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Abstract

Background: During protein synthesis, the nascent peptide chain emerges from the ribosome through the ribosomal
exit tunnel. Biochemical interactions between the nascent peptide and the tunnel may stall the ribosome movement
and thus affect the expression level of the protein being synthesized. Earlier studies focused on one model organism (S.
cerevisiae), have suggested that certain amino acid sequences may be responsible for ribosome stalling; however, the
stalling effect at the individual amino acid level across many organisms has not yet been quantified.

Results: By analyzing multiple ribosome profiling datasets from different organisms (including prokaryotes and
eukaryotes), we report for the first time the organism-specific amino acids that significantly lead to ribosome stalling.
We show that the identity of the stalling amino acids vary across the tree of life. In agreement with previous studies, we
observed a remarkable stalling signal of proline and arginine in S. cerevisiae. In addition, our analysis supports the
conjecture that the stalling effect of positively charged amino acids is not universal and that in certain conditions,
negative charge may also induce ribosome stalling. Finally, we show that the beginning part of the tunnel tends to
undergo more interactions with the translated amino acids than other positions along the tunnel.

Conclusions: The reported results support the conjecture that the ribosomal exit tunnel interacts with various amino
acids and that the nature of these interactions varies among different organisms. Our findings should contribute
towards better understanding of transcript and proteomic evolution and translation elongation regulation.

Background
mRNAs translation is a fundamental intracellular process
which occurs in all living organisms. Translation elongation
is an iterative stage of translation in which the ribosome
scans the mRNA sequence and decodes it into a specific
protein by adding one amino acid at the time to the grow-
ing peptide chain. It has been suggested that the speed by
which ribosomes progress along the mRNA is affected by
different local features of the coding sequence. One deter-
minant of the translation elongation speed is the identity of
the codon at the P-site; it has been suggested that the
codon decoding rate is influenced by several factors related
to the P-site, including: the cellular concentration of the

paired tRNA [1-6]; the efficiency of the codon-anticodon
pairing which occurs non-optimally for wobble base pairing
[7-9] and the efficiency of incorporation of the decoded
amino acid into the polypeptide which is mainly poor in
the case of proline [10-12]. Other coding sequence features
thought to slow down ribosomes include: the folding
energy of the mRNA sequence downstream from the ribo-
somal P-site [13-16]; the identity of the tRNA at the A-site
[17]; and the charge of the amino acids in the exit tunnel
[16,18,19].
The Ribosomal Exit Tunnel (RET) is the site through

which nascent peptides leave the ribosome during trans-
lation. The non-uniform biochemical characteristics of
the tunnel allow it to play an important role in affecting
translation rates and protein folding rather than being a
passive conduit for the nascent polypeptide. First, the
overall electrostatic potential of the RET is negative and
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varies in magnitude along the tunnel [19-23]; thus, it
was suggested that a nascent peptide that contains
charged amino acids may undergo electrostatic interac-
tion with the exit tunnel [19]. Second, the diameter of
the tunnel varies between 10A0 and 20A0 [24-27]; thus,
the interaction between that nascent peptide and the
exit tunnel may also be dictated by geometrical con-
straints. Although the expansion in diameter enables the
partial folding of the translated peptide [28], the
cramped dimensions of the tunnel prohibit a folding of
whole protein domains and only tertiary/secondary
structures of small segments are allowed [29].
Evidences of ribosome pausing mediated by nascent

peptide have been manifested in several studies [30-36].
These studies, however, either conducted a small scale
experiment or focused on one organism only.
The development of the ribosome profiling technique

has significantly broaden the comprehension of in vivo
translation by enabling the detection of the momentary
positions of ribosomes along the transcripts at nucleo-
tide resolution [37]. During the past few years, the high
throughput quantitative data obtained by ribosome pro-
filing experiments has been widely used to study gene
translation [10,16,18,38-51].
Specifically, ribosome profiling data was used to show

that ribosome stalling is induced in response to the pre-
sence of certain amino acid [10,16,18]. Specifically, it has
been suggested that positively charged amino acids are
implicated in transient ribosomal pauses by interacting
with the negatively charged exit tunnel [16,18,19]. A more
recent study of Artieri and Fraiser [10], on the other hand,
emphasized the possibility that the incorporation of
proline into the nascent peptide has the major effect on
ribosome stalling.
In order to investigate the organism-specific influence

of each individual amino acid on substantial ribosome
stalling, we performed a large scale analysis based on
multiple ribosome profiling datasets of 9 organisms
including eukaryotes (H.sapiens, C.elegans, S.cerevisiae,
S.pombe, A.thaliana, P.falciparum, D.melanogaster,
M.musculus) and bacteria (C.crescentus).

Results
Ribosome profiling experiments include the following
major stages (Figure 1A): cells are treated with cyclohexi-
mide (for example) to arrest translating ribosomes; then,
RNA fragments protected by ribosomes from RNases are
isolated and processed for high-throughput sequencing,
resulting in reads of ribosomes protected footprints. As
slowly decoded codons are covered by ribosomes for a lar-
ger amount of time, they tend to create higher amount of
protected fragments, in comparison to faster decoded
codons on the same transcript. Finally, using a computa-
tional method, the obtained sequenced footprints are

mapped to the genome of the analyzed organism creating
for each gene a ribosomal footprints read count profile.
This profile will be referred here as a RD profile for
Ribosomal Density.
In this work, we aim at understanding whether extreme

ribosomal stalling occurs at a specific codon is affected by
an interaction between the RET and the amino acids
encoded by the codons upstream from the pause
(Figure 1B). To this end, we use ribo-seq and mRNA-seq
data to generate normalized profiles of RD/mRNA and
extract peak positions in each normalized profile (Figure
1C). These positions presumably represent the positions
along the mRNA where ribosomes have been significantly
stalled (see details in the Methods). In the next step, we
define for each peak the corresponding Upstream Stalling
Region (USR) which is the sequence of amino acids
encoded by the codons upstream from the peak. These
amino acids occupy the RET while the codon at the peak
position is being translated. Specifically, since the length of
peptide required to fill the tunnel is approximately 31
amino acids [52], we have focused on the 31 amino acids
before each peak (Figure 1D).
The folding of the nascent peptide inside the exit tunnel

[28] and additional factors may alter the distance of a spe-
cific amino acid in the tunnel from the P-site during the
translation process [21,53,54]; thus, we have decided to
use measures that are based on the enrichment of different
amino acids in the USR instead of constraining the amino
acids to appear at a specific position relative to the P-site.

