNA-seq data
were filtered based on the expression intensity across all
replicates. The genes with top 10% dispersion were dis-
carded. Then 5,000 genes were randomly selected with
replacement among the filtered genes. Based on the
mean and dispersion estimated from real RNA-seq data,
the true signal S was simulated for each gene from the
negative binomial distribution. Different proportions of
genes (10% and 30%) were randomly selected as differen-
tially expressed genes with various fold changes (1.5, 2, 3,
and 5). To simulate baseline background signal Bbaseline,
firstly, the mean value was calculated using the non-exo-
nic mapped reads of its corresponding gene. Then Bbase-

line was generated from a Poisson distribution with
parameter l equals to the calculated mean value from
the non-exonic read counts. Observed signal Xbaseline was
then generated as the addition of S and Bbaseline.
To simulate background signal Binc with increased

non-exonic mapped reads, we first calculated mean read
count for each selected gene based on the non-exonic

mapped reads from real RNA-seq data. Then Binc was
simulated by a hybrid model,

Binc ∼ M ∗ Norm(μ, σ )

where μ is from a Poisson distribution
μ ∼ Poisson(λ +NF), NF is the noise factor, which we
set to be 0 (low), 7 (intermediate) and 20 (high). l
equals to the mean of the non-exonic mapped reads of
a given gene, and we set s = 3 and multiply M = 10
for our simulation. Finally, we set the observed signal
Xinc to be the addition of S and Binc. For noise models
different from Poisson, we simply replaced Poisson
with binomial, uniform or other distributions in Eq. 8.
Simulations were performed 100 times in order to
evaluate and plot the Receiver Operating Characteristic
(ROC) curves and other statistics.

RNA-seq data set for testing
A mouse RNA-seq dataset were obtained from Gene
Expression Omnibus (GSE61875) [10]. For this testing
purpose, we selected 3 replicates of wild type mouse
liver tissues (WT) and 3 replicates of Myc transgenic
mouse liver tissues (MYC) for differential expression
analysis to determine differential expressed genes due to
the activation of Myc. Out of the six samples selected,
on average, 12,781 (out of 22,609) genes have at least
one non-exonic reads, and 15,973 genes have at least
one exonic reads.

Comparison of other RNA-seq algorithms
We also compared XBSeq with other differential expres-
sion analysis methods, including DESeq (1.14.0) [3], latest
version of DESeq (DESeq2, 1.2.10) [11], edgeR(3.5.15) [4],
latest version of edgeR (edgeR-robust 3.5.15) [5], baySeq
(1.16.0) [12], limma (3.18.13) [13], and EBSeq (1.2.0) [14].
All these evaluation were performed under R version
3.0.2 and Bioconductor version 2.13. Detailed workflow
of XBSeq and simulation is illustrated in Figure 2.

Results
Implementation of XBSeq algorithm
XBSeq requires two inputs, the observed measurement
from exonic regions and the background noise from
non-exonic regions. Both read counts can be obtained
by submitting mapped sequence reads to HTSeq twice
with coding gene annotation (e.g., gene.gtf) and shifted
gene annotation (shift-gene.gtf) as discussed in Methods
Section (Figure 2). As the first step, the true signal for
each gene is estimated by using Eq. 3. The read counts
of genes with negative true signals will be automatically
assigned to 0. We apply a similar method as DESeq to
normalize the true signal based on size factors
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calculated from each sample, and we then estimate the
variance of the true signal for each gene by using Eq. 4.
A similar framework for variance correction and the dif-
ferential expression significance testing as DESeq

(Eqs. 5-7) is applied to generate p-values for each gene.
The output of XBSeq contains p value, adjusted p value
for multiple test correction, log2 fold change and other
statistical merits for each gene.

Figure 2 Block diagram of the XBSeq and simulation process.
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To optimize the performance of XBSeq, we applied
variance correction procedure either at observed signal
level or at estimated true signal level. After examining
the performance of these two choices based on simulated
datasets, we concluded that variance correction at esti-
mated true signal level yields the best performance with
larger area under the ROC curve. We also investigated
the performance of LOWESS as well as locfit R package
for fitting variance-mean relationship. Locfit was proven
to generate more robust variance-mean relationship
based on simulated datasets. Therefore, we selected locfit
package to estimate variance-mean relationship and carry
out variance correction procedure at estimated true sig-
nal level in the current XBSeq implementation.

