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Abstract

Background: Transcriptional regulation of gene expression in eukaryotes is usually accomplished by cooperative
transcription factors (TFs). Computational identification of cooperative TF pairs has become a hot research topic and
many algorithms have been proposed in the literature. A typical algorithm for predicting cooperative TF pairs has two
steps. (Step 1) Define the targets of each TF under study. (Step 2) Design a measure for calculating the cooperativity of
a TF pair based on the targets of these two TFs. While different algorithms have distinct sophisticated cooperativity
measures, the targets of a TF are usually defined using ChIP-chip data. However, there is an inherent weakness in using
ChiP-chip data to define the targets of a TF. ChIP-chip analysis can only identify the binding targets of a TF but it
cannot distinguish the true regulatory from the binding but non-regulatory targets of a TF.

Results: This work is the first study which aims to investigate whether the performance of computational
identification of cooperative TF pairs could be improved by using a more biologically relevant way to define the
targets of a TF. For this purpose, we propose four simple algorithms, all of which consist of two steps. (Step 1)
Define the targets of a TF using (i) ChIP-chip data in the first algorithm, (i) TF binding data in the second
algorithm, (i) TF perturbation data in the third algorithm, and (iv) the intersection of TF binding and TF
perturbation data in the fourth algorithm. Compared with the first three algorithms, the fourth algorithm uses a
more biologically relevant way to define the targets of a TF. (Step 2) Measure the cooperativity of a TF pair by the
statistical significance of the overlap of the targets of these two TFs using the hypergeometric test. By adopting
four existing performance indices, we show that the fourth proposed algorithm (PA4) significantly out performs the
other three proposed algorithms. This suggests that the computational identification of cooperative TF pairs is
indeed improved when using a more biologically relevant way to define the targets of a TF. Strikingly, the
prediction results of our simple PA4 are more biologically meaningful than those of the 12 existing sophisticated
algorithms in the literature, all of which used ChlIP-chip data to define the targets of a TF. This suggests that
properly defining the targets of a TF may be more important than designing sophisticated cooperativity measures.
In addition, our PA4 has the power to predict several experimentally validated cooperative TF pairs, which have
not been successfully predicted by any existing algorithms in the literature.

Conclusions: This study shows that the performance of computationalidentification of cooperative TF pairs could
be improved by using a more biologically relevant way to define the targets of a TF. The main contribution of this
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study is not to propose another new algorithm but to provide a new thinking for the research of computational
identification of cooperative TF pairs. Researchers should put more effort on properly defining the targets of a TF (i.
e. Step 1) rather than totally focus on designing sophisticated cooperativity measures (i.e. Step 2). The lists of TF
target genes, the Matlab codes and the prediction results of the four proposed algorithms could be downloaded
from our companion website http://cosbi3.ee.ncku.edutw/TFI/

Background

In eukaryotes, cooperativity among several transcription
factors (TFs) is known to play an important role in tran-
scriptional regulation. A relatively small number of
cooperative TFs can set up very complex spatial and
temporal patterns of gene expression. Knowing coopera-
tive TFs is helpful for understanding the mechanisms of
transcriptional regulation. Therefore, computational
identification of cooperative TFs has become a hot
research topic in modern biological research.

Many algorithms have been developed to identify coop-
erative TF pairs in yeast by integrating multiple high-
throughput data sources such as gene expression data,
ChIP-chip data, protein-protein interaction data, promo-
ter sequence data, etc. [1-15]. The performance of an
algorithm varies under different evaluation criteria [16].
A typical algorithm for predicting cooperative TF pairs
has two steps. The first step is to define the targets of
each TF under study and the second step is to design a
measure for calculating the cooperativity of a TF pair
based on the targets of these two TFs. While different
algorithms propose distinct sophisticated cooperativity
measures, the targets of a TF are usually defined using
ChIP-chip data. However, there is an inherent weakness
in using ChIP-chip data to define the targets of a TF.
ChIP-chip analysis can only identify the binding targets
of a TF but it cannot distinguish the true regulatory from
the binding but non-regulatory targets of a TF [17].

This work is the first study which aims to investigate
whether the performance of computational identification
of cooperative TF pairs in yeast could be improved by
using a more biologically relevant way to define the tar-
gets of a TF.

