Chou et al. BMC Genomics 2015, 16(Suppl 10):52

http://www.biomedcentral.com/1471-2164/16/510/52 BMC

Genomics

RESEARCH Open Access

A comparative study of SVDquartets and other
coalescent-based species tree estimation methods

Jed Chou', Ashu Gupta?, Shashank Yaduvanshi?, Ruth Davidson', Mike Nute®, Siavash Mirarab™®, Tandy Warnow?”"

From 13th Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics
Frankfurt, Germany. 4-7 October 2015

Abstract

Background: Species tree estimation is challenging in the presence of incomplete lineage sorting (ILS), which can
make gene trees different from the species tree. Because ILS is expected to occur and the standard concatenation
approach can return incorrect trees with high support in the presence of ILS, “coalescent-based” summary
methods (which first estimate gene trees and then combine gene trees into a species tree) have been developed
that have theoretical guarantees of robustness to arbitrarily high amounts of ILS. Some studies have suggested that
summary methods should only be used on “c-genes” (i.e, recombination-free loci) that can be extremely short
(sometimes fewer than 100 sites). However, gene trees estimated on short alignments can have high estimation
error, and summary methods tend to have high error on short c-genes. To address this problem, Chifman and
Kubatko introduced SVDquartets, a new coalescent-based method. SVDquartets takes multi-locus unlinked single-
site data, infers the quartet trees for all subsets of four species, and then combines the set of quartet trees into a
species tree using a quartet amalgamation heuristic. Yet, the relative accuracy of SVDquartets to leading
coalescent-based methods has not been assessed.

Results: We compared SVDquartets to two leading coalescent-based methods (ASTRAL-2 and NJst), and to
concatenation using maximum likelihood. We used a collection of simulated datasets, varying ILS levels, numbers of
taxa, and number of sites per locus. Although SVDquartets was sometimes more accurate than ASTRAL-2 and NJst,
most often the best results were obtained using ASTRAL-2, even on the shortest gene sequence alignments we
explored (with only 10 sites per locus). Finally, concatenation was the most accurate of all methods under low ILS
conditions.

Conclusions: ASTRAL-2 generally had the best accuracy under higher ILS conditions, and concatenation had the
best accuracy under the lowest ILS conditions. However, SVDquartets was competitive with the best methods
under conditions with low ILS and small numbers of sites per locus. The good performance under many
conditions of ASTRAL-2 in comparison to SVDquartets is surprising given the known vulnerability of ASTRAL-2 and
similar methods to short gene sequences.

Background

Estimating a species tree from multi-locus sequence data
is complicated by biological processes such as gene dupli-
cation and loss, hybridization, and incomplete lineage
sorting, which make true gene trees different from the
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overall true species tree. Incomplete lineage sorting (ILS)
[1], where gene lineages from two taxa fail to coalesce in
the most recent ancestor, is one of the common sources of
discordance between gene trees and species trees [2] and
is statistically modeled by the multi-species coalescent [3].
Methods for estimating species trees in the presence
of ILS have been developed that are provably statistically
consistent under the multi-species coalescent model,
which means that they will converge in probability to the
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true species tree as the number of loci and sites per locus
increase [4]. The most popular such techniques are sum-
mary methods, in which an alignment is estimated on
each locus, a gene tree is estimated on each alignment,
and then the resulting gene trees are combined into a spe-
cies tree. Examples of summary methods include ASTRAL
[5], ASTRAL-2 [6], MP-EST [7], the population tree from
BUCKYy [8], and NJst [9]. Statistically consistent co-estima-
tion of gene trees and species trees is possible [10,11], but
these methods are much more computationally intensive
than the most popular summary methods and so are not
used on large-scale phylogenomic datasets [12-14].

The most common approach for estimating species trees
is concatenated analysis using maximum likelihood (CA-
ML), in which alignments for each locus are aggregated
into a supermatrix and a species tree is estimated using a
maximum likelihood (ML) method such as RAXML [15]
or FastTree-2 [16], under a statistical model in which all
sites evolve identically and independently (i.i.d.) down a
single model tree. However, CA-ML is not statistically
consistent under the multi-species coalescent and can
converge to a tree other than the species tree (i.e., be posi-
tively misleading) [17].