The organism-specific stalling effect of each amino acid
At the first step, we determined the enrichment of each
amino acid in the USRs based on the following test: we
calculated the probability to observe the amino acid in the
real USRs; then, we calculated the probability to observe
the amino acid in randomized ribosome profiling with
similar properties as the original data (see details in the
Methods section: Quantifying the enrichment of each
amino acid in the USRs). Finally, based on the real and
randomized ribosomal profiling data, we calculated a p-
value which determines the extent to which each amino
acid tends to occupy the RET while a codon at a highly
stalled position is being translated (Figure 2A). For the
bacteria, we performed one additional test (Figure 2B) to
show that the reported results cannot be explained by the
fact that hybridization between the prokaryotic ribosomal
RNA and sequences that resemble the Shine-Dalgarno
(SD) sequence can also cause pauses [50,55]; this phenom-
enon was controlled by filtering peaks that appear down-
stream from such sequences (see details in the Methods
section: Controlling for translational pausing driven by
Shine-Dalgarno-like sequences).
For each dataset, we classified each amino acid in one

of three possible classifications based on the output of
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the randomized USR test: If the test turned out to be
significant, the amino acid was classified as ‘overrepre-
sented’, meaning that the analysis supports the hypoth-
esis that this amino acid tends to appear upstream of
peaks more than expected by the null model (this may
suggest that the amino acid contributes to the ribosomal
stalling via its interaction with the tunnel). If the test
turned out to be significant in the opposite direction
(i.e., the probability of observing the amino acid in USRs
was significantly smaller than in random regions), the
amino acid was classified as ‘underrepresented’. In case
the test turned out to be insignificant at the 0.05 level,
the amino acid was classified as ‘not significant’. The

classification of the 20 amino acids for each of the ana-
lyzed datasets appears in Figure 3.
As can be seen in Figure 3, our analysis suggests that the

amino acids which significantly tend to occupy the exit
tunnel when ribosomes stall, are organism (or condition)-
specific.
Two remarkable stalling signals were produced by

Proline (P) and Arginine (R) in S. cerevisiae, a finding
that is well supported by the study of Artieri and Fraser
[10]. In addition, our results suggest that Proline has also
a stalling effect in more organisms including S. pombe,
D. melanogaster, H. sapiens (G1 phase), P. falciparum
(Late trophozite) and C. crescentus (PYE). Another new

Figure 1 General description of the approach described in the study. (A) The major steps of the ribosomal profiling approach: 1) Cells are
treated with cycloheximide, for example, to arrest translation; 2) Ribosomes are fixed and ribosome-protected RNA fragments are recovered; 3)
After processing and reverse-transcription, these are sequenced, mapped and used to derive a ribosomal density profile. (B) An illustration of the
ribosome and the exit tunnel during translation elongation. The sequence of codons upstream from the ribosomal A-site (shaded in gray)
represents the amino acid sequence that occupies the exit tunnel while the codon at the P-site is being translated (depicted by pink circles). (C)
The general steps of the approach described in this study: Ribo-seq and mRNA-seq profiles are normalized by the average gene coverage; new
profiles are generated based on the ratio between ribo-seq reads and mRNA reads; normalized profiles with sparse coverage are filtered; peak
positions in RD/mRNA are extracted; the codons USR of each peak is converted into amino acid sequence (denoted as AA) and each amino acid
is analyzed based on its frequency in all USRs (see specific details in the Methods). (D) An example of ribo-seq, mRNA-seq and RD/mRNA profiles
obtained from gene YAL012W in S. cerevisiae. The profiles were generated based on all S. cerevisiae datasets (see the Methods section: Merging
all datasets of the organism into one aggregate). Positions along each profile represent the location of the ribosomal A-site. The first 20 codons
(marked by a dashed brown frame) are excluded from the analysis (details in the Methods section: Data filtering). The 31 codons upstream from
the peak are the Upstream Stalling Region of codons corresponding to the amino acid sequence in the exit tunnel.
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Figure 2 Tests for identifying stalling amino acids. The position of peak in the RD/mRNA profile is marked by a blue arrow. The USR
corresponding to the peak is the upstream sequence of 31 codons which codes for the 31 amino acid that occupy the tunnel when
ribosomes stall at the peak position. (A) In the first test, the frequency of each amino acid upstream of real peak positions is compared
with its frequency in the 31 codons upstream of random positions. The number of randomly drawn positions per profile is equal to the
number of real peaks in the original profile (see details in the Methods). (B) The additional test is performed for bacteria. In case a
sequence that resembles the SD sequence was observed 8-11 bases upstream from the peak position, the peak was excluded from the
analysis.

Figure 3 Dataset-specific classification of the 20 amino acids. Each amino acid was classified as significantly stalling (red), significantly
non-stalling (green) or insignificant (black) according to the frequency of its codons in the USRs. All analyzed datasets are listed to the left. A
color bar with the different significance levels is provided to the right. Stalling amino acids that passed FDR at the 0.05 level are marked with
asterisk and those that passed FDR at the 0.1 level are marked by black dots. Thick horizontal white lines are plotted to separate the different
organisms which are ordered in accordance with their evolutionary tree based on iTOL [76,77].
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prominent stalling effect was observed for Lysine (K) in
all datasets of C.elegnas.
The negatively charged glutamic acid (E) was not found

to be significantly stalling in any eukaryotic dataset. More-
over, it exhibited a significant signal of non-stalling in 6 of
the 8 eukaryotes. Aspartic acid (D), the second negatively
charged amino acid exhibits a stalling signal in specific
datasets from 3 organisms (S. cerevisiae, D. melanogaster
and H. sapiens).

Identifying the regions in the exit tunnel that tend to
interact with the growing peptide
Since the biochemical, geometrical and electrostatic prop-
erties of the tunnel varies along its length, specific regions
in the tunnel may have higher potential to induce interac-
tions with certain amino acids. In order to identify such
regions, we calculated the probability for each amino acid
to occupy a specific position along the length of the exit
tunnel when the ribosome stalls (i.e. upstream from peak
positions). The resultant position-specific probabilities for
each organism are presented in Figure 4.
As can be seen, for most of the amino acids, the posi-

tions with the most extreme probabilities tend to be
concentrated in the part of the tunnel that is close to
the P-site (~5 amino acids in length). This might sug-
gest that in most cases this part of the tunnel tends to
undergo more interactions with the translated amino
acids than other positions in the tunnel. It can also be
seen that proline, tends to specifically appear in the
ribosomal P-site in 6 of the 9 organism, in line with pre-
vious studies [10-12].