Method

Data sources

Four data sources were used in this study. First, 6017
TF-gene binding pairs for 168 TFs were retrieved from
Harbison et al.’s ChIP-chip data with p-value less than
0.001 [2]. Each TF-gene binding pair was supported by
the TF binding evidence from the high-throughput gen-
ome-wide ChIP-chip experiments in a single publication
[2] showing that the TF binds to the promoter of the tar-
get gene. Second, 40761 TF-gene binding pairs for 170
TFs were retrieved from the TF binding data deposited in
the YEASTRACT database [18]. Each TF-gene binding

pair was supported by the TF binding evidence from the
detailed gene by gene band-shift, foot-printing experi-
ments or the high throughput genome-wide ChIP-chip
experiments in different publications showing that the
TF binds to the promoter of the target gene. Third,
165528 TF-gene regulation pairs for 294 TFs were
retrieved from the TF perturbation data deposited in the
YEASTRACT database [18]. Each TF-gene regulation
pair was supported by the TF regulation evidence from
the detailed gene by gene analysis or the genome-wide
expression analysis in different publications showing that
the perturbation (knockout or over-expression) of the
TF-encoding gene causes a significant change in the
expression of the target gene. Finally, we compiled 8609
TF-gene pairs for 151 TFs from the intersection of the
TF binding and TF perturbation data deposited in the
YEASTRACT database. Each TF-gene pair was supported
by both the TF binding and TF regulation evidence. All
the four data sources used in this study could be down-
loaded from our companion website.

The four proposed algorithms

The four proposed algorithms all consist of two steps
(see Figure 1). The first step is to define the targets of
each yeast TF under study. The targets of a TF are
defined using (i) ChIP-chip data in the first algorithm
(just like many existing algorithms in the literature),
(if) TF binding data in the second algorithm, (iii) TF per-
turbation data in the third algorithm, and (iv) the inter-
section of TF binding and TF perturbation data in the
fourth algorithm. Compared with the first three algo-
rithms, the fourth algorithm uses a more biologically
relevant way to define the targets of a TF since all the tar-
gets are bound and regulated by this TF supported by
both the TF binding and TF regulation evidence.

The second step of the proposed algorithms is to
design a measure for calculating the cooperativity of a TF
pair based on the targets of these two TFs. Since the bio-
logical role of a cooperative TF pair is to co-regulate the
expression of a set of genes, the number of the common
targets of a cooperative TF pair should be significantly
higher than that of a random TF pair. In other words, the
overlap of the targets of a cooperative TF pair should be
significantly higher than that of a random TF pair [19].
Therefore, the proposed algorithms measure the coop-
erativity of a TF pair based on the statistical significance
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Figure 1 An illustrative figure of the four proposed algorithms. The four proposed algorithms all consist of two steps. Step 1: Define the
targets of each TF of a TF pair. Step 2: Measure the cooperativity of a TF pair by the statistical significance of the overlap of the targets of these
two TFs using the hypergeometric test. The four proposed algorithms all have the same Step 2 but have different Step 1. In Step1, the four

proposed algorithms (denoted as PA1, PA2, PA3, and PA4) use different data sources to define the targets of a TF. PA1 uses ChIP-chip data, PA2

uses TF binding data, PA3 uses TF perturbation data, and PA4 uses the intersection of TF binding and TF perturbation data.

of the overlap of the targets of these two TFs. The statis-
tical significance is computed using the hypergeometric

test [20] as follows:
Ny G- N;
i Ny, —i

=

N,

min(Ny,N3)

(1)

p value = P(i > m) =

where G = 6575 is the number of genes in the yeast
genome, N; is the number of the targets of the first TF,
N, is the number of the targets of the second TF, m is
the number of common targets of these two TFs. In

summary, the smaller the p-value, the higher the chance
that a TF pair has cooperativity.

Note that in Step 1, the targets of 168, 170, 294, and
151 TFs can be defined for the first, second, third, and
fourth proposed algorithm, respectively (see Data sources
section for details). Therefore, in Step 2, the cooperativity
of 14028 (168*167/2), 14365 (170*169/2), 43071
(294#293/2), and 11325 (151*150/2) TF pairs can be com-
puted for the first, second, third, and fourth proposed
algorithm, respectively. For each algorithm, these TF
pairs were then sorted by their p-values, where the top
one TF pair has the smallest p-value and therefore is
the most statistically significant cooperative TF pair.
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For example, the output of the fourth algorithm is a
ranked list of 11325 TF pairs. The detailed descriptions
of the four proposed algorithms could be found in
Additional file 1.