Because concatenation can be positively misleading, the
interest in using coalescent-based species tree estimation
methods has increased. Since summary methods are able
to analyze large datasets (some are sufficiently fast that
they can analyze datasets with 1000 species and 1000
genes [6]), most coalescent-based analyses of biological
datasets have been performed using summary methods
[18,19]. Several summary methods have good accuracy on
small datasets (with up to 10 taxa), including ASTRAL [5],
ASTRAL-2 [6], NJst [9], BUCKy-pop [8,20], and MP-EST
[7]. ASTRAL-2 and NJst generally dominate MP-EST on
larger datasets in terms of accuracy, and BUCKy-pop and
MP-EST are both too slow to run on datasets with many
taxa. More generally, only ASTRAL-2 and NJst are fast
enough to run on very large datasets with high accuracy
[6,21,20].

Since the multi-species coalescent model requires
representing each gene by a single tree, it allows no
recombination events inside a gene [22], and so the
guarantees of statistical consistency can fail in the pre-
sence of recombination. For this reason, some practi-
tioners have argued [23] that only recombination-free
alignments (i.e., coalescent-genes, or “c-genes”) should
be used with summary methods. However, c-genes can
be very short (less than 100 sites), and depending on the
scope of the taxonomic study are likely to be closer to a
single site than 100 [23]. Because summary methods are
sensitive to gene tree estimation error [24-26,14], which
is more likely to occur on short alignments, the utility
of summary methods for phylogenomic species tree
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estimation is questioned due to this perceived need to
constrain the sequence length for every locus [23].

The relative performance of concatenation and summary
methods is clearly impacted by the amount of ILS, so that
concatenated analyses are often more accurate than coales-
cent-based methods if the ILS level is low enough, and less
accurate for high levels of ILS [26,14]. However, the rela-
tive performance is also impacted by gene alignment
lengths (shorter gene sequence alignments tend to produce
higher gene tree estimation error, and hence higher species
tree estimation error for summary methods) [24,14,27].
Finally, the number of genes and taxa also have an impact
on the relative performance [14,27]. Thus, despite the the-
oretical advantages of coalescent-based summary methods,
there is a heated debate about whether summary methods
or a maximum likelihood concatenated analysis would
more accurately estimate phylogenies under biologically
realistic conditions [23,24,2,28,29].

An alternative approach for coalescent-based species
tree estimation has been proposed that avoids estimating
trees on each locus, and hence bypasses the issue of gene
tree estimation error. These methods, which we refer to as
“single-site” methods, examine the single-site patterns, and
use these patterns to estimate the species tree in a statisti-
cally consistent way. The first such method, SNAPP [30],
required biallelic (two-state) data from unlinked single-
nucleotide polymorphisms (SNPs), and employed a
Bayesian MCMC algorithm. More recently, Chifman and
Kubatko [31] introduced SVDquartets, a single-site
method that can handle nucleotide data. Using algebraic
statistics and singular value decomposition, Chifman and
Kubatko proved that under the multi-species coalescent
and with the assumption of a strict molecular clock (i.e.,
that the rate of sequence evolution per unit time is con-
stant throughout the model gene tree), an unrooted spe-
cies tree on four taxa is generically identifiable from site
pattern probabilities at the leaves of the tree [31]. The
SVDquartets algorithm takes unlinked multi-locus data for
a set of four taxa as input and assigns a score to each of
the three possible quartet topologies. The quartet topology
with the lowest “SVD score” is selected as the true
topology for that quartet [32].

Since SVDquartets just computes quartet trees, a
quartet tree agglomeration technique is needed to com-
bine the quartet trees on every four species into a spe-
cies tree on the full set of taxa. Chifman and Kubatko
[31] suggested the use of Quartet Max-Cut (QMC) [33],
a heuristic for the NP-hard Max Quartet Compatibility
problem [34,35]. However, SVDquartets has also been
implemented in PAUP* [36], which uses a variant of
Quartet FM [37] to combine quartet trees into a species
tree, and is the implementation currently recommended
by the developers of SVDquartets.
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To our knowledge, the accuracy of species tree esti-
mation using SVDquartets followed by any quartet
amalgamation method has not yet been explored in
comparison to summary methods or concatenation. In
this study, we address the following questions:

1 How does SVDquartets+PAUP* compare to
ASTRAL-2 and NJst, two of the best performing sta-
tistically consistent summary methods?

