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Background: Detection of differential methylation between biological samples is an important task in bisulfite-seq
data analysis. Several studies have attempted de novo finding of differentially methylated regions (DMRs) using
hidden Markov models (HMMs). However, there is room for improvement in the design of HMMs, especially on
emission functions that evaluate the likelihood of differential methylation at each cytosine site.

Results: We describe a new HMM for DMR detection from bisulfite-seq data. Our method utilizes emission
functions that combine binomial models for aligned read counts, and beta mixtures for incorporating genome-
wide methylation level distributions. We also develop unsupervised learning algorithms to adjust parameters of the
beta-binomial models depending on differential methylation types (up, down, and not changed). In experiments
on both simulated and real datasets, the new HMM improves DMR detection accuracy compared with HMMs in
our previous study. Furthermore, our method achieves better accuracy than other methods using Fisher's exact test

Conclusions: Our method enables accurate DMR detection from bisulfite-seq data. The implementation of our
method is named ComMet, and distributed as a part of Bisulfighter package, which is available at http:/

Background

Cytosine methylation is an epigenetic modification that
affects many biological processes including normal
development and pathogenesis [1]. Genome-wide profil-
ing of cytosine methylation is enabled by bisulfite-seq,
where unmethylated cytosines are converted and
sequenced as thymines [2]. In bisulfite-seq data analysis,
a fundamental task is alignment of bisulfite-converted
reads to a reference genome, and thus numerous tools
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have been already developed [3-6]. On the other hand,
methods for downstream tasks after read alignment
have been relatively limited [7]. Among them, one of
the most important is detection of differential methyla-
tion between biological samples [8]. Differential methy-
lation analyses can be divided into two categories: those
focusing only on pre-specified regions such as known
transcription factor binding sites (e.g. [9]), and those for
de novo finding of differentially methylated regions
(DMRs) as novel candidates of regulatory elements (e.g.
[10]). In this paper, we address the latter case, which is
more challenging due to the necessity for determining
exact boundaries of DMRs.
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DMR detection has been attempted by two-step proce-
dures: first, differentially methylated cytosines (DMCs)
are detected by comparison of alignment results between
samples; then, DMCs at neighbor positions are grouped
as contiguous DMRs by certain distance criteria. Most
studies have focused mainly on the first step, and pro-
posed to detect DMCs using Fisher’s exact test [10], Stu-
dent’s t-test with methylation level smoothing [11], and
logistic regression test [12]. Additionally, many methods
have been developed for detecting DMCs based on a vari-
ety of probability models [13-15]. In contrast, there have
been much less studies on methods for grouping DMCs
into DMRs. Although fixed-length distance criteria (e.g.
sliding windows) have been conventionally used, such
strategies depend on the choice of distance parameters
(e.g. window sizes). Unfortunately, it is difficult to adjust
distance parameters empirically because DMR lengths
range from hundreds of base pairs as in CpG islands, to
millions of base pairs as in cancer aberrations [16].

To address this problem, we have recently proposed a
framework for DMR detection based on hidden Markov
models (HMMs) [6]. Unlike the two-step procedures,
HMMs can integrate detection and grouping of DMCs as
joint probability models using emission and transition
functions, respectively. Moreover, HMMs enable us to
adjust their parameters by well-established learning algo-
rithms so that they incorporate useful information for
DMR detection. In particular, we have observed that
DMCs exhibit distance distributions distinct from cyto-
sines whose methylation is not changed. Therefore, we
have adjusted parameters of transition functions so that
they fit these distance distributions. Thanks to this strat-
egy, our method has improved DMR detection accuracy,
especially on determining exact boundaries of DMRs. We
note that HMM-based DMR detection has also been
employed for methylation data other than bisulfite-seq
such as Infinium BeadChip [17] and MBDCap-seq [18].