Discrimination between DE and non-DE genes
To compare the performance of XBSeq with other statis-
tical methods, including DESeq, we generated synthetic
data where the variability and fold change of differential
expression genes could be controlled. To simulate RNA-
seq data with baseline background noise, we generated
signal and background read counts (non-exonic region
mapped reads) with distribution parameters (negative

binomial distribution for true expression signal and a
Poisson distribution for background noise) estimated
from a set of real RNA-seq data. After removing not
expressed genes, we randomly selected 5,000 genes and
the number of differentially expressed (DE) genes were
set to be 500, 1500, with 1.5 fold, 2 fold, 3 fold or 5 fold
changes. To compare XBSeq and DESeq under circum-
stances with increased non-exonic mapped reads, we
carried out the simulation to generate low, intermediate,
and high levels of non-exonic mapped reads (see Meth-
ods section for detailed simulation procedure and para-
meter settings). We select DESeq algorithm to compare
due to the similarity of statistical evaluation of differential
expression levels.
The ability to discriminate between DE and non-DE

genes was evaluated by area under the Receiver Operating
Characteristic (ROC) curve (AUC). As shown in Figure 3a
and Table 1, when the non-exonic mapped reads are at
baseline level, the performance of XBSeq is indistinguish-
able with DESeq in terms of AUC. Specifically, when the
fold change was set to 1.5 with 500 DE genes, both XBSeq
and DESeq have equivalent performance with either 3
(AUC = 0.90 and 0.90, respectively) or 6 replicates

Figure 3 ROC curves of simulated RNA-seq data in different scenarios. ROC curves in the scenarios of baseline background noise (a);
Increased background noise (b); Increased background noise but only with highly expressed genes above 75% quantile of intensity (c);
Increased background noise but only with lowly expressed genes below 25% quantile of intensity (d); Comparison with other differential
expression analysis methods (under increased background noise) with either 3 samples per condition (e), or 6 samples per condition (f). The
diagonal black dash-line indicates performance under random events (0.5 AUC). The light blue line in (b,c,d) indicates the theoretically optimal
ROC when the background noise can be estimated exactly. Simulation for (a, b, c and d) was carried out 100 times. Simulation for (e and f) was
carried out 10 times. 3 replicates per test condition, with 10% DEGs and 1.5 fold change were used for (a, b, c, and d).
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(AUC = 0.96 and 0.97, respectively). As shown in Table 1,
the number of differentially expressed genes had little
effect over the performance of XBSeq and DESeq, and
both XBSeq and DESeq performed equivalently at differ-
ent fold changes. When fold change is set to 3 or 5, both
methods had no difficulty in detecting virtually all DE
genes, with AUC almost equals to 1 (Supplementary
Table S2). Overall, under baseline level, the performance
of XBSeq and DESeq is comparable.
With increased background noise, as shown Table 2, as

we expected, more replicates per test group performed
better in terms of AUC, but the performance decreased
as with the increase of the background noise level, but
overall, XBSeq has a larger AUC comparing with DESeq
in various conditions (AUCXBSeq - AUCDESeq ~ 0.11, on
average. See Table 2). For instance, with 6 replicates per
test condition, XBSeq achieved AUC of 0.89 with lower
background (lower non-exonic read count), while AUC-

DESeq was only 0.77. Figures 3b depicts the ROC under 3
different background level and with 3 replicates per test
group, and XBSeq evidently outperformed DESeq as we
expected when XBSeq utilized additional non-exonic
read count information to estimate the true signal.
Further examination under highly expressed (>75% quan-
tile) (Figure 3c, Supplementary figure S1) and lowly
expressed genes (<25% quantile,) (Figure 3d, Supplemen-
tary figure S1) condition revealed that among highly
expressed genes XBSeq performs only slightly better than
DESeq, while XBSeq has much better AUC than DESeq
among lowly expressed genes (Supplementary table S3),

indicating the importance of background estimation for
true signal estimation. We also compared the perfor-
mance of XBSeq with DESeq (DESeq2), edgeR and edgeR
(edgeR_robust), baySeq, limma and EBSeq (Figures 3e
and 3f) under high background (high non-exonic read
count). As demonstrated in Figure 3e (3 replicate RNA-
seq per test group) and 3f (6 replicate RNA-seq per test
group), XBSeq outperformed all the other methods
(AUCXBSeq = 0.73, other methods around 0.64, Supple-
mentary Table S4). Overall, XBSeq and DESeq performs
comparable at baseline level. When the background noise
increases, XBSeq is more robust than DESeq and some
other differential expression analysis methods, especially
when expression level of the gene is low.