Four performance comparison indices

We adopt four existing performance comparison indices
from the literature to evaluate the performance of an
algorithm in identifying cooperative TF pairs. These
four indices are introduced in the following subsections.
Performance index 1: The statistical significance of the
overlap with the benchmark set

Yang et al. [13] compiled a benchmark set of 27 known
cooperative TF pairs from the MIPS transcription com-
plex catalogues [21]. Then they computed the statistical
significance of the overlap of the set of the predicted
cooperative TF pairs (PCTFPs) from an algorithm with
the benchmark set to evaluate the performance of an
algorithm. The statistical significance (p-value) is calcu-
lated using the Fisher exact test. The larger the -log(p-
value), the greater the statistical significance. Therefore,
the larger the -log(p-value), the better the performance
of an algorithm.

Performance index 2: The similarity of protein-protein
interaction (PPI) partners between the two TFs of each
PCTFP

The similarity of PPI partners between two TFs may
suggest that they participate in the same regulatory
mechanism. This rationale has been used in previous
studies [15,16] to evaluate the biological plausibility of a
PCTEFP. The physical PPI data were downloaded from
the BioGRID database [22]. The PPI partners similarity
score of a TF pair, denoted as -log(p-value), is calculated
using Equation (1). Note that G = 6575 is the number of
genes in the yeast genome, N; is the number of proteins
which have physical PPI with the first TF, N, is the
number of proteins which have physical PPI with the
second TF, and m is the number of common PPI part-
ners of these two TFs. Here we use the average of the
PPI partners similarity scores of all PCTFPs from an
algorithm to evaluate the performance of an algorithm.
The larger the average, the better the performance of an
algorithm.

Performance index 3: The shortest path length of two TFs
in the physical PPl network

Aguilar and Oliva [23] observed that a cooperative TF
pair has a shorter path length in the physical PPI network
than random expectation. The physical PPI network is
constructed using the physical PPI data retrieved from
the BioGRID database [22]. Here we use the average of
the reciprocals of the shortest path lengths of all PCTFPs
from an algorithm to evaluate the performance of an
algorithm. The larger the average, the better the perfor-
mance of an algorithm.
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Performance index 4: The functional similarity of two TFs
Since a cooperative TF pair co-regulates the expression
of a set of genes, they should have similar functions.
Functional similarity has been used in several previous
studies [10,15,16] to evaluate the biological plausibility
of a PCTFP. The functional similarity score of a TF
pair, which is calculated based on their GO semantic
similarity, was retrieved from Yang et al.’s study [24].
Here we use the average of the functional similarity
scores of all PCTFPs from an algorithm to evaluate the
performance of an algorithm. The larger the average,
the better the performance of an algorithm.

Results and discussion

By adopting four existing performance comparison
indices from the literature, we have the following
discoveries.

The performance of computational identification of
cooperative TF pairs could be improved by using a more
biologically relevant way to define the targets of a TF

In this study, the four proposed algorithms (denoted as
PA1, PA2, PA3, and PA4) use different ways to define
the targets of a TF. The targets of a TF defined by PA1
and PA2 (using ChIP-chip data and TF binding data,
respectively) are bound but not necessarily are regulated
by this TF. The targets of a TF defined by PA3 (using
TF perturbation data) are regulated but not necessarily
are bound by this TF. The targets of a TF defined by
PA4 (using the intersection of the TF binding and TF
perturbation data) are bound and regulated by this TF.
Therefore, the targets of a TF defined by PA4 are more
biologically relevant than those defined by the other
three algorithms.

Here we compare the performance of the four pro-
posed algorithms using the four existing performance
indices in the literature. Figure 2 shows that PA4 out-
performs the other three algorithms in almost all the
indices and almost all the chosen numbers of the top
PCTEPs being reported. Our analyses suggest that using
a more biologically relevant way to define the targets of
a TF indeed helps identify cooperative TF pairs.

