Zhang et al. BMC Genomics 2015, 16(Suppl 7):513

http://www.biomedcentral.com/1471-2164/16/S7/513 BMC

Genomics

RESEARCH Open Access

MOST+: A de novo motif finding approach
combining genomic sequence and
heterogeneous genome-wide signatures

Yizhe Zhang'”, Yupeng He®, Guangyong Zheng®*, Chaochun Wei'*'

From The International Conference on Intelligent Biology and Medicine (ICIBM) 2014
San Antonio, TX, USA. 04-06 December 2014

Abstract

Background: Motifs are regulatory elements that will activate or inhibit the expression of related genes when
proteins (such as transcription factors, TFs) bind to them. Therefore, motif finding is important to understand the
mechanisms of gene regulation. De novo discovery of regulatory elements, like transcription factor binding sites
(TFBSs), has long been a major challenge to gain insight on mechanisms of gene regulation. Recent advances in
experimental profiling of genome-wide signals such as histone modifications and DNase | hypersensitivity sites
allow scientists to develop better computational methods to enhance motif discovery. However, existing methods
for motif finding suffer from high false positive rates and slow speed, and it's difficult to evaluate the performance
of these methods systematically.

Result: Here we present MOST+, a motif finder integrating genomic sequences and genome-wide signals such as

methods.

and experimental signals as clues.

intensity and shape features from histone modification marks and DNase | hypersensitivity sites, to improve the
prediction accuracy. MOST+ can detect motifs from a large input sequence of about 100 Mbs within a few
minutes. Systematic comparison method has been established and MOST+ has been compared with existing

Conclusion: MOST+ is a fast and accurate de novo method for motif finding by integrating genomic sequence

Background

Gene expression can be activated or inhibited when pro-
teins (transcription factors, TFs) bind to a genomic
sequence segment (i.e. motif) dispersed in promoter and
enhancer regions. To gain insights into the mechanisms of
gene regulation, the patterns and locations of functional
TF binding sites should be identified. Nevertheless, they
remain to be challenging problems until high-throughput
approaches like ChIP-seq (chromatin immunoprecipita-
tion followed by massively parallel sequencing) [1,2] and
ChIP-chip (ChIP on chip) appeared. However, ChIP-seq
methods have poor resolution ranging from 200 bps to
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300 bps. Besides, their results depended on high quality
antibodies for the TFs, which are hard to obtain in general.
Moreover, despite the possibility of examining multiple
TFs in a single experiment [3,4], it is still prohibitively
expensive to test thousands of TFs in various cell types
and conditions. Therefore, computational methods are
still in a great demand as complementary means to ana-
lyze TF binding sites, like PWM (Position Weighted
Matrix) guided TFBS identifying and motif discovery.

The major task of motif discovery (or “motif finding”)
could be viewed as deciphering hidden patterns signifi-
cantly over-represented in a given genome. Alternative
binding motifs, spacing in motifs, palindromes, tandems of
single motifs and binding via cofactors make this task
complicated. Besides, some cis-regulatory elements are
highly degenerated or involve complicated dependency
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among positions, which is presumably derived from bio-
chemical structure [1], rendering it difficult to discover
them. As a result, a motif found by existing algorithms is
an approximation instead of an exact reflection of func-
tional binding patterns.

Two types of motif identifying approaches were devel-
oped to detect motifs: one uses orthologous sequence
alignments extracted from multiple genomes, and the
other uses genome regions enriched with particular
motifs in a single genome [3]. The first type of methods,
such as MEME [5], NestedMICA [6], and Gibbs sampler
[7] utilize Bayesian model, EM algorithm, or Gibbs sam-
pling techniques to obtain a Maximum A Posteriori
(MAP) for motifs with a given length. Based on these
methods, they iteratively update the motif and position
with an expectation step followed by a maximization step
until some termination criteria are reached [8]. These
settings fit quite well with problems of extracting shared
sequences from multiple genomes or a small subset of
promoter regions (or enhancer regions believed to share
some motifs). However, the majority of these methods
are slow when processing big datasets. For example, it
takes MEME [9] a few days to deal with input sequences
of 0.5 Mbps. In addition, due to the probabilistic nature
of the models, they are more or less sensitive to noises in
input data. Efforts have been made to improve these clas-
sic methods over the last few years. STEME [10] speeds
up MEME by indexing sequences with a suffix tree.
ChIPMunk [11] searches a gapless multiple local align-
ment using a greedy algorithm to deal with a large set of
inputs.