Control of the false discoveries
We examined the number of false discoveries encoun-
tered among the top-ranked genes based on p values of
different statistical methods. Under baseline level,
XBSeq performs comparable with DESeq with similar
number of false discoveries (Figure 4a). Under the sce-
narios of increased background noise, XBSeq has much
less false discoveries compared with DESeq (Figure 4b).
Taking the similar approach, we examined the perfor-
mance of XBSeq and DESeq among highly expressed
(>75% quantile) (Figure 4c) and lowly expressed genes
(<25% quantile) (Figure 4d) with 3 replicates per test
group. Even through that DESeq picks up similar num-
ber of false discoveries among highly expressed genes
compared with XBSeq, it has more false discoveries
among lowly expressed genes. Comparisons with some
other differential expression methods under high back-
ground noise level showed that XBSeq is more robust
against false discoveries (Figures 4e and 4f). At the pre-
selected threshold (p-value equals to 0.05), XBSeq has a
false discovery around 0.3 which is much less than other
statistical methods (around 0.75, Fig. S2). Overall,
XBSeq is more robust against false discoveries compared
to other statistical methods especially for lowly
expressed genes.

Statistical power in detecting DE genes
We compared the performance of XBSeq and DESeq as
well as other statistical methods in terms of statistical

Table 1. Area under the ROC curve (AUC) for DESeq and
XBSeq under various conditions with different number of
replicates (3 and 6 replicates), different number of
differential expressed genes (500, 1500) and different
level of fold change (1.5 fold and 3 fold). Fold change at
5 or higher yield AUC = 1.00 for all conditions

DESeq XBSeq

Replicates per group Fold Change Fold Change

DEGs (%) 1.5x 3x 1.5x 3x

3 10% 0.90 1.00 0.90 1.00

30% 0.89 1.00 0.89 1.00

6 10% 0.96 1.00 0.97 1.00

30% 0.96 1.00 0.96 1.00

Table 2. Area under the curve (AUC) of ROC in different background conditions (low, intermediate or high levels of
non-exonic mapped reads) using DESeq and XBSeq, when comparing 3 or 6 replicates in each test group

DESeq
Different background levels

XBSeq
Different background levels

Replicates per group Low Intermediate High Low Intermediate High

3 0.69 0.66 0.64 0.82 0.78 0.72

6 0.76 0.73 0.70 0.89 0.86 0.80

Overall, XBSeq outperforms DESeq, on average in terms of AUC, by 0.11 and 0.12 for 3 and 6 replicates per group, respectively.
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power at pre-selected threshold (p = 0.05) in detecting
DE genes (Figure 5). At baseline level, XBSeq and
DESeq perform comparable (statistical power = 0.58 and
0.91 under 1.5 and 2.0 fold change, respectively) (Figure 5a
and Supplementary Tables S1&2). With the increase of the
background noise, both methods have decreased statistical
power (Figure 5b and Supplementary Table S3). Even so,
XBSeq still has better statistical power at low, intermediate
or high background noises. However, different from the
result of AUC and false discovery, the statistical power dif-
ference between XBSeq and DESeq algorithms among
highly expressed genes (>75% quantile, Figure 5c) and
lowly expressed genes (<25% quantile, Figure 5d) are rela-
tively same: both methods perform relatively well (XBSeq
is slightly better), and both methods have difficulty in
detecting lowly expressed DE genes (with statistical power
for XBSeq and DESeq a merely 0.05 and 0.06 respectively,
with high background noise). When comparing with some
other statistical methods, XBSeq is one of the best meth-
ods in terms of statistical power along with algorithms
such as edgeR-robust and DESeq2 (Figures 5e and 5f,
Supplementary Table S4). However, with more samples
per test group, DESeq2, edgeR and edgeR-robust outper-
formed XBSeq, due to their robust (or moderate) disper-
sion estimation. Overall, XBSeq remains one of the best

algorithms in terms of statistical power in detecting DE
genes compared to other statistical methods.

