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Abstract

Essential proteins are vitally important for cellular survival and development, and identifying essential proteins is
very meaningful research work in the post-genome era. Rapid increase of available protein-protein interaction (PPI)
data has made it possible to detect protein essentiality at the network level. A series of centrality measures have
been proposed to discover essential proteins based on the PPl networks. However, the PPl data obtained from
large scale, high-throughput experiments generally contain false positives. It is insufficient to use original PPl data
to identify essential proteins. How to improve the accuracy, has become the focus of identifying essential proteins.
In this paper, we proposed a framework for identifying essential proteins from active PPl networks constructed
with dynamic gene expression. Firstly, we process the dynamic gene expression profiles by using time-dependent
model and time-independent model. Secondly, we construct an active PPl network based on co-expressed genes.

active.

Lastly, we apply six classical centrality measures in the active PPl network. For the purpose of comparison, other
prediction methods are also performed to identify essential proteins based on the active PPl network. The
experimental results on yeast network show that identifying essential proteins based on the active PPl network can
improve the performance of centrality measures considerably in terms of the number of identified essential
proteins and identification accuracy. At the same time, the results also indicate that most of essential proteins are

Introduction

Essential proteins play a decisive role in the survival and
development of the cell. The identification of essential
proteins is crucial to understanding the minimal require-
ments for cellular life and for practical purpose, such as
drug design [1]. The prediction and discovery of essential
genes have been performed by experimental procedures
such as single gene knockouts [2], RNA interference [3]
and conditional knockouts [4], but these techniques
require a large investment of time and resources and they
are not always feasible. Considering these experimental
constraints, a highly accurate computation approach for
identify essential proteins would be of great value. At the
present, there are many computational approaches for pre-
dicting essential proteins based on their properties. Most
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of these research approaches focused on their topological
properties in biological networks, such as protein-protein
interaction (PPI) networks. Recently, many methods were
proposed for detecting essential proteins based on network
topology, such as degree centrality(DC) [5], betweenness
centrality (BC) [6], closeness centrality (CC) [7], subgraph
centrality (SC) [8], eigenvector centrality (EC) [9], infor-
mation centrality (IC) [10], edge clustering coefficient cen-
trality (NC) [11], local average connectivity centrality
(LAC) [12], etc. These centrality measures were used to
identify essential proteins based on network topology.
Experiment results shown that they are better than pseu-
dorandom selection in detecting essential proteins. How-
ever, there exist some limitations on these methods. The
PPI data generated by high-throughput technologies is
incomplete and contains many false positives and false
negatives, which impacts the correctness of predicting
essential proteins.
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He et al. illustrated that some PPIs are more important
than others in reality [13]. Some research works shown
that many essential proteins have low connectivity and
are difficult to be identified by centrality measures
[13-16]. Many research works focused on identification
essential proteins by integration PPI networks and other
biological information, such as cellular localization, gene
annotation, genome sequence, and so on [13,16,17].
Acencio et al. demonstrated that network topological fea-
tures, cellular localization and biological process informa-
tion are extremely useful for reliable prediction of
essential genes [17]. Hart et al. pointed out that essential-
ity is a product of the protein complex rather than the
individual protein [18]. Tew et al. [19] incorporated func-
tion information with topological information to detect
essential proteins. Li et al. [20] proposed a new method
to identify essential proteins by integration of PPI net-
work topology with protein complexes information.
Recently, Li et al. proposed a new method for predicting
essential proteins based on the integration of PPI net-
work and gene expression profiles [21], named PeC. Peng
et al. [22] proposed an iteration method for predicting
essential proteins by integrating the orthology with PPI
networks. The current centrality measures were based on
the topology of PPI networks. However, PPI network are
static, which cannot reflect the real interaction in net-
works. In other words, the PPI data generated by high-
throughput technologies is incomplete and contains
many false positives and false negatives, which impacts
the correctness of predicting essential proteins. In this
paper, we propose a new method for predicting essential
proteins based on active PPI network. We construct an
active PPI network based on static PPI network and
dynamic gene expression data. Then some centrality
measures (DC, LAC, NC, BC, CC and SC) which are
based on network topology have been applied to predict
essential proteins based on the constructed active net-
work. The experimental results show that it is more
effective to predict essential proteins based on the active
PPI network than based on static PPI network.