On the other hand, the other type of approaches,
word-frequency-based approaches, have been developed,
such as WEEDER [12], MDScan [13], Trawler [14],
Amadeus [15], DREME [16], and CisFinder [17]. These
tools demonstrate significant reduction in computational
time and are often better devised for single genome ana-
lysis with a large input. Typically, they exhaustively enu-
merate all possible arrangements of all nucleotides up to
a user-specified length and select those words (k-mers
containing no degenerated nucleotide) that occur signifi-
cantly more frequent than those in the Markov back-
ground. Some methods iterated by masking stronger
motifs first and to find weaker motifs later, while others
try to identify all significant motifs, which will then be
refined (or clustered) elaborately by expectation-maximi-
zation, Self Organizing Map (SOM) [18] or hierarchical
clustering. Suffix tree, a data structure to represent the
organization of all suffixes of a string, has often been
utilized to index input sequences and speed up sequence
searching in some word-count based methods like
Trawler [14], STEME [10], WEEDER (v1.4.2) and DRI-
MUST [19]. With the Ukkonen algorithm, the whole
process can be completed in linear time in terms of the
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size of input [10]. One major challenge for typical word-
count methods is that motifs with weak patterns may be
discarded and many spurious motifs may be generated.
As a result, a motif can barely be differentiated from the
background if its occurrence is relatively low. Limita-
tions like this can hardly be eliminated especially when
the size of the input sequences is small [17].

We hope to enhance the word-count methods by utiliz-
ing genome-wide signatures from experimental data.
Many in vivo events (iVEs) [20], such as open chromatin
accessibility or epigenetic modification, strongly associated
with the TF binding process, indicating their potential use
as biological context to identify TFBSs. For instance, with
genome-wide nucleosome occupancy profiles (identified
by DNase-Seq or FAIRE-Seq [4,21] in a same cell line, the
search for TFBSs on genomic sequence could be confined
to only regions with open chromatin accessibility. Mean-
while, epigenetic modifications, especially several kinds of
methylations on histones, have also been proved very
informative for TFBS finding [4,21]. These modifications
can either be associated with activation or repression of
corresponding genes in different cell types [22].

Some recent algorithms have already taken advantage of
histone mark information to identify individual occur-
rences of known motifs, such as CENTIPEDE [4], CHRO-
MIA [23], FIMO [21] and HINT [24]. Considering a large
collection of TFBSs and other CRMs (cis-regulatory mod-
ules) are still unrevealed, and sources like histone modifi-
cation signals can be informative, there is some space to
develop better motif finding approaches by taking advan-
tage of epigenetic profiles around TFBS instances.

In this paper, we present MOST+, which can de novo
predict motifs and their loci in a genome with the gui-
dance of histone modification and DNase I hypersensi-
tivity information. MOST+ first finds overrepresented
words using a suffix tree, then incorporates external
genome-wide signals to enhance the search for signifi-
cant seeds and the aggregation of seeds into motifs. We
show that our algorithm integrates successfully the
intensity and shape features of external signals to pro-
mote the accuracy of motif finding.

Results

We have created fast motif finding methods MOST and
MOST+. The system diagram of MOST/MOST+ was
shown in Figure 1 and described in Methods section.
MOST uses only sequences as the inputs while MOST+
can integrate additional experimental data.

Comparison of MOST+/MOST with existing algorithms

MOST+ and MOST were compared with several preva-
lent motif finding systems, such as MEME, Trawler,
WEEDER, CisFinder and HOMER, in terms of speed and
accuracy. Different fragments of the mESC ChIP-seq
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Figure 1 The pipeline of MOST+ system. A set of target genomic sequences are extracted from a genome then indexed by a suffix tree to
count occurrence of each word (or K-mer). If under MOST+ mode, histone modification marks and/or DNase | hypersensitivity (referred as tag
signals in this schema or mark distribution) of each word are used to yield mark distribution scores. Top ranked words are put into clustering
and motifs are generated from the resulted clusters. The strategy for clustering is illustrated on the right panel of this figure.
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dataset and the genome-wide promoter regions of the
mouse genome were used as the gold standard datasets
(see Methods for more details).

Comparison of speed

MOST outperformed all tested algorithms (Figure 2,
Table S1) in terms of speed for all datasets with various
sizes. MEME [9] had not produced any result after
4 days running on a 16 Mbps dataset. WEEDER failed

to produce a result when the input sequence length
exceeds 20 Mbps. CisFinder was fast, but had a restric-
tion on the input size (up to 25 Mbps). In short, MOST
+/MOST and HOMER [25] (version 4.2) were able to
produce results for large datasets in a reasonable time.