2 How do the statistically consistent methods we
study compare to a concatenated analysis using max-
imum likelihood?

3 How do all the methods perform on short
sequences?

We ran ASTRAL-2 and NJst on gene trees estimated
by FastTree-2 [16], a maximum likelihood method for
species tree inference with similar accuracy to RAxML
[38]. We also ran an unpartitioned concatenated maxi-
mum likelihood analysis using RAXML. We omit MP-
EST from the evaluation on simulated data because
ASTRAL-2 generally dominates MP-EST in terms of
accuracy and running time [6,26,27]. As all species trees
we estimated are fully resolved (i.e., bifurcating), we
evaluate species tree estimation methods using the
Robinson-Foulds (RF) [39] error rate, also known as the
normalized bipartition distance.

We used previously studied simulated datasets and
simulated new datasets as well to evaluate the perfor-
mance of these methods. Table 1 presents a summary of
these datasets, which vary in number of taxa (11 to 37),
ILS level (reflected in the average topological distance
between true gene trees and true species tree) and
whether sequence evolution is under a strict molecular
clock (which SVDquartets assumes). See Methods for
additional details.

Table 1 Empirical statistics of simulated datasets.

Summary of Simulated Datasets

Dataset ILS # # Clock # Ref.
level Sites  Genes Reps.
(AD)
11-taxon M1 15.5% 10-200 100- No 50 (new)
11-taxon M2 38.3% 10-200 1000 No 50 [27]
11-taxon M3 66.3% 10-200 100- No 50 (new)
11-taxon M4 85.0% 10-200 1000 No 50 [27]
15-taxon 82% 10-200 100- Yes 10 [27]
37-taxon 18% 10-200 1000 No 20 [26]
Mammalian 100-
1000
100-
1000
50-200

We show ILS level (given in terms of average bipartition distance between true
gene trees and true species trees, expressed as a percentage), number of sites
per gene, number of genes, whether a strict molecular clock applies, and number
of replicate species trees. The number of taxa is indicated by the dataset name.
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Previous studies have only examined coalescent-based
methods on gene sequence alignments with at least 100
sites. To understand performance on short sequences,
we shortened each of the gene alignments by sampling
the first 10, 25, 50, 100, or 200 sites from the gene
sequence alignments.

In addition, we ran SVDquartets+PAUP* on a well-
studied mammalian biological dataset from [40] (after
removing erroneous genes) with 37 taxa, and compared
the output species tree to previously published [14,27]
trees computed using ASTRAL-2, MP-EST, and conca-
tenation with maximum likelihood.

Results

Results on 11-taxon datasets

The results on the 11-taxon datasets are shown in
Figure 1, varying the ILS level from low (model M1) to
very high (model M4). For all methods, tree estimation
error rates reduce as the number of genes or sites per
gene increase, while they increase as the ILS level
increases.

However, the relative performance between methods
depends on the model condition. For example, CA-ML
(in green) is the most accurate for models M1 and M2
for all numbers of genes and numbers of sites per gene.
On model M3, CA-ML is one of the least accurate
methods for the 100-gene datasets, but close to the
most accurate on the datasets with 500 or 1000 genes.
On model M4, with the highest ILS, CA-ML is among
the least accurate methods on the 100-gene datasets,
but intermediate on the 500-and 1000-gene datasets.
Thus, CA-ML has excellent accuracy on the two lower
ILS model conditions and then average accuracy on the
two higher ILS model conditions.

The remainder of this discussion focuses on a compari-
son of the coalescent-based methods (i.e., ASTRAL-2,
NJst, and SVDquartets+PAUP*). Since the relative perfor-
mance is impacted by the ILS level, we discuss each
model in turn, beginning with model M1 (lowest ILS).

On model M1, differences between methods were small,
and in general all methods had very good accuracy. On
the datasets with 10 or 25 sites per gene, all methods had
nearly identical accuracy. SVDquartets+PAUP* was
slightly more accurate than ASTRAL-2 and NJst with
500 10-site genes and 1000 10-site or 25-site genes. How-
ever, on datasets with 50 to 200 sites per gene, SVDquar-
tets+ PAUP* was sometimes less accurate than the other
methods.