Methods

In this section, we first construct an active PPI network
based on dynamic gene expression profiles and static
PPI network. Then, we identify essential proteins based
on the constructed active PPI network.

Time-dependent model and Time-independent model

Let x = {x1,..., X,,5,..., 31} be a time series of observation
values at equally-spaced time points from a dynamic
system. Wu et al. [23] have adopted AR (autoregres-
sive) model to analyze the time dependence of time-
course (dynamic) gene expression profiles. In [26], the
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time-dependent relationships can be modeled by an
AR model of order p, denoted by AR(p), as follow:

Xm = Bo + Brém_1 + BoXm—2 + ... + BpXm_p+Em;m=p+1,.., M (1)

where §; (i = 0, 1,..., p) are the autoregressive coeffi-
cients, and ¢,,(m = p + 1,..., M ) represent random
errors, which independently and identically follow a nor-
mal distribution with the mean of 0 and the variance of
0”. The system of Model (1) can be rewritten in the
matrix form as:

Y=XB+e¢, (2)
where
Xp+1 1 x - x Bo Ep+1
Xps2 1 x - Xpn1 B1 Epi2
= A= P = €= .
1
Xm 1dxm—p -+ Xm—1 By eM

The likelihood function for Model (2) is
1
L(B,0?) = (2m0?) M P2 exp [— e Xﬁllz] .(3)
(o}

If the rank (X) = p + 1 holds, the maximum likelihood
estimates of 8 and ¢~ are

B =xX"x)"'x"y 4)

and
~AD N 2
&% = |y - x| 1 —p).
The value of the maximum likelihood is given by

L(,é, &2) _ (271&2)7(1\4717)/267(1\4717)/2~ ©)

In Model (2), the matrix X has p + 1 columns and
M - p rows. Thus a necessary condition for rank(X) =
p+lisM-p>p+1lorp<(M-1)/2.

On the other hand, the time-independent model is
also an autoregressive model with the order of zero.
That is a noisy profile can be modeled by

X =Bo+Emm=p., M, (7)

where f is a constant number and ¢,,(m = p,....M )
are the random errors which are subject to a normal
distribution independent of time with the mean of 0
and the variance of o2. The likelihood function for
Model (7) is

M

L(fo, 02) = @ro?) M PP expl= 13 (= o) (8)

¢ m=p+1
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The maximum likelihood estimates of 3, and o2 are

1 M
:30 = M— p Z Xm (9)
m=p+1
and

~2 1 M A 2
62 = (i _p) 2 = F0) (10

m=p+1

respectively. The maximum values of the likelihood is
given by

L(Be, (60)%) = (27(8,)?) "M== M=)2, (11)

where B, is a (p + 1) dimensional vector whose first
component is B, and others are zeros.

The likelihood ratio of Model (7) to Model (1) is given
by

PN N (M=p)/2
Azummqf)=<wf>
L(B.(6)") \(6)
According to the likelihood principle, if A in Formula
(12) is too small, the series x = {x1,..., X,,5,..., X34} is more

likely time-dependent than time-independent. The
statistic

CM=2p=1 mpy _M—2p—1<&37>
F= ) (A 1) = ) 52 1)(13)

(12)

follows an F distribution with (p, M - 2p — 1) degrees of
freedom when Model (7) is true for a series of observa-
tions. When F is very large, thus the p-value is very small,
Model (7) is rejected, i.e., observation series x = {x1,...,
Xy Xag) 18 time-dependent. From Formula (13), one can
calculate the probability (p-value) that a series of observa-
tions is not time-independent. As the regression degree in
Model (1) is unknown, the p-values are calculated by For-
mula (13) for all possible orders p (1 < p < (M - 1)/2).
The proposed method calls a gene to be significantly
expressed (time-dependent) if one of these p-values calcu-
lated from its expression profile is smaller than a user-
preset threshold value.