Charged amino acids do not contribute to ribosome
stalling in all organisms
Earlier studies have suggested that charged amino acids
tend to interact with the exit tunnel and thus, contri-
bute to ribosomal stalling [16,18,19,56]. Our analysis
demonstrates that indeed in a few cases, the USRs tend
to be enriched with charged amino acids (Figure 5). In
order to understand whether the factor for the stalling
is specifically the charge or other property of the amino
acid, we tested the composite effect of charged amino
acids on ribosome stalling. Similarly to the tests
described in Figure 2, the frequency of occurrence of
the charged amino acids was compared between real
and randomized USRs (See details in the Methods
section : Quantifying the enrichment of charged amino
acids in USRs).
As can be seen in Figure 5, enrichment of positively

charged amino acids among USRs was observed in 11
datasets from 3 eukaryotic organisms. Enrichment of nega-
tively charged amino acids among USRs was less common
and was observed only in 4 datasets from 3 organisms. On
the contrary, in 5 organisms the probability to observe

negatively charged amino acid before peaks was signifi-
cantly higher in random (Figure 5C); this may suggest that
negatively charged amino acids can prevent the halting of
the ribosome. We found no cases of greater enrichment in
random for the positively charged amino acids.

Discussion
Our analysis identified nascent single amino acids that
with high confidence contribute to ribosome stalling. The
approach taken here to detect these amino acids is based
on strict definitions and includes important controls on
the analyzed genes such as control for amino acids bias
and for possible experimental/protocol biases. In addition,
we performed for the first time multi-organismal study of
this topic which includes the analysis of both prokaryotes
and eukaryotes.
The statistical tests performed here are based on the

enrichment of amino acids upstream from the ribosomal
P-site, thus, features such as mRNA folding strength
which tends to slow ribosomes down when it occurs
downstream from the P-site cannot trivially explain our
results. In addition, previous studies (e.g. [18,39]) have
suggested that the effect of rare codons on ribosome
stalling tends to be less extreme than the effect of the
interaction between the ribosomal exit tunnel and the
nascent chain; thus, we also believe that the reported
results cannot be trivially explained by the use of rare/
non-efficient codons (see Additional file 1 for analysis
supporting this point).
It is important to mention that currently the biases

arise from the ribosome profiling approach and the
effect of different protocols are not completely under-
stood [57,58]. Much effort was spent here to consider
these possible biases by 1) excluding from the analysis
the first 20 codons which are known to be biased
[37,44,57]; 2) filter low-coverage profiles; 3) normalizing
each profile by its mean coverage to account for cover-
age differences [10] 4) normalizing ribo-seq data by
mRNA-seq data to account for shared biases between
the two fractions [10] 5) analyzing many datasets corre-
sponding to a few different experimental conditions; 6)
analyzing and comparing nine organisms (including
eukaryotes and prokaryotes); 7) excluding pauses which
might have been caused by SD sequences that hybridize
with the prokaryotic ribosomal RNA [50,55]. Taken
together, the reported results are based on a very con-
servative approach.
One of the major conclusions is related to the rela-

tion between positively charged amino acids and ribo-
some stalling. Previous studies have suggested that in
S. cerevisiae positively charged amino acids play a role
in ribosome stalling. Our analysis supports this conjec-
ture in S. cerevisiae and also in specific datasets from
D. melanogaster and P. falciparum. Therefore, our
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study suggests that the relation between amino acids
charge and ribosomal halting is not universal.
In addition, our analysis suggests that not only positively

charged amino acids interact with the RET. Specifically,
we show that negatively charged amino acids tend to halt
the ribosome via interactions with the exit tunnel in S. cer-
evisiae (Ingolia et al. 2009, starved condition growth [37]),

D. melanogaster (Dunn et al. 2013, Embryos cushion [59])
and H. sapiens (Stumpf et al. 2013, G1 and S phase of
HeLa cells [60]). Since the RET is negatively charged
[19-21] it makes sense that it may undergo interactions
with both positively and negatively charged amino acids.
Furthermore, interestingly our analysis suggests that in
some cases the negatively charged amino acids may

Figure 4 The distribution of amino acids along the tunnel when ribosomes stall. The position-specific probabilities were calculated for the
31 positions in the tunnel (based on the USRs). Results are presented per organism based on an aggregate that merges all analyzed datasets of
the organism (see details in the Methods section: Merging all datasets of the organism into one aggregate). The probabilities were standardized to
have a mean of zero per amino acid. We defined a square to be red/green if the probability to observe the amino acid in the corresponding
position is significantly higher/lower than other positions in the tunnel.
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prevent stalling; this may be related to charge cancellation
with possible positively charged amino acids that co-
appear in proximity in the exit tunnel.
Although we discuss the stalling effect of each amino

acid on ribosome stalling, we do not claim that the stal-
ling is manipulated by a specific mechanism. In fact, the
explanation regarding the exact type of interaction
between these amino acids and the ribosome and the

reason they differ across the tree of life is an open ques-
tion for future studies.
The reported results support the conjecture that the

amino acids composition of the nascent peptide affects
the ribosomal translation speed and might even cause
ribosomal arrest. Thus, this finding suggests a complex
interaction between the protein co-translational folding,
protein amino acid content and ribosomal elongation

Figure 5 Enrichment of charged amino acids in USRs. The probability to observe a charged amino acid in the real USRs is compared to the
probability to observe it before random peak positions (details in the Methods section: Quantifying the enrichment of charged amino acids in
USRs). The probabilities in random are average values over all randomizations. Standard deviations and p-values are also presented. (A) The
probability to observe a positively charged amino acid in real and random USRs for the 11 cases that exhibited a significant p-value (2 datasets
of P. falciparum; 8 datasets of S. cerevisiae; and one of D. melanogaster). (B) The probability to observe a negatively charged amino acid in real
and random USRs for the 4 cases that exhibited a significant p-value (2 datasets of H. sapiens, one datasets of S. cerevisiae and one datasets of D.
melanogaster) (C) The probability to observe a negatively charged amino acid in real and random USRs for the 9 cases where the probability was
significantly higher in random than in the real USRs (4 datasets of P. falciparum; one dataset of A. thaliana, one dataset of S. pombe; 2 datasets of
S. cerevisiae and one of C. elegans).
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speed: the translated amino acids affect translation
speed which may affect protein folding. Thus, we believe
that there is a co-evolution among these variables.
The fact that different stalling amino acids were

reported for the different analyzed organisms may suggest
that the biochemical properties of the exit tunnel vary
along the tree of life and/or in different conditions [61-64].
This finding also provides important insights about
heterologous gene expression: the expression of the same
protein in different organisms may affect its translation
rate simply due to the different nature of the interactions
between the protein amino acids and the ribosomal exit
tunnels in new organisms. This fact can explain why the
topic of heterologous gene expression is often very chal-
lenging and why synonymous manipulation on the protein
alone is not always sufficient for solving problems in this
field.
Finally, as a future research it would be interesting to

generalize the results reported here by estimating the
effect of short peptides and sets of amino acids (not neces-
sarily neighbor amino acids) in the RET on ribosomal halt-
ing. For example, since stalling peptides interfere with
translation, they are expected to be selected against to
improve translational efficiency. Thus, it would be inter-
esting to examine the relation between the stalling effect
of these peptides and their representation in the proteome.
However, this mission is statistically challenging due to the
exponential increase in the number of sets of amino acids
compositions with more than one amino acid.

