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Abstract

We exploit the methodological similarity between ancestral genome reconstruction and extant genome
scaffolding. We present a method, called ARt-DeCo that constructs neighborhood relationships between genes or
contigs, in both ancestral and extant genomes, in a phylogenetic context. It is able to handle dozens of complete
genomes, including genes with complex histories, by using gene phylogenies reconciled with a species tree, that
is, annotated with speciation, duplication and loss events. Reconstructed ancestral or extant synteny comes with a
support computed from an exhaustive exploration of the solution space. We compare our method with a
previously published one that follows the same goal on a small number of genomes with universal unicopy genes.
Then we test it on the whole Ensembl database, by proposing partial ancestral genome structures, as well as a
more complete scaffolding for many partially assembled genomes on 69 eukaryote species. We carefully analyze a
couple of extant adjacencies proposed by our method, and show that they are indeed real links in the extant
genomes, that were missing in the current assembly. On a reduced data set of 39 eutherian mammals, we
estimate the precision and sensitivity of ARt-DeCo by simulating a fragmentation in some well assembled
genomes, and measure how many adjacencies are recovered. We find a very high precision, while the sensitivity
depends on the quality of the data and on the proximity of closely related genomes.

Introduction
Knowledge of genome organization (gene content and
order) and of its dynamics is an important question in
several fields such as cancer genomics [1-3], to under-
stand gene interactions involved in a common molecular
pathway [4], or evolutionary biology, for example to
establish a species phylogeny by comparative analysis of
gene orders [5].
On one side, studying genome organization evolution,

and in particular proposing gene orders for ancestral
genomes, requires well assembled extant genomes,
while, on the other side, the assembly of extant genomes
can in return benefit from evolutionary studies. This
calls for integrative methods for the joint scaffolding of

extant genomes and reconstruction of ancestral
genomes.
The reconstruction of ancestral genome organization

is a classical computational biology problem [6], for
which various methods have been developed [7-13]. The
rapid accumulation of new genome sequences provides
the opportunity to integrate a large number of genomes
to reconstruct their structural evolution. However, a sig-
nificant proportion of these genomes is incompletely
assembled and remains at the state of contigs (perma-
nent draft) as illustrated by statistics on GOLD [14]. To
improve assemblies, methods known as scaffolding were
developed to order contigs into scaffolds. Most scaffold-
ing methods use either a reference genome, or the infor-
mation provided by paired-end reads, or both [15-22].
We refer to Hunt et al. [23] for a detailed comparative
analysis of recent scaffolding methods.
In recent developments, scaffolding methods taking

into account multiple reference genomes and their
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phylogeny have been proposed [24-27]. It suggests a
methodological link with ancestral genome reconstruc-
tions: if ancestral genes are considered as contigs, scaf-
folding extant or ancestral contigs in a phylogenetic
context differs only in the location of the considered
genome within the phylogeny (leaf or internal node).
This link has been observed [28] and exploited to
develop a method for combining scaffolding and ances-
tral genomes reconstruction [29]. However, the latter,
due to the computational complexity of the ancestral
genome reconstruction problem, is currently limited to
a few genomes and to single-copy universal genes.
We propose to overcome this computational complex-

ity by considering independent ancestral gene neighbor-
hood reconstructions [12] instead of whole genomes,
which allows to scale up to dozens of whole genomes
and to use as input data genes with complex histories.
We develop a method that scaffolds ancestral and extant
genomes at the same time. The algorithm improves over
previous methods of scaffolding by the full integration of
the inference of evolutionary events within a phylogenetic
context.
The principle of our method is imported from DeCo