Construction of the active protein interaction network

Tang et al. [24] use a potential threshold to filter noisy
gene expression data, then construct an active PPI net-
work. In their method the common value of a threshold
is applied to all the genes and time points. Wang et al.
[25] propose a method to identify active time points for
each protein in a cellular process or cycle using a 3-
sigma principle to compute an active threshold for each
gene according to the characteristics of its expression
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curve, then construct an active PPI network. We first fil-
ter noisy genes based on time-dependent model and
time-independent model, time-dependent genes expres-
sion data is more likely dynamically deterministic than
random while time-independent genes expression data
is more likely random than dynamically deterministic.
Those gene expression data are considered to be noises
if they are time-independent and their means are very
small. We then use a threshold function to compute an
active threshold for each gene according to their expres-
sion data. We finally construct an active PPI network
(NF-APIN) [26]. Our threshold function is described as
follows:

Active threshold = u + ko x (1 —F) (14)
1

F= 15

1+0? (15)

For each gene, u and o are the mean and standard
deviation of its expression values. The Active threshold
is calculated by Formula (14) for all possible values
k(0 < k < 3). In this paper the value of coefficient k is
selected as 2.5. If the expression level of a gene is over
its active threshold at a time point, the corresponding
protein is regarded as active at the time point. For each
time point, if two proteins interacted with each other in
the static PPI network are active at the same time
point, the proteins and their interaction form a part of
NE-APIN at the time point. The process is repeated
until the NF-APIN is created.

Centrality measures
A PPI network is usually regarded as an undirected
graph G = (V, E), where a node v € V represents a pro-
tein and an edge e(u, v) € E denotes an interaction
between two proteins v and u. In our paper, we have
described the active PPI network constructed by our
strategy as G” = (V’, E’), a node v € V’ represents a pro-
tein and an edge e(u, v) € E’ denotes an interaction
between two proteins v and u. We assign N as the total
number of nodes in the network. In graph theory and
network analysis, centrality of a vertex measures its rela-
tive importance within a graph. At the present, six clas-
sical centrality measures based on network topology are
defined as follows:

Degree Centrality (DC). The degree centrality of a ver-
tex v is defined as

DC(v) = deg(v) (16)

Where deg(v) is degree of vertex v.

Betweenness Centrality (BC). The betweenness cen-
trality of a vertex v is defined as the fraction of shortest
paths that pass through the node v.
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BC(v) = Z ou(v)

(17)
stvaev 0%t

Where o, is the total number of shortest paths from
node s to node t, 0,(v) is the number of those paths
that pass through v.

Closeness Centrality (CC). The closeness centrality of a
vertex v is the reciprocal of the sum of graph-theoretic dis-
tances from the node v to all other nodes in the graph G.

N-1
Zv;éueV d(l/, u)

Where d(u, v) is a natural distance between all pairs of
nodes, defined by the length of their shortest paths.

Subgraph Centrality (SC). The subgraph centrality of a
vertex i is the total number of closed walks in which v
takes part and gives more weight to closed walks of short
lengths.

o~ i) _ 2
sc@) =) " =Y wire
k=0 j=1

CC(v) = (18)

(19)
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where p(i) is the number of closed walks of length /
starting and ending at protein i, vi, vy,...vy is an ortho-
normal basis of Ry composed by eigenvectors of the
adjacency matrix A of the network and 144, A,,..Ax are
the corresponding eigenvalues. where v; denotes the ith
component of v;.

Local Average Connectivity Centrality (LAC). The local
average connectivity of a node v (LAC(v)) is defined as the
average local connectivity of its neighbors:

Y uen, deg™ (w)

20
INy| 20

LAC(v) =

where N, is the set of neighbors of node v, C, is the
subgraph G[N,] besides N,. For a node w in C,, deg(w)
is its degree.

Edge Clustering Coefficient (NC) [11]. The edge clus-
tering coefficient of E,, can be defined by the following
expression:

Zu,v

E L V) =
e ) = id(de —1,dy — 1)

(21)
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Figure 1 Number of essential proteins detected by each methods in two different networks. As is shown in Fig.1, the performance of each
centrality measures in identifying essential proteins based on APPIN is better than PPIN. Especially, the improvements of SC based on APPIN are more
than 50% when predicting 100 proteins, the number of essential proteins identified by LAC and NC based on APPIN achieves to 80.
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Where Z,, denotes the number of triangles that
include the edge actually in the network, d, and d,, are
degrees of nodes u and v, respectively.