Results on the models with higher ILS show that meth-
ods varied in their robustness to ILS, so that ASTRAL-2
had the greatest robustness to ILS, and there were bigger
differences between methods in the presence of high ILS.
On the datasets with only 10 sites per gene, ASTRAL-2
had the best accuracy, followed by SVDquartets+PAUP*,
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Figure 1 Results on the 11-taxon simulated datasets. We show mean RF rates with standard error bars for 50 replicates using all four
methods (RAXML shows concatenation). The rows are for four 11-taxon (10 ingroup taxa and one outgroup taxon) model conditions with
varying ILS levels, ranging from very low (M1) to very high (M4). The columns are for the different numbers of genes. Within a subfigure, we
show results with changing numbers of sites per locus (10-200). Note that the y-axis range changes for the fourth row, due to the much higher
error rates under the highest ILS model condition. Sequence evolution on these datasets deviates from the strict molecular clock.
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and then by NJst. However, SVDquartets+PAUP* had the
least accurate results of all methods on these higher ILS
models, especially when the number of sites per gene was
50 or greater. Overall, ASTRAL-2 has better accuracy than
SVDquartets+PAUP*, and as the ILS increases, the gap
between ASTRAL-2 and SVDquartets+PAUP* also
increases.

We evaluated the statistical significance of the differ-
ence in mean RF rates between SVDquartets+PAUP*
and ASTRAL-2 at each level of ILS, and we further test
the hypothesis that the interaction between level of ILS
and method is non-zero (that is, that the difference in
mean RF rates changes as ILS increases). For this we
use an ANOVA test with a linear model, where the
level of ILS, number of genes and number of sites per
gene are all treated as (ordinal) categorical variables. For
the former test, we conduct the test simultaneously for
the 11-taxon datasets at all four levels of ILS (M1-M4),
and for the latter at the three levels (M2-M4) that
represent a change in ILS. Under this procedure, we
reject the null hypothesis that the two methods have
equivalent mean RF rates at any of the four levels of ILS
(Table 2). We further reject the null hypothesis that the
methods degrade in performance at the same rate from
M2 to M3 and from M3 to M4.

Results on the 15-taxon datasets

The 15-taxon datasets are the only datasets we explored
where sequences evolve under a strict molecular clock.
As with the 11-taxon model conditions, errors reduced
with increasing numbers of sites per gene or numbers of
genes (Figure 2). CA-ML and SVDquartets+PAUP*
nearly always had higher error rates than ASTRAL-2
and NJst for all numbers of genes and sites per gene
(the only exception to this is on 100 genes with
10 sites per gene, where NJst and CA-ML had the
same error). The relative accuracy of ASTRAL-2 and
NJst depended on the specific model condition (num-
ber of genes and number of sites), and neither outper-
formed the other.

Table 2 p-values for statistical tests.

Mean RF Rate Interaction

ILS p A ILS p

M1 <0001 M1-M2 0.946
M2 <.0001 M2-M3 0.0403
M3 0.0403 M3-M4 <0.0001
M4 0.0403

We use ANOVA to compare mean tree error of ASTRAL-2 and SVDquartets
+PAUP* on different model conditions (left column) and also to test
whether the differences are impacted by changing levels of ILS (right
column). All seven p-values are corrected for multiple hypothesis testing
using a Benjemani-Hochberg procedure [41] (n = 7). Italics indicate
significance (o = .05).
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Results on the mammalian simulated datasets

We explored performance on a simulated dataset based on
a prior MP-EST analysis of a 37-taxon mammalian biolo-
gical dataset studied in [40] with 50 to 200 genes and a
low rate of ILS. This simulated dataset has reduced ILS
relative to the original biological dataset from [40], and so
represents a relatively easy model condition. Results on
these data (Figure 3) show that error rates decreased for
all methods as the number of sites per locus or number of
loci increased (as observed in the other model conditions).
CA-ML was substantially more accurate than the coales-
cent-based methods, with the largest differences on the
datasets with small amounts of data.