[12]. So we call it ARt-DeCo for Assembly Recovery
through DeCo. DeCo is an algorithm for ancestral syn-
teny reconstruction. It is a dynamic programming
scheme on pairs of reconciled gene tree, generalizing the
classic dynamic programming scheme for parsimonious
ancestral character reconstructions along a tree. It com-
putes a parsimonious set of ancestral gene neighbor-
hoods, the cost being computed as the weighted sum of
gains and losses of such neighborhoods, due to genome
rearrangements. In addition to DeCo, ARt-DeCo consid-
ers a linkage probability for each couple of genes in
extant genomes, that is included in the cost function in
order to be able to propose gene neighborhoods in extant
as well as in ancestral genomes.
We implemented ARt-DeCo and tested it on several

data sets. First we reproduced the experiment of [29] on
7 tetrapod genomes limited to universal unicopy genes,
with comparable accuracy. Then we used all genes from
69 eukaryotic genomes from the Ensembl database [30].
The program runs in about 18 h and is able to propose
ancestral genome structures and thousands of extant
scaffolding linkages. We examine in details one of them,
chosen randomly on the panda genome, and show why
it seems reasonable to propose it as an actual scaffolding
adjacency. Then on a reduced data set of 39 whole
mammalian genomes, we tested the precision and sensi-
tivity of the scaffolding performed by ARt-DeCo by
simulating artificial fragmentation of the human or
horse genomes, removing up to 75% of the known gene
neighborhoods of these well assembled genomes, and
comparing the removed adjacencies with the ones

proposed by ARt-DeCo. We measure a >95% precision,
while sensitivity, as expected, depends on the quality of
the data and on the presence of closely related extant
genomes. This denotes the domain of efficiency of our
method: a vast majority of proposed adjacencies can be
considered with confidence, but the final resulting scaf-
folding is still incomplete.

Ancestral and extant adjacencies
We describe the ARt-DeCo algorithm for the joint
reconstruction of ancestral genomes and scaffolding of
extant genomes. An overview is depicted in Figure 1.

Input
The input of the method is

• A species tree with all considered genomes and
their descent pattern; We suppose the number of
chromosomes of each extant genome is known.
• A set of genes for all considered genomes, clus-
tered into homologous families; for each family a
rooted gene tree depicts the descent pattern of the
genes.
• A set of adjacencies, i.e., pairwise relations between
neighboring genes AB on extant chromosomes.
Genes A and B are called the extremities of the adja-
cency AB. We consider as neighbors two genes that
are not separated by another gene present in the
dataset, but a relaxed definition can be used with no
impact on the method itself.

Internal nodes of the species tree are labeled with
ancestral species (we always consider ancestral species
at the moment of a speciation) and leaves are labeled
with extant species. Gene trees are reconciled with the
species tree: all ancestral genes are labeled by the ances-
tral species they belong to, so the input yields a gene
content for all ancestral species. Genes and species are
partially ordered by the descent relation, so we may
speak of a last, or lowest, or most recent common
ancestor. Here, as in [12], we use a reconciliation mini-
mizing the number of duplications and losses of genes.
A module of ARt-DeCo is able to produce a suitable

input from the raw Ensembl Compara [30] gene tree
files and a species tree if needed. Once the input is
given, two preliminaries are necessary: partitioning
extant adjacencies and computing an a priori adjacency
probability for each extant species. They are detailed in
the two following subsections.

A partition of extant adjacencies
The goal of this step is, without loss of generality, to
reduce the analysis of the whole data set to the indepen-
dent analysis of pairs of gene trees and adjacencies, each
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having an extremity in each of the gene trees. Moreover,
we want that the roots of the two gene trees correspond
to ancestral genes mapping to the same ancestral
species.
The partition is realized thanks to a necessary condi-

tion for two adjacencies to share a common ancestor.
Two adjacencies A1B1 and A2B2, for genes A1, A2, B1,
B2, may have a common ancestor AB only if A1 and A2

(respectively B1 and B2) are in the same gene family, so
have a common ancestor A (respectively B), and such
that A and B belong to the same species. In other
words, the ancestral adjacency has the possibility to
exist only when the genes of this adjacency are present
in a same ancestral species.
It is easy to check that this relation is an equivalence

relation, which then partitions adjacencies into equiva-
lence classes. Each equivalence class C can be repre-
sented by two ancestral genes: they are the most ancient
distinct A and B genes involved in the two-by-two com-
parisons of adjacencies A1B1 and A2B2 in this class.
Necessarily every adjacency in this class has a gene
which is a descendant of A, and another which is a des-
cendant of B. A and B are in the same species (ancestral
or extant), and cannot be the descendant one of
another.
For a node N of a gene tree T , T (N ) is the subtree

of T rooted at N . Consider the two disjoint subtrees T
(A) and T (B). All adjacencies in the equivalence class C
have one extremity which is a leaf of T (A) and the
other which is a leaf of T (B). So each equivalence class
may be treated independently from the other, and the
input can be restricted, without loss of generality, to T
(A) and T (B).