For all methods, default parameter settings were used
when possible (details can be found in Additional file 1).
Word lengths were chosen to a range from 4 bps-7 bps,
with an exception of WEEDER (up to 8 bps).
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Figure 2 Comparison of different motif finding methods. X-axis is the running time in logarithmic scale while the Y-axis is the total size
(Mbps) of input sequences.

MOST+ is insensitive to the input size. Counting and
locating words takes little time. Memory consumption
remains relatively low when data size grows up to 100
Mbps (linear spatial complexity, MOST+ requires 500
megabyte memory for an 8 Mbps input).

MOST/MOST+ can find complicate motif patterns
MOST/MOST+ was designed to bridge gaps and find
long gap patterns. For instance, Sox2 (canonically repre-
sented by CATTGTT) and Oct4 (or known as POU5F1,
canonically represented by ATGCAAAT) often occur as
a heterodimer (characterized by motifs of OCT-N-SOX
or OCT-3N-SOX). These motifs had been detected
simultaneously (Figure S1).

MOST+ also successfully detected motif of SMADI,
which has relatively low occurrences in tested ChIP-seq
peak regions. For OCT4, MOST+ successfully detected
a tandem repeat of OCT4 core motif (Figure S1).

Alternative TFBSs and palindromes were found for
ESrrb (Estrogen-related receptor beta) when a larger word
width (K = 11) was employed to capture more sophisti-
cated co-occurrence and a more stringent clustering
threshold was set to discriminate sub-patterns (Figure S1).

Incorporating epigenetic marks helps filter out
non-functional motifs

MOST reported a similar result compared to the preva-
lent algorithms. After epigenetic signals were added
(MOST+ mode), motifs were better aligned with known

motifs in databases and the rank of essayed TF was lifted
(Table 1).

We observed that spuriously over-represented k-mers
(like some tandem repeat that may not be motif in our
dataset) were more likely associated with a higher level of
noise and asymmetry (Figure 3a, and Figure S2). Indicating
these features may help eliminating false positives.
Furthermore, similar motifs can have distinct mark

Table 1. The impact of genome-wide signals on
prediction accuracy (MOST vs. MOST+, K=9)

TF ChIP-seq Peaks Ranking Predicted sites Co-factors
CTCF 39,609 11 27,458—43,150 0—-2
ESRRB 21,647 11 17,144—18,998 34
KLF4 10,875 11 7,662—10,900 58
OCT4 3,761 11 2,051—2,802 37
cMyc 3422 21 1,120—1,342 36
nMyc 7,182 21 1,853—2,519 34
SMAD1 1,126 94 119135 4—8
E2F1 20,699 - - 35
NANOG 10,343 21 2,844—3,012 23
SOX2 4,526 11 3,515—53,490 356
STAT3 2,546 11 1,486—1,560 4—7
TCFCP2L1 26910 1—1 1,4568—1,4780 37
ZFX 10,338 11 4,269—7,684 34

Column 2-5: 2) the number of ChIP-seq peaks; 3) the change of ranks for the
major TFBSs (from MOST to MOST+); 4) number of predicted binding sites for
each TF; 5) the change of numbers of co-factors predicted by MOST and
MOST+.
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Figure 3 Distributions of several highly enriched word instances found in CTCF and ESrrb’s ChIP-seq dataset: (A). The upper 3 figures
are from CTCF dataset. Spurious words show irregular or flat patterns (CTCF word “CTGCCCTCT” versus repeat words: “CTCTCTCTC”,
! AAAAA". All three words have odds ratio scores ranging from 3.4 to 4, i.e. in the same level of over-representative ratio), indicating one can
make use of tag signals to discriminate motif words from their background. (B). The lower 3 figures are from ESrrb dataset. Distributions of word
from Esrrb motif ("CCAAGGTCA" and “CAGAGGTCA’, both contains core 'AGGTCA') strongly resemble to each other, while MYF motif component
word (lower right cormner: “CGGGAGGGG") shows a distinct pattern in distribution (dotted lines show distributions smoothed by a DFT with the
top 5/8 higher frequency components removed).

distribution patterns (Figure 3b). If guided by epigenetic
marks, it would be possible to distinguish similar motifs.

In general, MOST+ found more motifs that exist in
motif database than MOST, which means more essayed
TF or co-factors are found. According to Bieda et al., [26]
the motif of E2f1 is very hard to be identified maybe due
to indirect binding. However, MOST+ did report a motif
(featured by CGCCAT) that ranked second and resembled
the motif of E2f-family member E2f3. Detections of
n-Myc, c-Myg, zfx and SMAD1 would also benefit from
epigenetic marks in terms of highlighting the assayed
motifs.