Application to differential expression analysis for MYC
induced gene expression in mouse liver tissues
We have applied a real mouse RNA-seq dataset to differ-
ent algorithms to test the performance of XBSeq [10]. The
mouse RNA-seq dataset includes 3 replicates of wild type
mouse (WT) and 3 replicates of Myc transgenic mouse
(MYC). Figure 6 shows a Venn diagram of overlapping
and total number of genes detected using XBSeq, DESeq,
DESeq2, edgeR, and edgeR_robust with the criterion of
p-value less than 0.05. XBSeq and DESeq detected similar
number of DE genes (446 and 452, respectively, and 414
of them in common, Supplementary Table S5), even if a
1.5 fold change cutoff was added. This is reasonable since
the two algorithms share similar differential expression
significant test statistics, other than non-exonic read count
incorporated into XBSeq. In order to see the different
results of XBSeq comparing with others, we listed the exo-
nic and non-exonic read counts in Table 3 and 4, which
show genes exclusively found by XBSeq (Table 3) and
genes that are not detected by XBSeq but by other algo-
rithms (Table 4). The venn diagram with 1.5 fold change
cutoff added is shown in Fig. S5 and the numbers of

Figure 4 False discovery curves of simulated RNA-seq data in different scenarios. False discovery curves in the scenarios of baseline
background noise (a); Different background noises (b); Different background noises with highly expressed genes above 75% quantile of intensity
(c); Different background noises with lowly expressed genes below 25% quantile of intensity (d); Comparison with other statistical methods,
under high background noise, with either 3 samples per test condition (e), or 6 samples per test condition (f). 3 replicates per test condition,
with 10% DEGs and 1.5 fold change were used for (a, b, c, and d).
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Figure 5 Statistical power of simulated RNA-seq data in different scenarios. Statistical power at pre-selected threshold (p = 0.05) in the
scenarios of baseline background noise with 1.5 and 2 fold change, with 10% DEGs and 3 replicates per test group (a); Different background
noises (b); Different background noises with highly expressed genes above 75% quantile of intensity (c); Different background noises and only
lowly expressed genes below 25% quantile of intensity (d); Comparison with other statistical methods, under high background noise, with either
3 samples per test condition (e); or 6 samples per test condition (f). 3 replicates per test condition, with 10% DEGs and 1.5 fold change were
used for (a, b, c, and d).

Figure 6 Venn diagram to compare the results of different methods. XBSeq, DESeq, DESeq2, edgeR, and edgeR_robust were applied to a
set of mouse RNA-seq data to identify differential genes with p-value < 0.05.
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overlapped DE genes between XBSeq and other methods
are listed in table S5.
Specifically, in Table 3, from only exonic mapped

reads, there are no significant difference between WT
and MYC samples for genes Nat1 and Brca2 (fold
change is 1.3, and 0.9 respectively). After subtracting the
non-exonic mapped reads, the predicted true signals
was significantly differentially expressed between MYC
and WT for the two genes (p-value = 0.0495, 6 × 10-6

for Nat1 and Brca2, respectively) with fold change
increased to 1.6 and 4.3 for Nat1 and Brca2, respec-
tively, along with shrunken standard deviation. From
Brca2, we can even see that the high dispersion in WT
samples are possibly caused by sequencing noises, the

gene is barely expressed in WT group as predicted by
XBSeq.
On the other hand, with the information in non-exo-

nic regions, XBSeq avoided picking genes that are
potentially falsely identified as DE genes because of the
background noises. The estimate of the true signal,
after considering the non-exonic read counts, may
decreased the differential expression and diminish the
significance probability. In Table 4, the two genes,
Calcr and Adh7, were detected by all other four meth-
ods, except DESeq for Adh7 (p-value = 0.06), whereas
XBSeq tested on the true expression signals and con-
sidered them as insignificant changes (p-value = 1 and
0.53, respectively).