An a priori probability for all adjacencies
Given two extant genes v1 and v2 from the same extant
genome G, we give an a priori probability that there is
an adjacency between v1 and v2. If the genome G is

perfectly assembled, then this probability is given by the
input, that is, it is 1 if there is an adjacency in the input
and 0 otherwise. But if the genome G is not perfectly
assembled, then this probability depends on the quality
of the assembly. It will allow the program to propose
more adjacencies in extant genomes that are more
fragmented.
We note n the number of contigs in an extant genome

(which is the number of genes minus the number of
adjacencies if all contigs are linear arrangements of
genes), and p the number of chromosomes. We always
have n ≥ p >0. All contigs are assumed to have two dis-
tinct extremities.
We call a solution of the scaffolding problem a set of

n − p adjacencies between the extremities of contigs,
which forms p chromosomes from the n contigs. The
number of different solutions for given n and p is
denoted by f (n, p).
Let v1 and v2 be extremities of two different contigs;

the a priori probability P (v1 ~ v2) of v1 and v2 to be
adjacent if they are not seen adjacent in the data and
n > p is:

P(v1 ∼ v2) = ρ(v1, v2) × f (n − 1, p)
f (n, p)

where r is a correction function which is equal to 4 if
v1 and v2 are the only genes in their contigs, 2 if one of
v1 v2 is the only gene in its contig but not the other,
and 1 otherwise. If n = p, we have P (v1 ~ v2) = 0 if the
adjacency v1v2 is not in the data, and P (v1 ~ v2) = 1
otherwise.
For the computation of P (v1 ~ v2) we use the follow-

ing formula for f (n, p).
Lemma 1 For each n ≥ 1 and p ∈ N*, we have:

f (n, p) =
n!
p!
2n−p

(
n − 1

p − 1

)
.

Figure 1 Input and output of the ARt-DeCo method. The left box shows the input of ARt-DeCo: a species tree (here on extant species X, Y
and Z), the adjacencies in the genome of extant species (each colored block represents a contig, that is, a linear arrangement of genes, linked
by adjacencies) and the reconciled genes trees for their genes. The output of ARt-DeCo is shown on the right-hand side in magenta color: the
method computes both new adjacencies for extant species and contigs for the ancestral species.
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Proof First remark that the formula f (n, p) can be
extended to the case where p > n and to the case where
n ≥ 1 and p = 0, by setting its value to 0 in those cases
(there is no possible way to transform n contigs into p
chromosomes). In those cases, the equality is still true,

since

(
n − 1

p − 1

)
is then equal to 0. Thus, in all what fol-

lows, we use this extension of definition when needed.
We proceed now by induction on n ≥ 1.
Base case: n = 1, it is straightforward since

f (1, 1) = 1 =
1!
1!

20
(
0

0

)
, and for p >1, we have

f (1, p) = 0 =
1!
p!

21−p

(
n − 1

p − 1

)
, since the binomial coeffi-

cient is equal to 0 in this case.
Induction: we suppose that for each k ≤ n, for each

p ∈ N*, we have:

f (k, p) =
k!
p!
2k−p

(
k − 1

p − 1

)
.

We consider f (n + 1, p), for a fixed p ∈ N*. We sum
over all possibilities for one specific chromosome to be
composed of x contigs. This gives the recurrence for-
mula:

f (n + 1, p) =
1
p

n+1−(p−1)∑
x=1

(
2x−1 (n + 1)!

(n + 1 − x)!
f (n + 1 − x, p − 1)

)
.

Where
1
p

is used to avoid couting the same solution

several times. 2x−1 (n + 1)!
(n + 1 − x)!

can be written

2x−1x!
(
n + 1
x

)
. x! representing the number of possibili-

ties to sort x contigs, 2x−1 allows to take into account

contig orientations and

(
n + 1
x

)
represents the number

of possibilities to pull x contigs of n + 1.
By induction hypothesis, we have:

f (n+1, p) =
1
p

n+1−(p−1)∑
x=1

(
2x−1 (n + 1)!