Conclusions
In this work, we performed a multiple ribosome profil-
ing datasets analysis to understand the effect of different
amino acid on ribosome stalling. The reported results
support a few conjectures: various amino acids interact
with the ribosomal exit tunnel; the nature of these inter-
actions is organism/condition specific and the nascent
translated peptide tends to have more interactions with
the beginning of the exit tunnel (close to the p-site).

Methods
Coding Sequences Data
Coding sequences of all analyzed organisms were retrieved
from the UCSC genome browser (http://genome-euro.
ucsc.edu).

Ribo-seq and mRNA-seq data
Ribo-seq and mRNA-seq data used in this study are based
on the following experiments: Ingolia et al. 2009 [37], Brar
et al. 2012 [46] and Gerashchenko et al. 2012 [43] for
S. cerevisiae; Subtelny et al. 2014 [65] for S. pombe; Stadler
and Fire 2011 [66] and Stadler et al. 2012 [67] for
C. elegans; Ingolia et al. 2011 [40] for M. musculus; Stumpf
et al. 2013 [60] for H. sapiens; Dunn et al. 2013 [59] for

D. melanogaster; Caro et al. 2014 [68] for P. falciparum;
Liu et al. 2013 [69] for A. thaliana and Schrader et al. 2014
[70] for C. crescentus. Ribosomal footprints reads of each
experiment have been uniquely mapped to the correspond-
ing genome by Michel et al. 2014 [71] and were retrieved
from the GWIPS-viz database (http://gwips.ucc.ie).

Mapping ribosomal footprints to genomic positions
The specific genomic position assigned to each read repre-
sents the location of the ribosomal A-site on the mRNA.
In GWIPS-viz, the genomic coordinate of each read has
been determined differently for eukaryotes and prokar-
yotes. For the eukaryotic fragments, in which the 5′ end of
the footprint is sufficient to carry the positional informa-
tion [37,40], an off-set of 15 nucleotides from the 5’ end of
the fragment was used. Prokaryotic fragments, in contrast,
varied between 25 and 40 nucleotides in length, mostly as
a result of the specificity of micrococcal nuclease and thus,
a weighted centered approach implemented by Oh et al.,
2011 [47] was used to indicate the putative location of the
ribosomal A-site. Specifically, 12 nucleotides were
trimmed from each end of the prokaryotic fragment and
the remaining residues were given a score of 1/N, where N
equals the number of positions leftover after discarding
the 5’ and 3’ ends, and blurring the signal across the
central residues.

Data filtering
The density of ribosome footprints is significantly elevated
in the beginning of the gene due to a combination of bio-
logical phenomena and biases [37,40,44,72]. Thus, the first
20 codons were excluded from all aspects of the analysis
described in this study. In addition, to account for biases
related to sparse coverage, genes’ profiles with fewer than
40 percent non-zero read counts were further filtered.

RD peaks definition
While ribosome profiling data is given at nucleotide reso-
lution, our analysis is based on codons. Thus, we averaged
the read counts at each three bases corresponding to
codons triplets to get the density profile at codon resolu-
tion. Then, in order to define peak positions in a given
profile, we calculated the average read count (excluding
zeros and the first 20 codons) and consider positions that
exceed the average by 4 standard deviations as peaks. This
definition was chosen empirically by ensuring that the
total USRs in a protein sequence will cover at the most
20 percent of its length (otherwise it is not possible to ran-
domize these sequences).

Accounting for biases in mRNA-seq data and coverage
differences
Theoretically, mRNA-seq read counts along a specific
transcript should be uniformly distributed. In practice,
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due to various biases, this is not the case and the read
counts obtained by mRNA-seq differ along the transcript
(yet with small deviation from the average read count of
the transcript relatively to ribo-seq read counts).
Recently Artieri and Fraser [10], established a robust

methodology to account for such biases which includes
the normalization of ribo-seq data by mRNA-seq data.
Similarly to their approach, we first scaled each profile
(ribo and mRNA) by the gene coverage and then, calcu-
lated the RD/mRNA ratio for each codon.
We compared the results obtained by the normalized

data (i.e. the RD/mRNA ratio) with those obtained by the
RD data without the normalization. The amino acids clas-
sifications based on the non-normalized data (Additional
File 2), clearly produces more false signals compared to
those obtained by the normalized data (Figure 3).

The robustness of the reported results to a stricter
threshold of coverage data
A general problem in large scale analyses is finding a work
point where the signal to noise ratio is optimal. Specifi-
cally, in the case of ribosome profiling data, there is a
tradeoff between a high-coverage demand (which is neces-
sary for understanding the global behavior across the tran-
script) and a large number of genes (which strengths the
statistical power of the reported signal). In our case, we
analyzed only genes with at least 40% non-zeros read
counts (Methods). In order to benchmark this definition,
we compared the results obtained by this definition against
a stricter one (for example a threshold of 60% non-zero
read counts in each profile). We observed no cases where
amino acid changed the direction of significance, demon-
strating the robustness of the reported results. The classi-
fied amino acids for the stricter threshold are presented in
Additional File 3.

The effect of rare codons on the reported results
In order to show that the reported results cannot be trivi-
ally explained by the use of rare codons, we calculated
Spearman’s rank correlation coefficient between the prob-
ability that each codon occupies the P-site at peak posi-
tions and its corresponding tRNA adaptation index (tAI).
The tAI is a widely used measure of the adaptation of
codons to the tRNA pool of the organism [2], thus, it pro-
vides an information regarding the nominal translation
rate of codons. The tRNA gene copy numbers used for the
tAI calculation were retrieved from the Genomic tRNA
database [73] (http://gtrnadb.ucsc.edu). The correlations
for each of the nine analyzed organisms are presented in
Additional File 1.