On these mammalian simulated data, concatenation
using unpartitioned maximum likelihood was by far the
most accurate method, with big differences between con-
catenation and the coalescent methods for small amounts
of data. The differences between the coalescent-based
methods were generally small and depended on the num-
ber of sites per locus and number of loci, but the most
accurate method was always either ASTRAL-2 or
SVDquartets+PAUP*. On 10 sites, all the methods had
very close accuracy, with a slight advantage for ASTRAL-2
on the 50-gene condition. However, on 25 sites, SVDquar-
tets+PAUP* was the most accurate method (even though
differences were small). For larger numbers of sites per
gene, ASTRAL-2 was the most accurate method.

SVDquartets+PAUP* on the mammalian biological
dataset

The mammalian biological dataset has been analyzed in
prior studies, with trees computed using CA-ML and
also MP-EST and ASTRAL-2, each with or without sta-
tistical binning (both weighted and unweighted) [14,27].
Statistical binning (weighted and unweighted) are new
techniques aimed at improving the estimation of gene
trees in a multi-locus phylogenomic analysis, when indi-
vidual genes have low signal, and have both been shown
to improve the accuracy of summary methods [27].
Here we examine the differences between the tree
obtained by SVDquartets+PAUP* and these previously
published trees.

The species tree obtained by SVDquartets+PAUP* has
very high bootstrap support on most branches, but has
one branch with very low support (only 35%); see Figure 4.
The branch with very low support should be collapsed,
leaving a soft polytomy between Cetartiodactyla, Chirop-
tera, and ((Felis catus, Canis familiaris), Equus caballus).

The only two topological differences between the species
trees output by the various methods concern the place-
ment of Scandentia (represented by Tupaia belangeri), and
the topology of the clade involving Cetartiodactyla, Chir-
optera, and the clade ((Felis catus, Canis familiaris), Equus
caballus). ASTRAL-2 (with weighted and unweighted
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Figure 3 Results on the low ILS mammalian simulated datasets. \We show mean RF error rates with standard error bars over 20 replicates,
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species, and is based on an MP-EST analysis of a biological dataset with reduced ILS (produced by doubling the species tree branch lengths).
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binning, and without binning), MP-EST (with weighted
and unweighted binning), and CA-ML all placed Scanden-
tia sister to Glires. In contrast, SVDquartets+PAUP* and
unbinned MP-EST placed Scandentia sister to Primates.
The placement of Scandentia is debated, and so it is not
clear which of these relationships is correct [27,42,43].

All three possible topologies for Cetartiodactyla,
Chiroptera, and the clade ((Felis catus, Canis famil-
iaris), Equus caballus) were obtained by the various
methods. The three ways of running ASTRAL-2 and
MP-EST (with weighted and unweighted binning, and
without binning) all resolved the populations Cetartio-
dactyla, Chiroptera, and ((Felis catus, Canis familiaris),
Equus caballus) by placing Cetartiodactyla as siblings
with ((Felis catus, Canis familiaris), Equus caballus),
each with support of around 80%. In contrast, CA-ML
placed Cetartiodactyla sister to Chiroptera with 76%
support [14]. Finally, as noted, although SVDquartets
+PAUP* placed Chiroptera sister to ((Felis catus, Canis
familiaris), Equus caballus), the branch leading to this

pair had an extremely low bootstrap support of 35%,
which is best considered as not resolving the relation-
ship between Cetartiodactyla, Chiroptera, and ((Felis
catus, Canis familiaris), Equus caballus).

Discussion

To the best of our knowledge, this study is the first to
compare species tree estimation methods on short gene
sequences (with fewer than 100 sites), and the first to
explore SVDquartets on simulated data in comparison to
other coalescent-based methods and to concatenation.
Many of the trends we noted have been observed in
other studies. For example, species tree estimation error
tends to decrease for all methods with decreases in the
ILS level, increases in gene sequence lengths, and
increases in numbers of genes. This study also confirmed
that using unpartitioned CA-ML is often more accurate
than coalescent-based methods when the ILS level is low
enough, but that high ILS levels reverses this relationship.
As seen in [6], ASTRAL-2 is typically (but not always)
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Figure 4 The SVDquartets+PAUP* tree on the 37-taxon 424-gene mammalian dataset from Song et al. [40]. This tree has one branch
with very low support, and so does not resolve the relationship between Cetartiodactyla, Chiroptera, and the clade ((Felis catus, Canis familiaris),
Equus caballus). Labels on branches indicate bootstrap support, but support values of 100% are not shown.