Comparison of motif accuracy on ChiP-seq datasets for

mouse and human

MOST+ and exiting motif-finding tools were compared

using the ChIP-seq dataset of 13 TFs of mouse ES cell.
General comparison was conducted based on alignments

with known motifs in the reference database. Comparison

on other 5 algorithms showed that MOST+ was among
the best algorithms in both capturing major TFBSs (the
binding sites of the assayed TFs) and detecting co-factors.
MOST+ and HOMER identified 11 of 13 major motifs
(with the major motif ranked the first in results) with sig-
nificant e-value of alignment whereas DREME reported 10
motifs (Table 2). MOST+ can recover a comparable
amount of co-factors with DREME, which was devised for
finding co-factors (Table 3). Like CisFinder, MOST +
could automatically determine a self-adaptive length for
each cluster.

Assessment on site-level accuracy of motif finding
methods was conducted by using the pipeline described
in Methods section (Figure 4). Figure S3 showed a com-
parison of found motifs for different methods. Results
show MOST+ has the highest AUROC sum over 13 TFs,
though the situation varies from TF to TF (Figure 5,
Figure S4). With parameters learned by part of the data-
set, MOST+ achieved better accuracy on recovering
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Table 2. Accuracy comparison with existing methods

Algorithms Detection ratio Succeeded Co-factors Motif cluster

MOST 43% 8 37 Y
MOST+ 45% Inl 43 Y
DREME 25% 10 56 N
Trawler 11% 8 0.6 N
nestedMICA  21% 10 2.1 N
MEME 5% 10 09 N
WEEDER 6% 10 05 N
CisFinder 76% 10 36 Y
HOMER 38% Il 3.0 Y

Columns 2-5: 2) Detection ratio: the number of clusters aligned to motifs in
the database divided by the total cluster number found over 13 TFs; 3)
Succeeded: numbers of major TFBSs ranked first in the results; 4) Co-factors:
the average numbers of unique co-factors found in databases (e-value<0.05
given by TOMTOM) and 5) Motif cluster: whether a clustering step is used to
merge results of a method.

motif positions with validation data, suggesting that
motifs could reflect actual binding sites better if external
signals were available. The AUC (Area Under the Curve)
of ROC increased when word counts and mark distribu-
tion scores were combined under the appropriate para-
meter setting. This supported the idea that epigenetic
marks can be helpful to cluster words [4].

With this parameter setting learned from training and vali-
dation datasets, we compared MOST+ with other 5 algo-
rithms on the remaining partition data. The learned
parameters were given in Table S2 (see Additional file 1
for more detail). Each time, we included one feature in our
model to test its contribution to the accuracy improve-
ment. Results show that the mere use of asymmetry fea-
ture contributes the most to the overall improvement of
AUROC, while the utilization of original signals of essayed
TF ChIP-seq data failed to show any advantage.

Table 3. Co-factors found by MOST+
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To validate the power of our algorithm, we also
applied the model to the human data. On average,
MOST+ outperforms MOST by better AUROC, how-
ever, with an exception of JUND 1 and 2 (Figure S5).
When epigenetic signals were added to the model,
MOST+ found some novel co-factors that MOST could
not find. For instance, with the aid of DNase I hypersen-
sitivity information, additional motifs that strongly
resembled STAT1, GABPA, LM4 and LM130 (both
were long motifs reported by Xie et al.) were found in
VDR (Vitamin D Receptor) datasets (Figure 6).

Genome-wide promoter analysis

To date, large portions of TFBSs are still undetected.
However, poor performance has often been reported on
capturing motifs in generic promoters [27]. With the
power of epigenetic marks, we hoped our overall finding
of motifs in all regions close to the transcription start
sites (TSSs) might reveal novel motifs. We took an
exhaustive search on 89 Mbps mouse promoter regions.
When more hints from ChIP-seq data were available,
we put on a more stringent threshold of word clustering
and masked repeats (see Additional file 1 for MOST +
command lines).