Results

Experimental datasets

The yeast’s PPI network (20101010) is downloaded from
DIP [27]. We filtered the self-interactions and repeated
ones in the original PPI network. As a result, the PPI
network used in our experiment has 5093 proteins and
24743 interactions. The yeast’s dynamic gene expression
data comes from [28], includes 6, 777 gene products
under 36 different time points. The 6, 777 gene pro-
ducts in the gene express profile cover 95% of the pro-
teins in the PPI network. The list of essential proteins of
yeast downloaded from the following databases: MIPS
[29], SGD [30], SGDP [31] and DEG [32], which con-
tains 1285 essential proteins. Within the 1285 essential
protein, 1167 proteins present in PPI network.

Compare with seven typical Centrality measure in
different PPl networks

In order to validate the performance of the proposed
strategy, we conduct a comparison between two different
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PPI networks applying seven typical centrality measures
defined in last section to predict essential protein.

Proteins are ranked in descending order according to
their scores computed by each centrality measure. Accord-
ing to the sort, a certain number of top proteins should be
regarded as essential proteins. With that, we select the top
100, top 200, top300, top400, top500 proteins as essential
protein candidates and identify how many of these are
true essential proteins. Numbers of essential proteins
detected by seven typical centrality measures in two differ-
ent networks are shown in Figure 1.

In Figure 1, PPIN denote that a certain centrality mea-
sure is applied based on the original PPI network of the
yeast, and APPIN denote that a certain centrality measure
is applied based on the active PPI network [24]. As is
shown in Figure 1, the performance of each centrality
measures in identifying essential proteins based on APPIN
is better than PPIN. Especially, the improvements of SC
based on APPIN are more than 50% when predicting 100
proteins, the number of essential proteins identified by
LAC and NC based on APPIN achieves to 80.

To further illustrate the efficiency of our strategy, we
have analyzed by using a jackknife methodology [33]. In
Figure 2, proteins are ordered in descending according to
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Figure 2 DC, BC, CC, SC, LAC and NC are compared in two different networks by a jackknife methodology. To further illustrate the
efficiency of our strategy, we have analyzed by using a jackknife methodology. In Fig.2, proteins are ordered in descending according to their
scores. The curve is plotted with the cumulative counters of true essential proteins and the cumulative counters of predicted essential proteins.
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Table 1 The case of overlaps essential proteins in different two networks when predicting 100 proteins

Centrality measures 51/52 S3 51 -S3 52 -S3
Degree Centrality (DQ) 56/46 26 30 20
Betweenness Centrality (BC) 54/44 23 31 21
Closeness Centrality (CC) 55/41 12 43 29
Subgraph Centrality(SC) 57/37 10 47 27
Edge Clustering Coefficient (NC) 80/56 26 54 30
Local Average Connectivity Centrality (LAC) 82/59 35 47 24

their scores. The curve is plotted with the cumulative
counters of true essential proteins and the cumulative
counters of predicted essential proteins. The areas under
the curve (AUC) for each centrality measures in different
networks are compared in Figure 2. It is obvious that the
AUC for DC, BC, CC, SC, NC and LAC based on APPIN
are better than PPIN.

In addition, we also conduct a comparison of overlaps
true essential proteins predicted by each centrality mea-
sure in different two networks. The numbers of true
essential proteins in top 100 predicted proteins are
shown in Table 1 where S1 and S2 are the number of
essential protein predicted in two different networks,
respectively, S3 is the number of overlaps essential pro-
teins. From Table 1 we can see that the number of com-
mon essential proteins identified in two networks is
relatively low. This proves that identifying essential pro-
tein based on the active PPI network is a necessary com-
plement. In conclusion, the efficiency of identifying
essential proteins based on an active PPI network is bet-
ter than the origin PPI network. This indicates that active
proteins more like to be essential proteins.

Conclusion

At present, the prediction of essential proteins is still a
hot topic in the post-genome era. Many researches for
identifying essential proteins are based on entire PPI
networks. However, the PPI data obtained from various
kinds of experimental techniques and methods, which
generally contain false positives. It is insufficient to use
original PPI data to identify essential proteins. In this
study, we first filtered noisy genes based on dynamic
gene expression profiles, and then constructed an
active PPI network. After that, we predicted essential
proteins based on our constructed active PPI networks
using seven typical centrality measures. The experi-
mental results show that the precision of identifying
essential proteins based on our active PPI network is
obviously higher than based on the origin PPI network.
One direction of our further work is to apply the other
prediction methods based on active PPI networks
and confirm whether essential proteins have active
characteristics.
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