Gallus gallus

more accurate than NJst, and NJst tends to have reduced
accuracy under conditions with high ILS compared to
ASTRAL-2. While these trends are not novel [14,27,23,14],
this study confirms these results on new datasets, and
hence provide additional support for these findings.

In general, ASTRAL-2 tended to be more accurate than
SVDquartets+PAUP*, but there were exceptions that
could be characterized by small numbers of sites, large
numbers of genes, and ILS levels that were not too high.
In addition, the results on the 11-taxon datasets suggest
that ILS level impacts SVDquartets+PAUP* more signifi-
cantly than it does ASTRAL-2, so that SVDquartets
+PAUP* can be more accurate than ASTRAL-2 on low
ILS model conditions and then less accurate than
ASTRAL-2 on high ILS conditions. SVDquartets+PAUP*

was also much less accurate than ASTRAL-2 on the 15-
taxon datasets, which have very high ILS, adding addi-
tional support to the hypothesis that SVDquartets+PAUP*
degrades on high ILS conditions.

From a purely theoretical perspective, SVDquartets
assumes that sequence evolution obeys the strict mole-
cular clock, but this study shows it has fairly good accu-
racy under the model conditions that deviate from this
assumption. Hence, in practice, SVDquartets may be
robust to violations of the molecular clock hypothesis.

While SVDquartets+PAUP* had good accuracy on
these data, it did not tend to have better accuracy than
the competing methods, except as discussed above. How-
ever, SVDquartets+PAUP* is a new type of approach, and
the design space has not been fully explored. Therefore,
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it is not clear if the cases where SVDquartets+PAUP* is
less accurate than ASTRAL-2 are due to the way that
quartet trees are computed by SVDquartets, or by how
PAUP* agglomerates them into a species tree. However,
the good performance of SVDquartets+PAUP* on condi-
tions of low to moderate ILS suggests that the quartet
amalgamation technique in PAUP* may be highly effec-
tive when there is not too much gene tree discord.

An important observation across our study was that
with very short sequences, all methods had very high error
rates, and that SVDquartets+PAUP* did not have an
advantage over the best summary methods under these
conditions. Thus, an attempt to avoid recombination
comes at the cost of reduced accuracy for all methods.
Whether it is necessary or not to restrict the data to c-
genes, however, is debated, as some studies have shown
that summary methods are robust to the presence of
recombination in gene trees [44]. In addition, the accuracy
of the naive binning approach in experimental studies [45]
is compatible with those conclusions. An alternative to
choosing very small “c-genes” is to use longer genes, hop-
ing that effects of recombination are minimal. However,
more research is needed to better understand the extent
of robustness of summary methods to recombination
events.

Conclusions
This study was motivated by the challenge of estimating
species trees in the presence of gene tree heterogeneity
due to incomplete lineage sorting (ILS) [46,24]. Although
some very sophisticated Bayesian species tree estimation
methods, such as *BEAST [11], have been developed, for
computational reasons only summary methods (which
estimate species trees by combining estimated gene trees)
have become widely used in phylogenomics. Yet, there is a
large controversy around the use of summary methods,
centering on the observation that recombination-free
sequence alignments can be very short, and that standard
summary methods can produce species trees with reduced
accuracy when the gene trees have reduced accuracy
resulting from insufficient sequence length [45,14,25].
Furthermore, it is not known whether the standard sum-
mary methods are even statistically consistent when the
genes have bounded sequence lengths [24]. Hence, some
[47] have suggested that summary methods should not be
used unless they are established to have better accuracy
than alternative methods (such as concatenation, which is
not even statistically consistent in the presence of ILS)
under biologically realistic conditions (i.e., either
sequences that are short enough to be recombination-free,
or on datasets in which the gene sequences evolve with
recombination).

The SVDquartets method was developed to address
this challenge. Instead of using estimated gene trees, it
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estimates the species tree directly from the site patterns,
and hence bypasses the impact of gene tree estimation
error. Thus, SVDquartets+PAUP* (the implementation
of SVDquartets within PAUP*) is a species tree estima-
tion method that could, conceivably, provide much
improved species tree estimation accuracy compared to
standard summary methods and concatenation.