While our previous study has shown the effectiveness of
transition functions in HMM-based DMR detection, there
is still room for improvement in the design of emission
functions. As mentioned above, many studies have pro-
posed various probability models for detecting DMCs
[13-15]. An important suggestion from these studies is
that DMC detection at individual cytosine sites can be
improved by considering probability distributions of
methylation levels collected from all genomic cytosine
sites. This implies that the information of genome-wide
methylation level distributions may also be useful for
DMR detection. However, the probability models in
[13-15] are specifically developed for DMC detection, and
thus cannot be directly applied to the emission functions
for HMM-based DMR detection.

In this paper, we describe new emission functions for
HMM-based DMR detection from bisulfite-seq data.
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We show that the emission functions in our previous
study [6] have an empirical parameter to represent
methylation levels used in binomial models for aligned
read counts. From this viewpoint, we propose new
emission functions that replace the empirical parameter
by beta mixtures for incorporating genome-wide
methylation level distributions. We also develop unsu-
pervised learning algorithms to adjust parameters of
the beta-binomial models depending on differential
methylation types (up, down, and not changed). In
experiments on both simulated and real datasets, the
new emission functions improve DMR detection accu-
racy compared with the old ones. Furthermore, our
HMM-based method achieves better accuracy than
other methods using Fisher’s exact test and methyla-
tion level smoothing.

Methods

In this section, we describe a new method for DMR detec-
tion from bisulfite-seq data. The method uses new emis-
sion functions with an HMM-based framework called
ComMet which we developed in our previous study [6].
We first review ComMet, and show that emission func-
tions in our previous study have an empirical parameter to
represent methylation levels used in binomial models for
aligned read counts. Then, we design new emission func-
tions replacing this empirical parameter by beta mixtures
for incorporating genome-wide methylation level distribu-
tions. We also present unsupervised learning algorithms
to adjust parameters of the beta-binomial models depend-
ing on differential methylation types (up, down, and not
changed).

HMM-based DMR detection from bisulfite-seq data

In our previous study [6], we developed ComMet, an
HMM-based framework for DMR detection from bisul-
fite-seq data (Figure 1). The motivation for employing
HMMs came from our observation of real data where
DMCs showed distance distributions distinct from CpGs
whose methylation was not changed. We incorporated
these distributions into transition functions of HMMs.
ComMet uses the state transition diagram shown in
Figure la where transition probabilities among Up,
Down, and NoCh states represent distinct distance dis-
tributions among DMCs. ComMet adjusts transition
probabilities for each dataset to be analyzed using
expectation-maximization algorithms. ComMet detects
DMRs by dynamic programming algorithms that maxi-

) o . P(region, dir)

mize log-likelihood ratio scores log P(region, NoCh)’
where dir (= Up or Down) is the direction of differential
methylation. The output of ComMet is a list of DMRs
ranked by their log-likelihood ratio scores.
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Figure 1 ComMet: an HMM-based framework for DMR detection from bisulfite-seq data. (a) HMM architecture. The HMM has pairs of
states for CpG positions and their interval positions (named gap), each of which has three types of differential methylation: hypermethylation
(Up), hypomethylation (Down), and no change (NoCh). Transition probabilities among Up, Down, and NoCh states represent distinct distance
distributions among DMCs. Throughout this study, we use the dual architecture consisting of the basic and second units since it can achieve
better accuracy than the basic unit only [6]. (b) Example of input bisulfite-seq data and corresponding state transitions. Colors in the state

While transition functions of ComMet incorporated
distance distributions of DMCs, the design of emission
functions was not well established in our previous
study. Given alignment results of bisulfite-converted
reads, we can observe the counts of reads supporting
CpG methylation as the number of C-C matches, and
the counts of reads not supporting CpG methylation as
the number of C-T mismatches (Figure 1b). Let us
denote the count of reads supporting methylation by

mg;, the count of reads not supporting methylation by
ug;, and the total count of aligned reads by #ny, for each
CpG site i and each sample s = 1, 2. If a CpG site is
differentially methylated, the counts can be considered
to be taken from separate probability distributions
reflecting the difference of methylation levels between
two samples. On the other hand, if a CpG site is not
differentially methylated, the counts should be the con-
sequence of the common methylation level. Therefore,
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in our previous study, emission functions for CpG states
were designed as follows:

U _ p: U\p; u
e; = Binom(my;|ny;, 0;;)Binom(my|n,i, 65;),

D _
e =

eﬁ-\] = Binom(m; i|n1 i, H&!)Binom(mz,-lnzi, 05),

Binom(my;|n;, HB)Binom(mz,-Inzi, 05),

where U, D, and N represent Up, Down, and NoCh
states, respectively, Binom() is a binomial distribution,
and 0; is the occurrence probability of reads support-
ing CpG methylation at the i-th CpG site for each
differential methylation state. (Note that we use com-
mon emission functions between the basic and second
units in Figure la, and no emission function for gap
states.) The problem here is how to model 6; depend-
ing on differential methylation states. One may con-
sider to use 95 = GB = mli/nh—, 95 = 095 = mz,-/nz,-, and
06\; = (mq; + my;)/(n1i + nzi). However, this cannot dis-
criminate the direction of differential methylation due
to 61 = 6P, and thus is not a suitable choice. In our
previous study, we resorted to introduce an empirical
parameter pseudo, resulting in

u M+ pseudo
‘911' = ’
n1; + pseudo
u _ my;i
207 i + pseudo’
oP = myj
1= ’
my; + pseudo
b Mai + pseudo
0 = '
1y + pseudo
N My + Myj
0i = ’
Ny + N

We note that pseudo can be regarded as a pseudo-
count added to actual read counts, playing a role to
represent state-dependent methylation levels. For exam-
ple, if a CpG site has the differential methylation state
of Up, we expect that the methylation level is high in
the sample 1 and low in the sample 2 (Figure 1b).
Accordingly, pseudo is added to m;; (supporting CpG
methylation in the sample 1) and to u,; (not supporting
CpG methylation in the sample 2).

Although the empirical parameter partially solved the
problem of designing emission functions, our previous
study did not address how to adjust it. The optimal
value of pseudo depends on the magnitude of read
counts m and n (i.e. sequencing depth). Moreover, it
may also depend on underlying biological processes
between samples such as normal development and
pathogenesis. In fact, as will be shown in the “Results
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and discussion” section, ComMet with the above emis-
sion functions may result in poor accuracy of DMR
detection depending on the value of pseudo.

New emission functions and learning algorithms

To design new emission functions for ComMet, we
recall that the empirical parameter in our previous study
had a role to represent state-dependent methylation
levels. This viewpoint leads to the idea that the empiri-
cal parameters can be replaced by utilizing genome-wide
methylation level distributions observed from real data.
To formulate this intuition, we propose new emission
functions in the following form:

0o

e}'=/ / Binom (mylny, 0,)Binom(maln, 02)p(6r, 02/UNdodey, (1)
0 0
1l

P =/ / Binom (my;|ny;, 61)Binom (mailnyi, 62)p(61, 62|D)d0;db,, (2)
0 0

1
eN =/ Binom (my;|n1;, 6o)Binom(ma;i|nai, 6o)p(0oIN)dby. (3)
0

Note that new emission functions use probability dis-
tributions of state-dependent methylation levels p(6|-).
This is in contrast to the emission functions in our pre-
vious study using fixed values ;.