Merging all datasets of the organism into one aggregate
An aggregate that is based on all analyzed datasets of
the organism was generated in two steps: First, to cancel

the effect of different coverage between datasets, we sum
the read counts over all profiles to get the total number of
read counts in the experiment; then, we normalized the
read counts in each dataset by its total number of reads.
Second, we averaged the normalized profiles of each gene
to get the final aggregate. This was done for both, the
ribo-seq and the mRNA-seq data. Finally, the normaliza-
tion by gene coverage and mRNA-seq discussed in the
previous section was performed on the aggregate dataset.
Aggregate datasets were used to generate Figure 1D, 5 and
Additional File 1.

Controlling for translational pausing driven by Shine-
Dalgarno-like sequences
It is known that in bacteria hexanucleotide sequences that
resemble Shine-Dalgarno (SD) features within coding
sequences can cause translational pausing due to hybridiza-
tion between the mRNA and the 16S ribosomal RNA of the
ribosome [50]. We have defined a SD sequence as a hexanu-
cleotide sequence which contains up to one substitution
relative to the canonical SD (GGAGGU). Specifically, the
optimal spacing between the 3’ end of the anti-SD sequence
and the ribosomal A-site is 8-11 nucleotides [74]. Thus, we
have excluded peaks that contain a SD sequence 8, 9, or 11
nucleotides upstream from the peak position.

Quantifying the enrichment of charged amino acids in
USRs
In order to understand whether positively charged amino
acids (Lysine, arginine and histidine) tend to stall the ribo-
some via interaction with the RET, we quantified their ten-
dency to appear before RD peaks (i.e., in USRs). Traversing
all peaks in all genes, we gave each peak a binary score: +1,
if at least one positively charged amino acid (any of the
three) appears in the USR of the peak and 0 if none of the
three is observed. Finally, we summed up all peaks to get
the total score (statistics) of the positively charged amino
acids for the entire USRs (scorepos AA,USRs); then, these
value were normalized by the number of peaks to get the
empirical probability. In order to quantify the significance
of the score, we generated a null model by randomly draw
the positions of the peaks maintaining the number of
peaks in each gene. Random USRs are equivalently the 31
amino acids sequences upstream from each random peak
position. The score of the positively charged amino acids
(scorepos AA,random) was calculated based on the random
peaks. The process was repeated 1000 times.
The empirical p-value that determines the extent to

which the frequency of occurrence of positively charged
amino acids is higher in real USRs than in random was
calculated by:

ppos AA,USRs =
number of times(scoreposAA ,random ≥ scoreposAA ,USRs)

1000
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ppos AA,USRs < 0.05 indicates a significant enrichment of
positively charged amino acids in USRs.
Similarly, we defined a p-value for the enrichment of

negatively charged amino acids (Glutamate or aspartic
acid) in USRs. A score of +1 was given to a peak if at
least one negatively charged amino acid (any of the two)
appears in the USR of the peak. The empirical p-value
was calculated by:

pneg AA,USRs =
number of times(scorenegAA ,random ≥ scorenegAA,USRs)

1000

For each type of charge, the scores do not change if both
positive/negative charge appear in the USR (e.g., if we per-
form the test for the negatively charged amino acid, we
will give a score of +1 to every USR which included any
negatively charged amino acid even if a positively charged
amino acid also appears). Allowing both types of charge is
based on the following rational: First, the statistical power
of the test is higher (since we do not omit USRs). Second,
we believe that the interactions between positive or nega-
tive amino acid and the exit tunnel occur is certain region
of the exit tunnel; since these regions may change in dif-
ferent conditions/organisms or during the translation of a
certain mRNA, a positively/negatively charged amino acid
may affect the ribosomal movement even if there is an
additional positively/negatively charged amino acid in the
USR. Finally, this definition is more conservative since the
calculated p-value might be higher (less significant) in
cases of charge cancellation (i.e., when the positive and
negative charge in the USR cancel each other effect).

Quantifying the enrichment of each amino acid in the USRs
Similarly to the approach described in the previous para-
graph, we have quantified the tendency of each single
amino acid to stall the ribosome based on its occurrence
in the USRs. For each amino acid, we traverse all peaks in
all genes and assign each peak a binary score: +1 if the
amino acid in question appears in the USR corresponding
to the peak and 0 if it is not. Finally, we sum over all peaks
to get scoreAA(i),USRs, the total score of the amino acid for
the entire USRs of the proteome. For the null model we
randomly draw the positions of the peaks, while maintain-
ing the number of peaks in each profile to be identical to
the actual profile, and calculate scoreAA(i),random to each
amino acid. The process was repeated 1000 times.
The p-value for the i-th amino acid is defined by:

pAA(i),USRs =
number of times (scoreAA(i),random ≥ scoreAA(i),USRs)

1000

pAA(i),USRs < 0.05 indicates a significant enrichment of
the i-th amino acid in the USRs. To control the False
Discovery Rate (FDR), we performed a multiple testing
correction on the resultant p-values (based on the
Benjamini-Hochberg procedure [75]).

Additional material

Additional File 1: The correlation between tAI and P-site occupation
probability at peak positions. The results are presented per organism
based on an aggregate that merges all analyzed datasets of the
organism (see details in the Methods section: Merging all datasets of the
organism into one aggregate). The probability at the x-axis represents the
probability that each of the 61 sense codons occupies the P-site at peak
positions. Spearman’s rank correlation coefficient (rho) and a
corresponding p-value (p) are to the upper right hand corner of each
figure.

Additional File 2: Amino acids classifications based on ribo-seq data
only. The figure is based on ribo-seq profiles which do not include the
normalization by mRNA-seq data. Each amino acid was classified as
significantly stalling (red), significantly non-stalling (green) or insignificant
(black) according to the frequency of its codons in the USRs. Stalling
amino acids that passed FDR at the 0.05 level are marked with asterisk
and those that passed FDR at the 0.1 level are marked by black dots. All
analyzed datasets are listed to the left. Thick horizontal white lines are
plotted to separate the different organisms. A color bar with the different
significance levels is provided to the right.

Additional File 3: The results of a stricter threshold for the sparse
data filtering. The figure is based on RD/mRNA profiles with at least
60% non-zero read counts (see details in the Methods section: The
robustness of the reported results to a stricter threshold of coverage data).
Each amino acid was classified as significantly stalling (red), significantly
non-stalling (green) or insignificant (black) according to the frequency of
its codons in the USRs. Stalling amino acids that passed FDR at the 0.05
level are marked with asterisk and those that passed FDR at the 0.1 level
are marked by black dots. All analyzed datasets are listed to the left.
Thick horizontal white lines are plotted to separate the different
organisms. A color bar with the different significance levels is provided
to the right.