Table 3. Two differentially expressed genes (Nat1, top table, and Brca2, bottom table) that are ONLY detected by
XBSeq, showing the exonic, non-exonic, and predicted true signals (estimated by using Eq.3), from 3 biological
replicates for each WT and MYC mouse tissue

Read counts of gene Nat1

WT (3 replicates) MYC (3 replicates)

1 2 3 μ s 1 2 3 μ s FC1 p2

Exonic 63 47 77 62.3 15.0 91 110 120 107.0 14.7 1.3 0.15

Non-exonic 20 20 28 22.7 4.6 23 14 34 23.7 10.0

Predicted
true signal

43 27 49 39.7 11.4 68 96 86 83.3 14.2 1.6 0.05

Read counts of gene Brca2

WT (3 replicates) MYC (3 replicates)

1 2 3 μ s 1 2 3 μt s FC1 p2

Exonic 213 88 165 155.3 63.1 132 191 188 170.3 33.2 0.9 0.57

Non-exonic 216 77 142 145.0 69.5 90 108 101 99.7 9.1

Predicted
true signal

0 11 23 11.3 11.5 42 83 87 70.7 24.9 4.3 0

1) FC denotes the fold-change of MYC vs WT, and 2) is the p-value from DESeq (for Exonic read only) and XBSeq (for predicted true signal).

Table 4. Two differentially expressed genes (Calcr, top table, and Adh7, bottom table) that are NOT detected by
XBSeq, showing the exonic, non-exonic, and predicted true signals (estimated by using Eq.3), from 3 biologial
replicates for each WT and MYC mouse tissue

Read counts of gene Calcr

WT (3 replicates) MYC (3 replicates)

1 2 3 μ s 1 2 3 μ s FC1 p2

Exonic 22 4 20 15.3 9.9 68 68 64 66.7 2.3 3.3 0

Non-exonic 64 4 64 44.0 34.6 193 218 199 203.3 13.1

Predicted
true signal

0 0 0 0 0 0 0 0 0 0 0 1

Read counts of gene Adh7

WT (3 replicates) MYC (3 replicates)

1 2 3 μ s 1 2 3 μ s FC1 p2

Exonic 633 438 429 500.0 115.3 827 1149 708 894.7 228.2 1.5 0.01

Non-exonic 430 241 322 331.0 95 643 771 513 642.3 129.0

Predicted
true signal

203 197 107 169.0 53.8 184 378 195 252.3 109.0 1.2 0.53

1) FC denotes the fold-change of MYC vs WT, and 2) is the p-value from edgeR-robust (for Exonic read only) and XBSeq (for predicted true signal). Calcr was
detected by all other four methods and Adh7 was detected by three methods except DESeq (p-value = 0.06).
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Discussion
Sources of non-exonic mapped reads
Previous studies have shown that non-exonic mapped
reads account for about 4~6% of all uniquely mapped
reads in mammals [15,16]. Sequence reads that mapped
outside of exonic regions might be originated from differ-
ent RNA sources depending on the RNA-seq experimen-
tal protocol selected for sequencing library preparation.
In addition, these non-exonic reads might be derived
from experimental artifacts, like genomic DNA contami-
nation, sequencing errors, or unprocessed RNAs, like
pre-mRNAs [17], or even non-coding RNAs [18]. van
Baker, et al [19] has also demonstrated that most of the
non-exon mapped reads are associated with the nearby
known genes, which suggests that non-exon mapped
reads are contextually specific to the corresponding gene.
Besides, Hebenstreit, et al [20] has shown that all genes
from RNA-seq can be classified into two distinct groups,
and one of them is the the lower expressed group that
consists of putative non-functional mRNAs. All these
suggested the biological relevance of incorporating infor-
mation from non-exonic regions. We have carefully eval-
uated the aforementioned biological relevance of RNA
species in non-exonic regions, and thus necessary steps
have been taken for identifying non-exonic regions as
discussed in the Methods Section. As we showed in Fig-
ure 1B in one of our real RNA-seq data set, the non-exo-
nic read counts for all genes are mostly less than 0 (log2
RPKM unit), indicating little or no influence from high-
expression. We also examined the correlation between
the reads mapped to exonic regions and the reads
mapped to non-exonic regions in a real RNA-seq experi-
ment. The average correlation is 0.32 which potentially
indicates that the non-exonic reads are not ‘functional’
reads which can be used to represent the background
noise. By measuring the reads mapped to the non-exonic
regions of its corresponding gene but carefully avoid
those functional relevant regions, we are able to gain a
more reliable estimation of true expression level by elimi-
nating the impact of background noise.