While the study we have presented was limited in scope,
some trends clearly emerge. First, the relative performance
of SVDquartets+PAUP*, ASTRAL-2, and CA-ML depend
on the amount of ILS and sequence length per locus, so
that SVDquartets+PAUP* can be slightly more accurate
than ASTRAL-2 under conditions where both ILS levels
are low and sequences are short. However, in most condi-
tions, such as when the level of ILS was high, or when
many sites were available, the best summary methods
tended to outperform SVDquartets+PAUP*. The compari-
son to concatenation is also interesting: concatenation
using an unpartitioned maximum likelihood analysis is not
statistically consistent in the presence of ILS, but it seems
to have very good accuracy under low ILS model condi-
tions. SVDquartets+PAUP* is not generally as accurate as
concatenation under the low ILS model conditions, but
can be more accurate under the higher ILS model
conditions.

This study explored the performance of SVDquartets
+PAUP* in comparison to other coalescent-based methods
and to concatenation. A better understanding of the rela-
tive accuracy of methods will require a wider range of
methods, including fully partitioned maximum likelihood
(which has different statistical properties from unparti-
tioned maximum likelihood) [4]. It would also be interest-
ing to evaluate coalescent-based methods that co-estimate
gene trees and species trees, such as *“BEAST, as well as
summary methods that use gene trees computed using
Bayesian methods, such as PhyloBayes-3 [48].

The statistical guarantees for SVDquartets requires a
strict molecular clock, a property that is not likely to hold
on most biological datasets, especially when the species
are not very closely related, and when loci are sampled
from throughout the genomes. For this reason, our study
focused on datasets that violate the strict molecular clock.
However, the accuracy of SVDquartets could improve
under a strict molecular clock, and future work should
also investigate this possibility.

Finally, the results shown here focused on the imple-
mentation of SVDquartets within PAUP*, and improved
empirical performance might be obtained through the
development of new heuristics for the optimization pro-
blem. In addition, since the PAUP* heuristic is not guar-
anteed to find an optimal solution and is not even
guaranteed to find the compatibility tree when all the
quartet trees produced by SVDquartets are identical to
the species tree, it is not clear whether SVDquartets
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+PAUP* is statistically consistent under the multi-
species coalescent model. Thus, improved theoretical
guarantees might also result through the use of alterna-
tive quartet amalgamation methods.

Methods

Datasets

We explored results on a collection of datasets, including
one 37-taxon biological dataset and several simulated
datasets (see Table 1 for a description of the simulated
datasets). The ILS level of a dataset (denoted by AD) was
measured by the average topological distance between
the model gene trees and the model species tree, where
the distance between two trees is the number of biparti-
tions unique to the two trees divided by 2(n - 3), where
n is the number of taxa, expressed as a percentage. This
distance is also known as the Robinson-Foulds rate,
expressed as a percentage.

Mammalian biological dataset

This 37-taxon dataset of mammals with 447 gene align-
ments was studied by Song et al. [40]. As noted in [14], 23
of the 447 loci were removed because 21 contained misla-
beled sequences and two were outliers. We ran SVDquar-
tets+PAUP* with 100 bootstrap replicates on the 424
remaining gene alignments. This produced a set of 100
bootstrap replicate species trees and their greedy consen-
sus tree.

11-taxon dataset

The 11-taxon datasets were partially studied in [27], but
we added two new model conditions to this dataset (M1
and M3). In total, our collection has 200 replicate species
trees generated under four model conditions (M1, M2,
M3, and M4). These data were simulated with SimPhy
[49] using parameters given in [27] and scripts that are
available in our github repository. The species trees were
simulated using the Yule process, with the birth rate set to
0.000001 per generation; hence, the model species trees
for these 11-taxon datasets range in topology, but are
neither perfectly balanced nor pectinate (the two extremes
of tree shape). The four model conditions all had a popu-
lation size of 400 k, but differed in terms of their tree
length (5400 k, 1800 k, 600 k, and 200 k respectively for
M1-4). The change in tree length results in change in ILS
levels between M1 and M4, with AD ranging from very
low (15.5% for M1) to very high (85.0% for M4).