Abbreviations
RET: Ribosomal Exit Tunnel; RD: Ribosomal Density; USR: Upstream Stalling
Region; AA: Amino Acid; SD: Shine-Dalgarno; FDR: False Discovery Rate; tAI:
tRNA Adaptation Index.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Conceived and designed the experiments: RS TT. Analyzed the data: RS TT.
Wrote the paper: RS TT.

Acknowledgements
This study was supported in part by a fellowship from the Edmond J. Safra
Center for Bioinformatics at Tel-Aviv University.

Declarations
The publication costs were funded by Tel Aviv University resources.
This article has been published as part of BMC Genomics Volume 16
Supplement 10, 2015: Proceedings of the 13th Annual Research in
Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics: Genomics. The full contents of the supplement are
available online at http://www.biomedcentral.com/bmcgenomics/
supplements/16/S10.

Authors’ details
1Department of Biomedical Engineering, Tel Aviv University (TAU), Tel Aviv,
Israel. 2The Sagol School of Neuroscience, Tel-Aviv University (TAU), Tel-Aviv,
Israel.

Published: 2 October 2015

Sabi and Tuller BMC Genomics 2015, 16(Suppl 10):S5
http://www.biomedcentral.com/1471-2164/16/S10/S5

Page 10 of 12

http://www.biomedcentral.com/content/supplementary/1471-2164-16-S10-S5-S1.png
http://www.biomedcentral.com/content/supplementary/1471-2164-16-S10-S5-S2.png
http://www.biomedcentral.com/content/supplementary/1471-2164-16-S10-S5-S3.png
http://www.biomedcentral.com/bmcgenomics/supplements/16/S10
http://www.biomedcentral.com/bmcgenomics/supplements/16/S10


References
1. Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T: Codon usage and

tRNA genes in eukaryotes: correlation of codon usage diversity with
translation efficiency and with CG-dinucleotide usage as assessed by
multivariate analysis. Journal of molecular evolution 2001, 53(4-5):290-298.

2. dos Reis M, Savva R, Wernisch L: Solving the riddle of codon usage
preferences: a test for translational selection. Nucleic acids research 2004,
32(17):5036-5044.

3. Gustafsson C, Govindarajan S, Minshull J: Codon bias and heterologous
protein expression. Trends in biotechnology 2004, 22(7):346-353.

4. Sørensen MA, Kurland C, Pedersen S: Codon usage determines translation
rate in Escherichia coli. Journal of molecular biology 1989, 207(2):365-377.

5. Varenne S, Buc J, Lloubes R, Lazdunski C: Translation is a non-uniform
process: effect of tRNA availability on the rate of elongation of nascent
polypeptide chains. Journal of molecular biology 1984, 180(3):549-576.

6. Dana A, Tuller T: The effect of tRNA levels on decoding times of mRNA
codons. Nucleic acids research 2014, 42(14):9171-9181.

7. Kato M, Nishikawa K, Uritani M, Miyazaki M, Takemura S: The difference in
the type of codon-anticodon base pairing at the ribosomal P-site is one
of the determinants of the translational rate. Journal of biochemistry 1990,
107(2):242-247.

8. Thomas LK, Dix DB, Thompson RC: Codon choice and gene expression:
synonymous codons differ in their ability to direct aminoacylated-transfer
RNA binding to ribosomes in vitro. Proceedings of the National Academy of
Sciences 1988, 85(12):4242-4246.

9. Sabi R, Tuller T: Modelling the Efficiency of Codon-tRNA Interactions
Based on Codon Usage Bias. DNA Research 2014, 21(5):511-526.

10. Artieri CG, Fraser HB: Accounting for biases in riboprofiling data indicates
a major role for proline in stalling translation. Genome research 2014, gr.
175893.175114.

11. Pavlov MY, Watts RE, Tan Z, Cornish VW, Ehrenberg M, Forster AC: Slow
peptide bond formation by proline and other N-alkylamino acids in
translation. Proceedings of the National Academy of Sciences 2009,
106(1):50-54.

12. Muto H, Ito K: Peptidyl-prolyl-tRNA at the ribosomal P-site reacts poorly
with puromycin. Biochemical and biophysical research communications 2008,
366(4):1043-1047.

13. Tuller T, Waldman YY, Kupiec M, Ruppin E: Translation efficiency is
determined by both codon bias and folding energy. Proceedings of the
National Academy of Sciences 2010, 107(8):3645-3650.

14. Nackley A, Shabalina S, Tchivileva I, Satterfield K, Korchynskyi O, Makarov S,
Maixner W, Diatchenko L: Human catechol-O-methyltransferase
haplotypes modulate protein expression by altering mRNA secondary
structure. Science 2006, 314(5807):1930-1933.

15. Hall MN, Gabay J, Débarbouillé M, Schwartz M: A role for mRNA secondary
structure in the control of translation initiation 1982.

16. Tuller T, Veksler-Lublinsky I, Gazit N, Kupiec M, Ruppin E, Ziv-Ukelson M:
Composite effects of gene determinants on the translation speed and
density of ribosomes. Genome Biol 2011, 12(11):R110.

17. Johansson M, Ieong K-W, Trobro S, Strazewski P, Åqvist J, Pavlov MY,
Ehrenberg M: pH-sensitivity of the ribosomal peptidyl transfer reaction
dependent on the identity of the A-site aminoacyl-tRNA. Proceedings of
the National Academy of Sciences 2011, 108(1):79-84.

18. Charneski CA, Hurst LD: Positively charged residues are the major
determinants of ribosomal velocity. PLoS biology 2013, 11(3):e1001508.

19. Lu J, Deutsch C: Electrostatics in the ribosomal tunnel modulate chain
elongation rates. Journal of molecular biology 2008, 384(1):73-86.

20. Nakatogawa H, Ito K: The ribosomal exit tunnel functions as a
discriminating gate. Cell 2002, 108(5):629-636.

21. Berisio R, Schluenzen F, Harms J, Bashan A, Auerbach T, Baram D, Yonath A:
Structural insight into the role of the ribosomal tunnel in cellular
regulation. Nature Structural & Molecular Biology 2003, 10(5):366-370.

22. Woolhead CA, McCormick PJ, Johnson AE: Nascent membrane and secretory
proteins differ in FRET-detected folding far inside the ribosome and in
their exposure to ribosomal proteins. Cell 2004, 116(5):725-736.

23. Woolhead CA, Johnson AE, Bernstein HD: Translation arrest requires two-way
communication between a nascent polypeptide and the ribosome.
Molecular cell 2006, 22(5):587-598.

24. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA: The complete atomic
structure of the large ribosomal subunit at 2.4 Å resolution. Science 2000,
289(5481):905-920.

25. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA: The structural basis of
ribosome activity in peptide bond synthesis. Science 2000, 289(5481):920-930.

26. Ménétret J-F, Neuhof A, Morgan DG, Plath K, Radermacher M, Rapoport TA,
Akey CW: The structure of ribosome-channel complexes engaged in
protein translocation. Molecular cell 2000, 6(5):1219-1232.

27. Beckmann R, Spahn CM, Eswar N, Helmers J, Penczek PA, Sali A, Frank J,
Blobel G: Architecture of the protein-conducting channel associated with
the translating 80S ribosome. Cell 2001, 107(3):361-372.

28. Kaiser C, Goldman D, Tinoco I, Bustamante C: The Ribosome Modulates
Nascent Protein Folding. Biophysical Journal 2012, 102(3):68a.

29. Kosolapov A, Deutsch C: Tertiary interactions within the ribosomal exit
tunnel. Nature structural & molecular biology 2009, 16(4):405-411.

30. Ramu H, Mankin A, Vazquez-Laslop N: Programmed drug-dependent
ribosome stalling. Molecular microbiology 2009, 71(4):811-824.

31. Yanagitani K, Kimata Y, Kadokura H, Kohno K: Translational pausing
ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA.
Science 2011, 331(6017):586-589.

32. Wei J, Wu C, Sachs MS: The arginine attenuator peptide interferes with
the ribosome peptidyl transferase center. Molecular and cellular biology
2012, 32(13):2396-2406.

33. Ito K, Chiba S, Pogliano K: Divergent stalling sequences sense and control
cellular physiology. Biochemical and biophysical research communications
2010, 393(1):1-5.

34. Woolstenhulme CJ, Parajuli S, Healey DW, Valverde DP, Petersen EN,
Starosta AL, Guydosh NR, Johnson WE, Wilson DN, Buskirk AR: Nascent
peptides that block protein synthesis in bacteria. Proceedings of the
National Academy of Sciences 2013, 110(10):E878-E887.

35. Tenson T, Ehrenberg M: Regulatory nascent peptides in the ribosomal
tunnel. Cell 2002, 108(5):591-594.

36. Lovett PS, Rogers EJ: Ribosome regulation by the nascent peptide.
Microbiological reviews 1996, 60(2):366-385.

37. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS: Genome-wide
analysis in vivo of translation with nucleotide resolution using ribosome
profiling. Science 2009, 324(5924):218-223.

38. Dana A, Tuller T: Determinants of translation elongation speed and ribosomal
profiling biases in mouse embryonic stem cells 2012.

39. Dana A, Tuller T: The effect of tRNA levels on decoding times of mRNA
codons. Nucleic acids research 2014, 42(14):9171-9181.

40. Ingolia NT, Lareau LF, Weissman JS: Ribosome profiling of mouse
embryonic stem cells reveals the complexity and dynamics of
mammalian proteomes. Cell 2011, 147(4):789-802.

41. Ingolia NT: Ribosome profiling: new views of translation, from single
codons to genome scale. Nature Reviews Genetics 2014, 15(3):205-213.

42. Zur H, Tuller T: Strong association between mRNA folding strength and
protein abundance in S. cerevisiae. EMBO reports 2012, 13(3):272-277.

43. Gerashchenko MV, Lobanov AV, Gladyshev VN: Genome-wide ribosome
profiling reveals complex translational regulation in response to
oxidative stress. Proceedings of the National Academy of Sciences 2012,
109(43):17394-17399.

44. Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, Zaborske J, Pan T,
Dahan O, Furman I, Pilpel Y: An evolutionarily conserved mechanism for
controlling the efficiency of protein translation. Cell 2010, 141(2):344-354.

45. Bazzini AA, Lee MT, Giraldez AJ: Ribosome profiling shows that miR-430
reduces translation before causing mRNA decay in zebrafish. Science
2012, 336(6078):233-237.

46. Brar GA, Yassour M, Friedman N, Regev A, Ingolia NT, Weissman JS: High-
resolution view of the yeast meiotic program revealed by ribosome
profiling. science 2012, 335(6068):552-557.

47. Oh E, Becker AH, Sandikci A, Huber D, Chaba R, Gloge F, Nichols RJ, Typas A,
Gross CA, Kramer G: Selective ribosome profiling reveals the cotranslational
chaperone action of trigger factor in vivo. Cell 2011, 147(6):1295-1308.

48. Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJ, Jackson SE,
Wills MR, Weissman JS: Ribosome profiling reveals pervasive translation
outside of annotated protein-coding genes. Cell reports 2014,
8(5):1365-1379.

49. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS: Genome-Wide
Annotation and Quantitation of Translation by Ribosome Profiling.
Current Protocols in Molecular Biology 2013, 4(18):11-14, 18. 19.

50. Li G-W, Oh E, Weissman JS: The anti-Shine-Dalgarno sequence drives
translational pausing and codon choice in bacteria. Nature 2012,
484(7395):538-541.

Sabi and Tuller BMC Genomics 2015, 16(Suppl 10):S5
http://www.biomedcentral.com/1471-2164/16/S10/S5

Page 11 of 12

http://www.ncbi.nlm.nih.gov/pubmed/11675589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11675589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11675589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11675589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15245907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15245907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2474074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2474074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6084718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6084718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6084718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25056313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25056313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2361955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2361955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2361955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3288988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3288988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3288988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24906480?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24906480?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19104062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19104062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19104062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18155161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18155161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17185601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17185601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17185601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22050731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22050731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1012612107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1012612107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23554576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23554576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18822297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18822297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11893334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11893334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12665853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12665853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15006354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15006354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15006354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16762832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16762832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10937989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10937989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10937990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10937990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11106759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11106759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11701126?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11701126?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19170872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19170872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21233347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21233347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22508989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22508989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20117091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20117091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1219536110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1219536110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11893330?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11893330?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8801438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19213877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19213877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19213877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25056313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25056313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22056041?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22056041?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22056041?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24468696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24468696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22249164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22249164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1120799109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1120799109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1120799109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20403328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20403328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22153074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22153074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25159147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25159147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23821443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23821443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22456704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22456704?dopt=Abstract


51. Juntawong P, Girke T, Bazin J, Bailey-Serres J: Translational dynamics
revealed by genome-wide profiling of ribosome footprints in Arabidopsis.
Proceedings of the National Academy of Sciences 2014, 111(1):E203-E212.

52. Lu J, Deutsch C: Secondary structure formation of a transmembrane
segment in Kv channels. Biochemistry 2005, 44(23):8230-8243.

53. Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC,
Dahlberg AE, Frank J: The polypeptide tunnel system in the ribosome
and its gating in erythromycin resistance mutants of L4 and L22.
Molecular cell 2001, 8(1):181-188.