Results showed that 117 motifs discovered by MOST +
(16% of total found motifs) could be aligned with one or
more motifs in our mouse motif databases (JASPAR,
UNIPROBE and Chen et al., 541 in total, Figure S6).
Left panel of Figure 7 showed an example of motifs dis-
covered by MOST+. MOST+ also output hundreds of
novel motif candidates, which were not found in mouse
motif databases. However, the mark distributions
centred by some of these motifs show non-trivial shapes.
This indicates either a putative novel motif or a

TF Co-factors uniquely found by MOST+ Co-factors both found by DREME and MOST+

Co-factors uniquely found by DREME

CTCF E2F3%, Myf Myc, GABPA, STAT
ESRRB Myf?, Sp1¢, Srf Klf4? STAT3, Oct4, Myc, Sox2

KLF4 FEV®, CREB, CTCF?, Egr1° Esrrb, STAT3, sp1?, Sox2, Oct4 Oct4, Gata3 Myc, Zfp161°
Oct4 GABPA?, Zfx?, CTCF?, Stat3, sp1° Sox2?, Esrrb?, KIf4 CREB/ATF

cMyc CREB?, GABPA?, KIf4°, Sox2, YY1? STAT3? Egr1®

nMyc EIf3°, GABPA?, Zfp1617, CREB/ATF® STAT3, Smad1, sfpid
SMAD1 Sp1?, Sox11°, REST, FEV,Spib Sox2%, Oct4?, KIf4® Esrrb® Zic3?, Zfp740°

E2F1 Sp19, Myf, GABPA? STAT3?, CREB/ATF Myc?, FOX
NANOG Zic3°, KIf4®, Esrrb? EIf5? Tead1

SOX2 Sox10% CTCF?, Myf?, Runx1? Oct4?, Kif4?, Esrrb® Zic3% STAT3
STAT3 Zic3®, Jundm2, FEV® Esrrb?®, KIf4%, Oct4, Sox2, sp1® Myc, Irf4

TCFCP2L1 Sox4?, Zic3?, Myf KIf4%, Esrrb?, Sox2,0ct4, Sp1? Egr1?, Fox?, Myc, Tead1, CREB/ATF, STAT3
ZFX Myf?, Egr1?, sp1° STAT3 Myc?, Esrrb

@ Supported by CisFinder or HOMER

Columns 2-4: Co-factors found by 2) MOST+ only; 3) both MOST+ and DREME; and 4) DREME only for each dataset. When more than one motifs in the database

were aligned, only the one with lowest p-value was counted.
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Figure 4 The diagram of pipeline for parameter optimization and method comparison. A motif-finding step is followed by a TFBS
identification step (by CisFinder) using motifs and genomic sequences as input. Training data (8 of 10 folds) are fed into motif finding tools, and
then accuracy is evaluated based on how well the motifs recovered can pinpoint TFBSs. AUROC is used to represent the accuracy of each
method.

potential sequence mark of epigenetic modifications for their potential to identify motifs and their co-factors.

(right panel of Figure 7). In the near future, it is possible to utilize these marks
better by introducing different model frameworks, such
Discussion as conditional random field (CRF [28]) framework, which

Our results demonstrated that chromatin accessibility  can estimate the weight for each feature automatically
and epigenetic information should not be underestimated  and predict the binding loci more precisely.

e N
ite- 1 u CisFinder(cluster)
Site-level accuracy comparison E
1.2 = HOMER
MOST
u CisFinder(PFM)
1 u MOST+
u Trawler Ll
= WEEDER
0.8
8 -
g 06 : y
= [
< |
0.4
0.2
. Zfx nMyc nanog ESmb Oct4 Smad1 Sox2 Kif4 cMyc STAT3 Tcfcp2l1 CTCF
Figure 5 Comparison of site-level accuracy for different methods. AUROC of each method on recovering motifs for different essayed TFs
were shown in the figure.
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This algorithm can be improved in many ways. A para-
meter advisory phase can be included before MOST + is
executed. More sophisticated analysis like wavelet analy-
sis may be employed to extract oscillation features of
mark distributions. The improvement on resolution of
ChIP-seq will make the distribution more informative,
which can potentially boost the accuracy of the algo-
rithm. Some aspects of the algorithm improvement are
discussed as follows.

Setting parameters for epigenetic signals

Parameters for different epigenetic signals and different
genomes vary. To make the most out of external signals,
the optimal parameters should be learned from the data.
However, different genomes may share some common epi-
genetic features. Users are encouraged to use our pre-set

parameters for their genomes of interest with signals like
DNase I, H3k4mel and H3K4me3. Although H3K4me?2 is
informative in human datasets, it was not informative in
mouse dataset (result not shown). Therefore, it was not
included as the default signals.