Next, we present unsupervised learning algorithms for
estimatingthese distributions for each dataset to be ana-
lyzed. Figure 2 shows the overview of the algorithms. As
shown in Figure 2a, we exploit that methylation levels
m/n collected from all genomic CpG sites form a distri-
bution with two modes of high and low methylation.
Such bimodal methylation level distributions are a com-
mon feature observed in many real datasets, and have
also been reported by other researchers (e.g. 9, 10, 16,
19). Moreover, recent studies have suggested that detec-
tion of DMCs at individual cytosine sites can be
improved by considering genome-wide methylation level
distributions [13-15]. We propose to utilize this infor-
mation for HMM-based DMR detection. We model gen-
ome-wide methylation level distributions by using beta
mixtures as follows:

p(61) = pu(61) + pL(61) + uniform
= w1 Beta(01|an1, Pu1) + wiiBeta(01]ar:, Bri1) + Wunifi,
p(62) = pr(62) + p(62) + uniform

= wipBeta(6hlama, fua) + wiaBeta(62]012, fra) + Wunif2,

where H and L represent two modes of high and low
methylation, each of which is modeled by a beta distri-
bution, and unif represents a background ground
methylation level modeled by an uniform distribution
(Figure 2b). Using these component distributions, we
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Figure 2 Learning procedures for new emission functions. (a) Bimodality of genome-wide methylation level distributions. Real bisulfite-seq
data from [10] are shown. (b) Learing parameters for beta mixtures. Genome-wide methylation level distributions are fitted by beta mixtures,
and differential methylation states are represented as alterations between two mixture components. The histograms are depicted using all
genomic CpG sites, while the probability distributions are estimated using 10000 randomly selected CpG sites.

represent probability distributions of state-dependent where I() is an indicator function that takes 1 or 0
methylation levels as follows: depending on whether the condition is true or false. This
corresponds to represent differential methylation states

p(01, 02|U) = Beta(01]am, frr)Beta(@alonz, fr2), (4) 5 alterations between two modes. For example, Up state
p(61, 6,|U) is represented as high methylation in the sam-

p(61, 6;|D) = Beta(6:|ar1, fr1)Beta(bzlama, fz), (5)  ple 1, pu(6:), and low methylation in the sample 2, py (65).

By substituting the equations 4-6 into the equations 1-3,

P(66IN) = (wini Beta (@ arry, B ) + wii Beta(@s s, it + wanitt) the new emission functions are finally written as

w2 Beta (6 |aa, +wryBeta(0z]ar2, + Wyni 6
5(;2_9 E;l)m Bruz) + unzBeta(Brlara, fra) + whmie) ©) U (nu) (ﬂzi) B(muj + aur, uii + frn) B(mai + awa, tai + fra) @)
1=v2=%) i miy; ) \ mai B(an1, A1) B(owa, fr2) '
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oD (nl,- ) (nz,- ) B(mli + 0L, Ui+ ﬂu) B(mzi +app, Ui+ ﬂuz) (8)
! my; Mo; B(avr1, pr1) B(awa, fu2)

1 [ ny No;
N _ 1i 2i
SR G5 150 ID SR Y

se{H1, L1, unif1} te{H2, L2, unif2} (9)
B(myi+myi +as+ o — 1, uyj + Ui + fs + fi1)

B((ZS, ﬁS)B(atl ﬁt)

z= 2. 2
se{H1, L1, unif1} te{H2, L2, unif2}

B(as+a;—1, s+ fr—1)
B(as, Bs)B(ar, Bi)

where B() is a beta function, and Gunir1 = Bunifi =
Olunitz = Bunirz = 1 by definition of uniform distribution.