54. Wu C, Wei J, Lin P-J, Tu L, Deutsch C, Johnson AE, Sachs MS: Arginine
changes the conformation of the arginine attenuator peptide relative to
the ribosome tunnel. Journal of molecular biology 2012, 416(4):518-533.

55. Shine J, Dalgarno L: The 3′-terminal sequence of Escherichia coli 16S
ribosomal RNA: complementarity to nonsense triplets and ribosome
binding sites. Proceedings of the National Academy of Sciences 1974,
71(4):1342-1346.

56. Lu J, Kobertz WR, Deutsch C: Mapping the electrostatic potential within the
ribosomal exit tunnel. Journal of molecular biology 2007, 371(5):1378-1391.

57. Dana A, Tuller T: Determinants of translation elongation speed and
ribosomal profiling biases in mouse embryonic stem cells. PLoS
computational biology 2012, 8(11):e1002755.

58. Gerashchenko MV, Gladyshev VN: Translation inhibitors cause abnormalities
in ribosome profiling experiments. Nucleic acids research 2014, gku671.

59. Dunn JG, Foo CK, Belletier NG, Gavis ER, Weissman JS: Ribosome profiling
reveals pervasive and regulated stop codon readthrough in Drosophila
melanogaster. Elife 2013, 2.

60. Stumpf CR, Moreno MV, Olshen AB, Taylor BS, Ruggero D: The translational
landscape of the mammalian cell cycle. Molecular cell 2013, 52(4):574-582.

61. Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J:
Structure of the 80S ribosome from Saccharomyces cerevisiae–tRNA-
ribosome and subunit-subunit interactions. Cell 2001, 107(3):373-386.

62. Gerbi S: Expansion segments: regions of variable size that interrupt the
universal core secondary structure of ribosomal RNA. Ribosomal RNA
structure, evolution, processing, and function in protein biosynthesis 1996, 71-87.

63. Gomez-Lorenzo MG, Spahn CM, Agrawal RK, Grassucci RA, Penczek P,
Chakraburtty K, Ballesta JP, Lavandera JL, Garcia-Bustos JF, Frank J: Three-
dimensional cryo-electron microscopy localization of EF2 in the
Saccharomyces cerevisiae 80S ribosome at 17.5 Å resolution. The EMBO
journal 2000, 19(11):2710-2718.

64. Bailey-Serres J, Freeling M: Hypoxic stress-induced changes in ribosomes
of maize seedling roots. Plant Physiology 1990, 94(3):1237-1243.

65. Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP: Poly (A)-tail
profiling reveals an embryonic switch in translational control. Nature
2014, 508(7494):66-71.

66. Stadler M, Fire A: Wobble base-pairing slows in vivo translation
elongation in metazoans. Rna 2011, 17(12):2063-2073.

67. Stadler M, Artiles K, Pak J, Fire A: Contributions of mRNA abundance,
ribosome loading, and post-or peri-translational effects to temporal
repression of C. elegans heterochronic miRNA targets. Genome research
2012, 22(12):2418-2426.

68. Caro F, Ahyong V, Betegon M, DeRisi JL: Genome-wide regulatory
dynamics of translation in the Plasmodium falciparum asexual blood
stages. Elife 2014, 3:e04106.

69. Liu M-J, Wu S-H, Wu J-F, Lin W-D, Wu Y-C, Tsai T-Y, Tsai H-L, Wu S-H:
Translational landscape of photomorphogenic Arabidopsis. The Plant Cell
2013, 25(10):3699-3710.

70. Schrader JM, Zhou B, Li G-W, Lasker K, Childers WS, Williams B, Long T,
Crosson S, McAdams HH, Weissman JS: The coding and noncoding
architecture of the Caulobacter crescentus genome 2014.

71. Michel AM, Fox G, Kiran AM, De Bo C, O’Connor PB, Heaphy SM, Mullan JP,
Donohue CA, Higgins DG, Baranov PV: GWIPS-viz: development of a ribo-
seq genome browser. Nucleic acids research 2014, 42(D1):D859-D864.

72. Tuller T, Zur H: Multiple roles of the coding sequence 5′ end in gene
expression regulation. Nucleic acids research 2015, 43(1):13-28.

73. Chan PP, Lowe TM: GtRNAdb: a database of transfer RNA genes detected
in genomic sequence. Nucleic acids research 2009, 37(suppl 1):D93-D97.

74. Chen H, Bjerknes M, Kumar R, Jay E: Determination of the optimal aligned
spacing between the Shine-Dalgarno sequence and the translation
initiation codon of Escherichia coli m RNAs. Nucleic acids research 1994,
22(23):4953-4957.

75. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical
Society Series B (Methodological) 1995, 289-300.

76. Letunic I, Bork P: Interactive Tree Of Life v2: online annotation and display
of phylogenetic trees made easy. Nucleic acids research 2011, gkr201.

77. Letunic I, Bork P: Interactive Tree Of Life (iTOL): an online tool for
phylogenetic tree display and annotation. Bioinformatics 2007, 23(1):127-128.

doi:10.1186/1471-2164-16-S10-S5
Cite this article as: Sabi and Tuller: A comparative genomics study on
the effect of individual amino acids on ribosome stalling. BMC Genomics
2015 16(Suppl 10):S5.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Sabi and Tuller BMC Genomics 2015, 16(Suppl 10):S5
http://www.biomedcentral.com/1471-2164/16/S10/S5

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15938612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15938612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11511371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11511371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22244852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22244852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22244852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17631312?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17631312?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23133360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23133360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24120665?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24120665?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11701127?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11701127?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16667823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16667823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24476825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24476825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22045228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22045228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22855835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22855835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22855835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25493618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25493618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25493618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24179124?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24185699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24185699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/NaN?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17050570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17050570?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	The organism-specific stalling effect of each amino acid
	Identifying the regions in the exit tunnel that tend to interact with the growing peptide
	Charged amino acids do not contribute to ribosome stalling in all organisms

	Discussion
	Conclusions
	Methods
	Coding Sequences Data
	Ribo-seq and mRNA-seq data
	Mapping ribosomal footprints to genomic positions
	Data filtering
	RD peaks definition
	Accounting for biases in mRNA-seq data and coverage differences
	The robustness of the reported results to a stricter threshold of coverage data
	The effect of rare codons on the reported results
	Merging all datasets of the organism into one aggregate
	Controlling for translational pausing driven by Shine-Dalgarno-like sequences
	Quantifying the enrichment of charged amino acids in USRs
	Quantifying the enrichment of each amino acid in the USRs

	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