Impact of the window size K

Since the results and running time of MOST+ depend on
the window size K, we examined its performances on
detecting major motifs of CTCF with distinct K values.
Often but not necessarily, bigger K values could capture
sophisticated patterns like gaps or alternative binding
motifs. However, a very large K could be neither spatially
nor temporally efficient in terms of computing. There-
fore, we set K = 9 as default for typical ChIP-seq data
(with 100 bps peaks) to quickly depict a whole landscape
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Figure 7 Motifs discovered by MOST+ in all promoters of mouse genome. Left panel: A motif discovered by MOST+ that resembles GABPA
motif in JASPAR. Right panel: Examples of some unknown motifs with obvious kurtosis pattern in histone modification distributions.
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of a certain motif without losing much sensitivity (see
Table 4 for details).

Selecting the background model

The last parameter is the background model for motif
finding. Background of the 1%-order Markov chain barely
showed any difference with the 0"-order (i.e. without
considering the dependency of neighbouring bases) in
terms of detection ratio. Either the whole genome
sequence or merely the target regions can be selected as
the background model. During the accuracy assessment,
we set the length of flanking region to be 650 bps. How-
ever, when it was set as 500 bps and 800 bps, the results
were quite similar and robust.

Constructing a motif from overrepresented words
Clustering on primitive motifs was necessary for our
methods. In the current version of MOST/MOST+,
word instances were extended by substituting bases one
by one. Therefore, only a limited space instead of the
whole possible space was explored. For instance, in
searching motif characterized by ATGCAAAT, it enum-
erated 4*8 = 32 single nucleotide substitutions to simu-
late position frequency matrices (PFM) whereas the
actual possible solution space might be larger (for exam-
ple, word instances with more than one substitutions,
like ACCCAAAT, were not considered).

Conclusion

Genome-wide epigenetic or DNase [ signals can improve
motif finding significantly. In this paper, we present
MOSTH+, an accurate and fast motif discovering system
through combining the genomic sequence and these
genome-wide signals.

There are four highlights for MOST+: 1). It is one of
the first de novo motif finding systems to combine the
word frequency information and genome-wide signals
from different sources such as histone modification

Table 4. Impact of parameter K on MOST/MOST+

Mode K Time(s) Motifs predicted E-value

MOST 7 110.34 2 0.09
8 111.85 5 4.87e-12
9 133.06 5 6.35e-21
10 448.22 5 1.02e-22
1 2786.11 6 4.78e-20

MOST+ 7 481 5 3.03e-05
8 510 8 3.95e-13
9 527 12 3.77e-21
10 753 14 7.50e-27
11 3244 6 1.07e-18

The test was run on mouse CTCF dataset (8 Mbp). Columns 3-5: 3) Times:
running time under each word width K; 4) Motifs predicted: number of
unique motifs found by each schema; and 5) E-value: the lowest e-value of
alignments between a major motif found by each schema and motifs in
mouse motif database.
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information and DNase I hypersensitivity information.
2). It is a fast system for motif finding. MOST+ is 2
orders of magnitude faster than DREME. 3). It can deal
with a large size of input data. For example, MOST +
can find motifs from an input data of 100 Mbps. 4). Its
accuracy is at least comparable with the best existing
systems.

Methods

Datasets

Mouse dataset

A benchmark ChIP-seq experiment of 13 mESC TFs asso-
ciated with maintenance of pluripotency in mouse
embryonic stem cell (cell type EFO_000462) [29] were col-
lected. Nine epigenetic marks [22] in the same cell line
were tested: DNase I, H3K27me3, H3K36me3, H3K4mel,
H3K4me2, H3K4me3, H3K9me3, H3 and H4K20me3.
Three of them (H3K4mel, H3K4me3, DNase I) were
selected for subsequent analysis in which each TF against
these three marks showed strong and distinct patterns of
either kurtosis or single spike (Figure S7 and S8). We also
included a raw ChIP-seq signal track. ChIP-seq peaks of
each TF (controlled by removing peaks also found in anti-
GFP ChIP-seq under the same cell line) are called using
MACS [30]. All tracks were lifted and aligned to reference
genome mmo9.

For mESC date set, we included 146 motifs from JAS-
PAR, 386 from UNIPROBE and 13 by Chen et al., 541
motifs in total, to form our mouse motifs database. We
identified motifs using TOMTOM, a motif comparing and
visualization tool [31]. Motif alignments with E-values less
than 0.05 were considered statistically significant.

Human dataset

We also evaluated our method on human lymphoblastic
cell line GM12878. 4 TFs were tested: CTCF, JUND,
MAX (From UCSC genome browser) and VDR ChIP-seq
(From Ramagopalan et al. [32]). DNase I hypersensitivity
signals and histone modification marks H3k4mel,
H3k4me2 and H3k4me3 (all from ENCODE project [33])
were included. ChIP-seq peaks were called by MACS. All
tracks were mapped to human reference genome hgl8.
For human data we used 1,268 known motifs selected
from JASPAR and UNIPROBE as the motif database (See
table S3).