1000 gene trees were generated from each species tree
under the multi-species coalescent, and Indelible [50] was
used to simulate GTR+I" sequence evolution (no molecu-
lar clock) down the gene trees to produce 1000 alignments
each of length 1000 sites.
15-taxon dataset
This dataset was studied in [27]. The simulated species
tree is pectinate (a tree of the form (s1, (s2, (s3, (s4, ...)))))
on 15 leaves with very short internal branches. These
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sequences evolve under a strict molecular clock, and with
very high ILS (AD = 82%).

Mammalian simulated dataset

The mammalian simulation is based on a model species
tree previously computed using MP-EST on the 37-taxon
mammalian biological dataset from [40]. This simulated
dataset has been studied in [14,26] and corresponds to the
2X condition, where all model tree branches are multiplied
by two to reduce ILS. The average distance between true
gene trees and the model species tree was moderate, at
AD = 18%.

Shortening alignments and processing data

Each of the original datasets we obtained had sequences
that varied in length, but all were at least 200 sites.
Given a set of gene alignments, we kept the first K sites
from each alignment, allowing K to vary between 10, 25,
50, 100, and 200. Thus, for a given alignment, the corre-
sponding shortened alignment of length 10 is contained
in the shortened alignment of length 25, which is con-
tained in the shortened alignment of length 50, and so
on. For our simulated datasets, where all sites evolved
identically and independently, this simple method used
to shorten genes is equivalent to selecting any subset of
sites of a given length.

Gene tree estimation
We estimated a gene tree on each shortened alignment
with FastTree-2 version 2.1.8 [51], using the following
command:
FastTreeMP
alignment]
We initially attempted to compute gene trees using
RAXML; however, RAXML was unable to analyze many of
the short sequence alignments we generated, because
these lacked one or more nucleotides. Hence, we used
FastTree-2, which does not have this problem. In addition,
FastTree-2 is faster than RAxML, and prior studies have
shown that trees computed using FastTree-2 are generally
as accurate as trees computed using RAxML [38].

-gtr -nt -gamma [input

Species tree estimation methods

SVDquartets+PAUP*

To run PAUP*s version of SVDquartets, we used the
following command within the command-line version of
PAUP* 4.0a144 for Windows.

SVDQuartets nthreads=4 evalQuartets=all
seed=5000;

For the mammalian biological dataset, we used PAUP*
4.0a142 for UNIX/LINUX with the same command to
run SVDquartets+PAUP*, but instead of using 5000 for
the seed value, we used the default seed number, 0.

NJst
To run NJst, we used phybase version 1.4 [52] and cus-
tom scripts, available in our github repository.
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ASTRAL-2
We used ASTRAL-2 version 4.7.6 [53], with the following
command:

java -jar astral.4.7.6.jar -i [input gene
trees] -o [output tree]

Concatenated analysis with RAXML

We ran an unpartitioned maximum likelihood (ML)

analysis with RAXxML, using the following command:
raxmlHPC-SSE3 -m GTRGAMMA -s [input

alignment] -N 10 -p RANDOM -n [outputname]

Here, -N 10 indicates the number of starting trees for
RAxML, and RANDOM is the random seed number,
which we varied for each of the 10 runs.

In an unpartitioned ML analysis, all the sites in the
aggregated superalignment are assumed to have evolved
down the same model tree. Unpartitioned ML is a com-
mon approach to tree estimation, but is not as rigorous as
a fully partitioned ML analysis, and has different theoreti-
cal properties in the presence of ILS [4].

The choice of unpartitioned analysis instead of fully par-
titioned analysis was necessary because RAxML cannot
run if any of its parts (within a partitioned alignment) fails
to have all four nucleotides present. While this constraint
was not an issue for our longer gene sequence alignments,
it caused substantial problems for more than half of the
shortest gene sequence alignments.

Evaluation Metric

All the estimated species trees returned by the analyses are
bifurcating (i.e., all internal nodes have degree three).
Hence, we report the Robinson-Foulds (RF) [39] error
rate, which is equal to the missing branch rate for bifurcat-
ing trees. The script for this calculation is provided in our
supplementary online materials.

Availability of supporting data

All datasets and supporting online materials are available
at goo.gl/EgkWRk. A github repository containing all the
source code used in our experiments can be found at
https://github.com/j-chou/SVDquartets.git
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