Compare of XBSeq and DESeq at baseline level
Our simulation at baseline level suggests that XBSeq and
DESeq’s performance are virtually indistinguishable in
terms of AUC, number of false discoveries and statistical
power at baseline level. Not surprisingly, comparison with
6 replicates per test group performed better than 3 repli-
cates per test group even with low level of fold change
(fold change at 1.5). Also at baseline background level, the
number of truly differentially expressed genes has little
effect on the performance of XBSeq and DESeq except
with the number of false discoveries. As expected, simula-
tion of 30 percent of true DE genes is more likely to

generate false positives than those of 10% true DE genes.
However, this effect is dampened with increased number
of replicates per test group for differential expression ana-
lysis (Table S2).

Comparison of statistical methods with increased non-
exonic mapped reads
To further demonstrate the robustness of XBSeq at
different background levels, we simulated genes with
low, intermediate or high levels of non-exonic mapped
reads. XBSeq outperform DESeq with larger AUC
(Figures 2b-2d), and with better controlling of false
discoveries (Figures 3b-3d). While we achieved excel-
lent true positive detection, we also examined the false
negative rate for XBSeq and DESeq, or the statistical
power. As shown in Figures 4b-4d, XBSeq outperform
DESeq’s statistical power in detecting DE genes in all
three increased background levels. All these suggest
that XBSeq is more robust in detecting DE genes in
noisy NGS-seq samples.
We also compared performance of XBSeq with some

other RNA-seq algorithms, including DESeq2 and
edgeR-robust. XBseq excelled in overall performance
(better AUC, Figures 3e & 3f) and false discovery con-
trol (Figure 4yres 4e and 4f). XBSeq is also one of the
best algorithms in terms of statistical power (Figures 5e
and 5f), indicating a modest trade-off in false negative
while maintaining overall performance in DE detection.
Moreover, XBSeq performed better with higher non-
exonic mapped reads (in all three simulated increased
background noise level above baseline). Further exami-
nation of algorithms performance among higher (> 75%
percentile) or lower expressed genes (< 25% percentile)
revealed that false positive genes were mostly generated
among lower expressed genes. Among lower expressed
genes, XBSeq outperformed than DESeq with better
AUC and false discovery. However, both XBSeq and
DESeq performed poorly among low-expression genes.
Simulations were carried out with the assumption of

NB model for gene expression and Poisson model for
background noise (or non-exonic read counts), which is
the model XBSeq is built on. While we demonstrated
the validity of the assumption in one of our RNA-seq
data set (Figure 1B), we also tested the XBSeq under the
uniform or normal model for background read counts
while keeping the same NB model for gene expression.
As shown in Fig. S2A, for all 3 background distributions
(including Poisson model), XBSeq performed better
than DESeq, indicating the robustness even when under-
lying assumption is deviated from Poisson distribution.
Another way to examine model bias is by examining the
distribution of p value under null hypothesis (with no
DE genes). As shown in Fig S3, the p values generated
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by most differential expression analysis algorithms are
close to uniform distribution from 0 to 1 (showed only
0 to 0.2 in Figs S3), with the exception of EBSeq.

Execution time of XBSeq algorithm
XBSeq algorithm complexity is similar to DESeq. How-
ever, XBSeq will not only take read counts from each
gene, but also read counts from non-exonic read counts
for each gene, and then perform true signal prediction
before evaluating differential expression significance. We
benchmarked a set of differential analysis algorithms for
their computational times with different number of sam-
ples in each condition (Fig. S4). BaySeq algorithm
requires the most computational time, followed by
DESeq and XBSeq.

Conclusions
We have developed an approach to take into considera-
tion of non-exonic mapped reads as sequencing noise
for precise differential expression analysis. When there
is no or very low background noise, the performance of
XBSeq is similar to DESeq. However, XBSeq excels
when background noise (non-exonic read counts) are
higher due to the model estimation of true signal by
removing the noise impact. Overall, XBSeq algorithm is
shown to be more robust than existing differential
expression analysis methods particularly when sequen-
cing noise is a concern.

Availability of supporting data
The R package of XBSeq, the shift-gene gtf files as well
as reproducible scripts for simulation are available from
GitHub, https://github.com/Liuy12/XBSeq.

Additional material

Additional file 1: Supplementary figures and tables to provide
additional analysis results.
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