Genome-wide promoter regions of the mouse genome

An exhaustive search is conducted on the promoter
regions of the whole mouse genome (upstream/down-
stream 1000bps of transcription start sites). The total
size of the whole mouse promoter region is 89 Mbps.
Transcription start site information (of mm9) was
retrieved from UCSC RefSeq track. For time complexity
comparison, different sizes of datasets are generated
from this dataset by cutting this promoter region
dataset.
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MOST+ pipelines

MOST+ contains two modes: one for word frequency
counting only (MOST) and the other for combining dif-
ferent genome-wide signatures (MOST+). The general
design of MOST+ is shown in Figure 1. MOST finds
overrepresented words only from genomic sequences
(such as a set of ChIP-seq peak regions of 200 bps),
while MOST+ incorporates signals like histone modifi-
cation marks and DNase I hypersensitivity sites to
enhance the search of significant seeds. Finally, the pro-
gram exports results including a list of found motifs and
their corresponding position frequency matrices (PFM)
(See Additional file 1 for more details).

Exploiting epigenetic signals

Mark distributions nearby one particular site can indicate
whether this site tends to be bound by TFs. However, it
is weak and noisy. Thus we aggregated the aligned signals
for all occurrences of a particular k-mer seed. We denote
this overall distribution as mark distribution for this k-
mer seed. The mark distribution is discretized over a set
of fixed-size bins (illustrated by Figure S9).

Finding over-represented seeds

MOST and MOST+ find each word’s occurrences by
utilizing a suffix tree. In order to reduce the space com-
plexity, a hash table is utilized to represent the suffix
tree. Ukkonen algorithm is employed to construct the
suffix tree. Counting and locating each occurrence can
be done by traversing the whole tree in asymptotically
linear time (see Additional file 1 for more details).

The null model we adopted to find over-represented k-
mer seeds was generated from an n'-order Markov chain
[34] derived from the target regions. We assume the
counts of each k-mer are in Poisson distribution. The p-
values can be estimated using Gaussian approximation.

WC ~ Pois ()

P(WCzwc)§1—¢<L;C>,A>10 (1)

Where wc and A denote the observed and simulated
average counts of certain k-mer respectively. ¢ is the
cumulative distribution function of the standard normal
distribution. For simplicity the calculation does not cor-
rect for the effects of self-overlapping words. We
directly use word counts averaging on 5 simulated
sequences with the same length of the query sequence,
which was reported to have no substantial effect on
result [14]. Nor do we correct for multiple testing,
which is intractable since null odds ratio score distribu-
tions vary from word to word. Instead, we choose a
small p-value threshold.
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Ranking words

MOST+ chooses a list of candidate motif seeds from all
possible k-mers by applying a ranking step. If MOST +
mode is selected, aside from over-representation score,
external experimental signals are decomposed into 3 sub-
feature scores for each candidate seed: intensity scores
(characterizing average signal intensity over all occur-
rence), kurtosis score (characterizing the peak pattern of a
mark distribution) and asymmetry score (characterizing
the irregularity of a mark distribution). To calculate kurto-
sis and asymmetry score the mark distribution was first
normalized, then smoothed (by taking Discrete Fourier
Transform and removing high frequency components).
Finally we measured the kurtosis and asymmetry level. An
overall score integrating all 4 scores above to rank candi-
date seeds is calculated as follows.

S = BiS1 + BrSk + PaSa + Sw
Sr= ! X

1= e > e(X)
f(X) = smooth(normalize (¢(X)))

B [(X—EX)?]
Ef[(X — EX)?]°

1 1
Sa = 2DKL(flhs||frhs) + 2DKL(frhs||flhs) 2
S _ wc
WT
p (i)

D = i) In
kL (pll9) Zi:P (i) a6
Where S;, Sk,S4 and S, represent score of intensity,

kurtosis, asymmetry and over-representing odds ratio.

¢(X) is the aggregated distribution of the genome-wide
signals. f(X) represents normalized and smoothed distri-
bution. The B values are weights for each score that need
to be found. Symmetrised Kullback-Leibler divergence

(KL-divergence) is adopted to measure the asymmetry of

distributions. lhs and rhs denote left and right half of a

distribution. wo and A are defined as in equation (1).