The parameter estimation of w., ¢., and f. involves
several technical issues. First, we perform maximum
likelihood estimation that maximizes the likelihood of
read counts m and #, rather than methylation levels
m/n. Read counts preserve the information of sequen-
cing depth (i.e. the magnitude of read counts), which is
cancelled in methylation levels. Therefore, this enables
to incorporate the information of sequencing depth into
parameter values, thereby to overcome the drawback of
the previous emission functions where the optimal value
of pseudo depends on sequencing depth. The estimation
problem is regarded as maximum likelihood estimation
for beta-binomial mixtures, and thus can be solved as a
simpler case of well-established maximum likelihood
estimation for Dirichlet-multinomial mixtures described
in [20]. Second, we can reduce the computational cost
by only using read counts from a small number of ran-
domly selected CpG sites. As shown in Figure 2, the his-
tograms depicted using all genomic CpG sites are well
fitted by the probability distributions estimated from
10000 CpG sites. Thus, we use 10000 CpG sites also for
other datasets throughout this study. Third, we need to
restrict the ranges of parameter values so that the inte-
gral in the equation 3 is tractable, and each beta compo-
nent distribution corresponds to exactly one mode of
methylation levels. Accordingly, parameter estimation is
performed under the constraints of ., . > 1 and By, =

Bro =01 = o = 1.

’

Wswy

(10)

’

Results and discussion

To evaluate DMR detection accuracy, we conducted
experiments on both simulated and real datasets. Unfor-
tunately, there is no database of gold standards for
benchmarking DMR detection (i.e. true biological
DMRs). Therefore, we employ multilateral evaluation
using a series of simulated and real datasets. The overall
protocols are similar to those used in [6]. In experiments
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on simulated data, detected DMRs were evaluated for
their overlap with simulated true DMRs. In experiments
on real data, detected DMRs were evaluated for agree-
ment with gene expression and DNase I hypersensitivity.

We compared DMR detection accuracy between Com-
Met using the new emission functions and that using
the old ones. In addition, we also compared new Com-
Met with other methods using Fisher’s exact test [10]
and methylation level smoothing [11]. We used LAST
[5] to align bisulfite-converted reads to reference
sequences. The alignment results were used as the com-
mon input for each DMR detection method.

Experiments on simulated data

We simulated bisulfite-converted reads using DNemula-
tor [5]. The human chromosome x (chrX) was used as a
reference. Methylation levels were assigned for all CpG
sites in the chrX. 87-bp sinlgle-end reads were generated
from random loci in the chrX with cytosines converted
to thymines according to their methylation levels. Qual-
ity values were attached to reads according to
SRR094461 in the Sequence Read Archive (http://www.
ncbi.nlm.nih.gov/sra), which is bisulfite-seq data pro-
duced by the Illumina’s platform. These reads were trea-
ted as the dataset for the sample 1. Next, 100 random
regions were defined as DMRs for Up or Down, and
methylation levels of all CpG sites in these regions were
changed to the maximum or the minimum, respectively.
Reads were again generated, and treated as the dataset
for the sample 2. To test the effects of sequencing
depth, we varied the number of generated reads for
each dataset from 1 to 50 million (M). We also varied
the length of simulated DMRs by preparing four ver-
sions of datasets: 50 bp, 500 bp, 5 kbp, and 50 kbp.

We evaluated DMR detection accuracy using the rate
of correct predictions in the top 100 DMRs detected by
each method. A correct prediction was defined as a
simulated true DMR reciprocally overlapped with a
detected DMR in a certain proportion of their lengths.
For example, a correct prediction with 50% reciprocal
overlap was counted only if the length of the overlap-
ping region was larger than half the length of the simu-
lated true DMR, and half the length of the detected
DMR. Similarly, we also defined correct predictions for
90% and 99% reciprocal overlaps.

Figures 3 and 4, and Figure S1 in Additional file 1
show the experimental results. ComMet using the new
emission functions achieved better accuracy than that
using the old ones with various values of the pseudo
parameter (Figure 3a and Figure S1 in Additional file 1).
It should be noted that, while the old emission functions
attained comparable accuracy to the new ones when
used with the optimal value of pseudo, it is difficult to
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find such optimal values in a practical situation where
accuracy cannot be systematically evaluated. In fact, as
explained in the “Methods” section, the optimal value of
pseudo critically depends on sequencing depth, while the
parameters in the new emission functions were success-
fully adjusted by our learning algorithms (Figure 3b and
Figure S1 in Additional file 1). ComMet with the new

emission functions also achieved better accuracy than
Fisher’s exact test and the smoothing method (Figure 4).