Performance comparison of the fourth proposed
algorithm (PA4) with 12 existing sophisticated algorithms
in the literature

Here we compare the performances of our PA4 and 12
existing algorithms [1-7,9-11,13,14] in the literature. The
differences between our PA4 and these 12 existing algo-
rithms are as follows. First, our PA4 integrates TF binding
and TF perturbation data but the 12 existing algorithms
all use ChIP-chip data to define the targets of a TF.
Second, the cooperativity measures proposed by these 12
existing algorithms are much more sophisticated than that
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Figure 2 Performance comparison of PA1, PA2, PA3 and PA4 using four existing performance indices. PAi means i-th proposed
algorithm. The x-axis is the number of the predicted cooperative TF pairs (PCTFPs) being reported. For example, 50 means the top 50 PCTFPs in
the ranked list of TF pairs generated by an algorithm. The y-axis is defined as follows. (a) The score of index 1 is the negative logarithm of the
statistical significance (p-value) of the overlap of the PCTFPs from an algorithm with the benchmark set. The larger the -log(p-value), the better
the performance of an algorithm. (b) The score of index 2 is the average of the PPI partners similarity scores of all PCTFPs from an algorithm.
The larger the average, the better the performance of an algorithm. (c) The score of index 3 is the average of the reciprocals of the shortest
path lengths in the physical PPI network of all PCTFPs from an algorithm. The larger the average, the better the performance of an algorithm.
(d) The score of index 4 is the average of the functional similarity scores of all PCTFPs from an algorithm. The larger the average, the better the
performance of an algorithm.
A

of our PA4. In order to conduct the performance compari-
son, we consider the top 50 TF pairs with the hypergeo-
metric test p-values less than 2 x 10™'° as the PCTFPs of
our PA4. Reporting the top 50 TF pairs seems reasonable
because the number of the PCTFPs of most existing algo-
rithms [1,3,5,6,8,9,15] falls between 20 and 60. For com-
pleteness of the comparison, we also consider the top
50 PCTEFPs from PA1, PA2 and PA3 as their predictions.
Figure 3 shows that PA4 is the best performing algorithm,
which has the smallest average rank, among the 16 com-
pared algorithms. Moreover, the performance of PA2, PA1
and PA3 ranks 2, 10, and 16, respectively, among the 16
compared algorithms. Note that the comparison is on the
PCTFPs but not on the algorithms themselves since differ-
ent algorithms cannot be compared fairly due to using dif-
ferent kinds of data sources. In summary, our finding
suggests that properly defining the targets of a TF may be

more important than designing sophisticated cooperativity
measures.

The fourth proposed algorithm (PA4) is robust against
different p-value thresholds for determining the PCTFPs
In the last subsection, our PA4 set 2 x 107'° as the
p-value threshold of the hypergeometric test and
reported 50 PCTFPs whose p-values are less than the
threshold. We then showed that the PCTFPs from our
PA4 are more biologically meaningful than those from
the 12 existing algorithms in the literature. To check the
robustness of our PA4 against different p-value thresholds,
here we evaluate the performance of our PA4 using three
other different p-value thresholds (10’25, 10%° and 10’10),
which reports 22, 33, 88 PCTEPs, respectively. Figure 4
shows that no matter which p-value threshold is used, our
PA4 always has a smaller average rank than do the 12
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Figure 3 Performance comparison of the four proposed algorithms and 12 existing algorithms in the literature. Performance
comparison of our PA1, PA2, PA3 and PA4 and 12 existing algorithms using four existing performance indices. The performance comparison
results using (a) index 1, (b) index 2, (c) index 3 and (d) index 4 are shown, where Rj means that the algorithm is ranked j among the 16
compared algorithms. For example, our PA4 is ranked first (R1) using the performance index 1 since our PA4 has the largest score calculated
using the performance index 1. (e) The average rank is used to give the overall performance of an algorithm under four different performance
indices. The average rank of an algorithm is the average of the ranks of an algorithm under four performance indices. For example, the average
rank of our PA4 is 1.75 = (1+4+1+1)/4 and the average rank of Harbison et al.s algorithm is 5.5 = (3+9+7+3)/4. The smaller the average rank, the
better the performance of an algorithm. It can be seen that our PA4 has the smallest average rank. Therefore, the overall performance of our
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existing algorithms in the literature. This suggests that our
PA4 is indeed robust against different p-value thresholds.

The fourth proposed algorithm (PA4) predicts nine
unique cooperative TF pairs

In this study, our PA4 reports 50 PCTFPs (see Addi-
tional file 2). Among them, nine pairs are unique
PCTEFPs, which have not been predicted by any existing
algorithms (see Table 1). Strikingly, four of the nine
unique pairs are experimentally validated cooperative TF
pairs. For the other five unique pairs, the two TFs of
each pair both participate in the same biological process,
suggesting that they may co-regulate genes involved in
that specific biological process.