Generalizing seeds to motifs and Clustering

For each high-ranked seed, we generalized them into
motifs of the same length by substituting each position of
a word with other 3 oligonucleotides, and calculated each
variant’s occurrence, which produced a probability matrix
of this word.
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In order to remove redundancy and form full-length
motifs, these primary motifs were further clustered.
Here we use a similar approach as CisFinder [17] which
clusters words by PFMs since PFMs contain more site-
specific details about each motif.

Our clustering procedure initially calculated a dissimilar-
ity matrix according to primary motifs and corresponding
mark distributions, which have a time complexity of
O(M?L?) for M motifs with length L. All possible offsets
and orientations of two motifs were checked to decide
how they overlapped, and the one with maximum Pearson
correlation was chosen as the distance of two motifs. If
under MOST+ mode, the KL-divergence between mark
distributions of these two motifs could be also incorpo-
rated to calculate this distance (Figure S10). Pseudo-
counts could be added to avoid zero probability.

After that, an agglomerative hierarchical clustering
was applied using average-linkage approaches (Figure
S11). Gap statistics [35] was employed to determine the
optimal cluster number. At last, clusters were trimmed
to remove ambiguous or low-count ends.

Assessment of site level accuracy

It is not straightforward to evaluate the accuracy of a
motif discovery algorithm [2,8]. We evaluated the accu-
racy of our motif finding algorithm implicitly according
to how well the found motifs can recall real sites.

With motifs found by MOST and other tested algo-
rithms as inputs, we used CisFinder to predict bound
sites on target regions. These predicted bound sites
were compared with ChIP-seq signals as implicit evalua-
tion of motif accuracy. However, as gold standard anno-
tations, ChIP-seq has limited resolution. Therefore, we
considered predicted sites that fell nearby ChIP-seq
summits as true positives. Specifically, we flanked each
ChIP-seq summit with 650bps at both sides (total
1,300bps for a single TFBS annotation, discretized into
13 100bp bins). The central bin of 100 bps was denoted
as a TFBS bin (centred with the annotated TFBS sum-
mit), while other 12 bins at each end were denoted as
flanking bins (Figure S12).

TP(TEBS bins hits#) = # of summits that are less than 50bp from any predicted sites
FP (flanking bins hit#) = # of summits that are greater than 50bp to all predicted sites
EN (TFBS bins missedi) = # of total TFBS bins — TP

TN (flanking bins missed#) = # of total flanking bins — FP

L P o N
sensitivity = TP + EN' specificity = TN + FP
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We evaluated the performance with a nine-fold cross
validation (Figure 4). We randomly divided all data into
ten partitions with equal sizes. Eight training partitions
were used for MOST+/MOST and other methods to de
novo find motifs. Then these found motifs were used to
pinpoint TFBS (using CisFinder) on the other two parti-
tions - One validation partition for determining appropri-
ate parameters, and the other partition for making
comparison over algorithms. In case the essayed motif
ranks lower in motif finding result compared with its
cofactors, we consider the top 3 motifs for each TF data-
set. Finally we compared the predictions with ChIP-seq
annotation, and further drew ROC (Receiver Operator
Characteristic) curve using above defined positives and
negatives. AUROC (Area Under ROC) was derived and
used as the measurement of accuracy. The pipeline was
repeated on different assignment of training and valida-
tion partitions to calculate the mean and standard varia-
tion of AUROC.

MOST+ parameter determination

During the training procedure, parameters of MOST+
need to be decided. MOST+ includes 4 parameters
(intensity, kurtosis, asymmetry and clustering) concern-
ing external tag information, 3 (intensity, kurtosis and
asymmetry) during ranking phase and the remaining
one in the clustering phase. To find sets of parameters
for various TFs, the parameter spaces are searched sys-
tematically for a collection of discrete points, and the
best parameter set is selected from thousands of combi-
nations (See Additional file 1 for details).

Comparison with existing methods

Existing methods, such as DREME, Trawler, WEEDER,
HOMER?2 and CisFinder, have been compared with
MOST/MOST+. The command lines used to run these
tools are listed at the end of the Additional file 1.

Accessibility and requirement

MOST+ is implemented in C++. The source code is
compiled with G++ 4.1.2. All tests were performed in a
Linux server with CentOS 5.7, Intel Xeon E5520 @
2.27GHz processors and a total memory of 16 Giga-
bytes. MOST+ and all supporting data are freely avail-
able at: http://cbb.sjtu.edu.cn/~ccwei/pub/software/
MOST/MOST.php.

Additional material

Additional file 1: This file contains supporting information for
MOST+, including result figures S1 to S12, Tables S1 to S3 and
some other detailed information like the parameter settings for the
programs compared in this paper.
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