Experiments on real data

We conducted experiments that evaluate agreement
between detected DMRs and changes in gene expression.
Note that similar experiments have been employed also
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in previous studies [6,11]. We collected data from [16],
where human breast cancer and normal breast are mea-
sured by both RNA-seq and bisulfite-seq. We aligned
RNA-seq reads to the human genome using TopHat [21].
Gene expression was measured by fragments per kilobase
of transcript per million mapped reads (FPKM) using
Cufflinks [22]. Differentially expressed genes (DEGs)
were determined by the threshold of five-fold FPKM
change. We evaluated agreement between DEGs and
detected DMRs according to the previous study [6,11].
We focused on DEGs whose +5 kbp regions around
transcription start sites (TSSs) contained detected
DMRs. The numbers of DEGs were counted for the
top 1000 and 3000 DMRs detected by each method.
We used these counts as a measure of the agreement.
For the base-line of accuracy, we calculated the
expected number of DEGs when DMRs were randomly
placed in the TSS windows (denoted by random
guessing).

In addition, we evaluated agreement between detected
DMRs and changes in DNase I hypersensitivity as con-
ducted in [6]. We collected data from [19], where human
foreskin fibroblasts and embryonic stem cells are measured
by bisulfite-seq. For these cell types, we obtained DNase I
hypersensitivity data from the ENCODE project http://ftp.
ebi.ac.uk/pub/databases/ensembl/encode/integration_data_
jan2011/byDataType/openchrom/jan2011/fdrPeaks/. The
data for each cell type contain the set of 150-bp regions
that show the local maxima of DNase I hypersensitivity
with false discovery rate (FDR) less than 1%. We defined
“differentially sensitive sites” (DSSs) as those 150-bp regions
present in either one of the two cell types. The agreement
between DSSs and detected DMRs was evaluated similarly
to the experiment for DEGs. We focused on DSSs whose
15 kbp regions around the midpoints contained detected
DMRs. The numbers of DSSs were counted for the top
1000 and 3000 DMRs detected by each method. We used
these counts as a measure of the agreement.
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Figures 5 and 6 show the experimental results. The
advantage of the new emission functions over the old ones
was also validated on real data, achieving better agreement
of detected DMRs with DEGs (Figure 5a) and DSSs
(Figure 5b). We again emphasize that the performance of
the old emission functions critically depends on the choice
of pseudo values, while the optimal value is difficult to find
empirically. In contrast, as shown in Figure 5cd, the bimo-
dal distributions of methylation levels were observed in
real datasets, and our learning algorithms successfully
fitted the beta mixtures. The new ComMet achieved better
accuracy than Fisher’s exact test and the smoothing
method also for real datasets (Figure 6).

Conclusions

In this paper, we described the new emission functions for
HMM-based DMR detection from bisulfite-seq data. We
proposed to incorporate the information of genome-wide
methylation level distributions into emission functions,
replacing the empirical parameter used in our previous
study. ComMet with the new emission functions success-
fully improved DMR detection accuracy compared to the
previous version. Recent studies suggest that detection of
DMC s at individual cytosine sites can be improved by
considering genome-wide methylation level distributions
[13-15]. Therefore, our results have shown that such infor-
mation is useful not only for detecting DMCs, but also for
DMR detection. Furthermore, our HMM-based method
achieves better accuracy than other methods using Fisher’s
exact test and methylation level smoothing. The imple-
mentation of ComMet is distributed as a part of Bisulfigh-
ter package, which is available at http://epigenome.cbrc.jp/
bisulfighter.

Additional material

Additional file 1: Figure S1. Benchmark for DMR detection at varying
sequencing depth. For each DMR length, accuracy evaluated with 50%
reciprocal overlap is shown. Also shown are estimated values of
parameters in new emission functions.
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