Two PCTEFPs Ifh1-Sfpl and Ifh1-Rapl are noteworthy.
These two pairs are the top two most statistically signifi-
cant (ranked first and second) cooperative TF pairs pre-
dicted by our PA4 and they have not been predicted by
any existing algorithm. Remarkably, these two PCTFPs
have been experimentally validated in the literature. It is
known that Sfpl influences the nuclear localization of
Ifh1, which binds to ribosomal protein (RP) gene pro-
moters. The absence of Sfpl causes Ifhl to localize to

nucleolar regions, thus reducing RP gene transcription
[25]. In addition, the RP gene promoter is characterized
by upstream binding of the general TF Rapl followed by
the RP gene specific TF Ifhl via the forkhead-associated
domain of Fhll [26].

The fact that only our PA4 but no existing algorithms
can predict the four experimentally validated coopera-
tive TF pairs (Ifth1-Sfpl, Ith1-Rapl, Ifh1-Fhll, and Rapl-
Tupl) convincingly demonstrates the usefulness of our
PA4.

Conclusions

In this study, we investigated whether the performance
of computational identification of cooperative TF pairs
could be improved by using a more biologically relevant
way to define the targets of a TF. We developed a sim-
ple algorithm (i.e. the fourth proposed algorithm PA4)
which integrates TF binding data and TF perturbation
data to define the biologically plausible targets of a TF.
Our PA4 predicts nine unique PCTFPs, which have not
been predicted by any existing algorithms. Remarkably,
four of the nine unique pairs are experimentally vali-
dated cooperative TF pairs, convincingly demonstrating
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Figure 4 Robustness analysis of the fourth proposed algorithm (PA4). The average rank of our PA4 when using (a) 102, (b) 10%° and (c)
1079 as the p-value thresholds for determining the number of the reported predicted cooperative TF pairs (PCTFPs), which is (a) 22, (b) 33 and
(c) 88, respectively. It can be seen that the PCTFPs from our PA4 are always more biologically meaningful than those from the 12 existing
algorithms since our PA4 always has the smallest average rank no matter which p-value threshold is used. This suggests that our PA4 is robust
against different p-value thresholds.

the usefulness of our PA4. Moreover, by adopting four
existing performance comparison indices from the lit-
erature, we have two discoveries. First, the performance
of computational identification of cooperative TF pairs
is improved when integrating TF binding and TF pertur-
bation data instead of using ChIP-chip data alone, TF
binding data alone or TF perturbation data alone to
define the targets of a TF. This suggests that using a
more biologically relevant way to define the targets of a

TF indeed helps identify cooperative TF pairs. Second,
the cooperative TF pairs predicted by our simple PA4
are more biologically relevant than those predicted by
the 12 existing sophisticated algorithms. This suggests
that properly defining the targets of a TF may be more
important than designing sophisticated cooperativity
measures. In conclusion, our study shows that how to
define the targets of a TF in a more biologically relevant
way is critical for successful identification of cooperative

Table 1. Nine unique PCTFPs (among the 50 PCTFPs) which are predicted by the fourth proposed algorithm but not

by any existing algorithms

Rank PCTFP Experimental evidence The biological process in which both TFs are involved
1 Ifh1-Sfp1 Jorgensen et al. [25] Regulation of ribosomal protein gene transcription

2 Ifh1-Rap1 Wade et al. [26] Regulation of ribosomal protein gene transcription

16 Msn2-Ste12 Stress response

17 Msn2-Tecl Stress response

20 Ifh1-Fhi1 Schawalder et al. [27] Regulation of ribosomal protein gene transcription

30 Msn2-Pdr1 Stress response

42 Sok2-Ste12 Pseudohyphal growth

44 Rap1-Tup1 Roth [28] Chromatin-mediated transcription regulation

46 Msn2-Rap!1 Stress response

Bold-faced PCTFPs are experimentally validated cooperative TF pairs.
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TF pairs. Researchers should put more effort on prop-
erly defining the targets of a TF rather than totally focus
on designing sophisticated cooperativity measures.

Additional material

Additional file 1: The detailed descriptions of the four proposed
algorithms.

Additional file 2: The 50 PCTFPs from the fourth proposed
algorithm.
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