(n + 1 − x)!
× (n + 1 − x)!

(p − 1)!
2n+1−x−(p−1)

(
n + 1 − x − 1

p − 2

))

which simplifies into:

f (n + 1, p) =
(n + 1)!

p!
2n+1−p

n+2−p∑
x=1

(
n − x

p − 2

)
.

We change the variable in the sum, let h = n-x. Then,
we have:

f (n + 1, p) =
(n + 1)!

p!
2n+1−p

n−1∑
h=p−2

(
h

p − 2

)
.

By the Hockey-stick’s identity, namely for all

n, r ∈ N,n > r,
∑n

i=r

(
i
r

)
=

(
n + 1

r + 1

)
, we finally obtain:

f (n + 1, p) =
(n + 1)!

p!
2n+1−p

(
n

p − 1

)
,

which concludes the proof.
The expression of f (n, p) leads to the following simple

expression for P:

P(v1 ∼ v2) = ρ(v1, v2) × n − p
2n(n − 1)

.

We define p(S) =
n − p

2n(n − 1)
the part of this formula

that does not depend on v1 and v2, as an assembly frag-
mentation measure for genome S.

A Dynamic programming scheme
We largely refer to DeCo [12] for a full description of the
dynamic programming scheme, and only describe the
overall principle and the differences we introduce. Adja-
cencies are constructed between ancestral genes (equiva-
lently internal gene tree nodes), and propagate along gene
trees. For two nodes v1 and v2 defining genes belonging to
the same (ancestral or extant) species, we define a solution
as a descent pattern of ancestral and extant adjacencies
explaining the input extant adjacencies that have an extre-
mity in T (v1) and another in T (v2). So a solution is a set
of ancestral adjacencies and descent relations linking
ancestral and extant adjacencies. The cost of a solution is
the cumulative cost of gains and breakages of adjacencies
(due to rearrangements) in the descent pattern, according
to an individual cost for gains (Gain) and breakages (Br).
More precisely we define two costs c0(v1, v2) (respec-

tively c1(v1, v2)), which are the minimum cost previously
mentioned, given that there is an (respectively there is
no) adjacency between v1 and v2 in a solution. All c0
and c1, for every couple v1 and v2, can be computed by
the dynamic programming scheme described in [12].
ARt-DeCo and DeCo have the same time complexity,
that is O(g2 × k2) where g is the number of gene trees in
the input and k be the maximum size of a tree.
The main difference is that in [12] extant genomes

were supposed to be perfectly assembled and in particu-
lar, if v1 and v2 are extant genes (or equivalently gene
tree leaves, which corresponds to Case 1 in [12]), then
DeCo would use the following scoring rules:
c0(v1, v2) = ∞ and c1(v1, v2) = 0 if v1v2 is an adjacency

in the data, otherwise c0(v1, v2) = 0 and c1(v1, v2) = ∞.
Here we modify these rules (it is the only case differ-

ent from the dynamic programming equations given in
[12] and Additional file 1) and propose instead that
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c1(v1, v2) = −logb(P(v1 ∼ v2)) & c0(v1, v2) = −logb(1 − P(v1 ∼ v2))

These formulas define a cost system which is consis-
tent with the previous one: when n = p (perfectly
assembled genomes) it gives the same result. When it is
not the case, the costs are between 0 and ∞ as the prob-
abilities go from 0 to 1.
We left the basis of the logarithm as a variable b. Giv-

ing a value to b determines a sensitivity for finding new
adjacencies. It can be dependent on the genome S host-
ing v1 and v2. We choose the basis so that c1(v1, v2) < c0
(v1, v2) + Br where Br is the cost of an adjacency break-
age. Thus an adjacency is systematically proposed when
it is inferred in the closest ancestor of S. The adjacency
is obviously not always true in that case, because a rear-
rangement can have broken it in S. But it is a necessary
condition to be able to propose any adjacency. If a gen-
ome is highly fragmented, proposing such an adjacency
is more likely to lead to a true scaffolding adjacency
than to cancel an evolutionary rearrangement. The rela-
tion c1(v1, v2) < c0(v1, v2) + Br yields:

b >

(
1 − p(S)
p(S)

)1/Br

where p(S) represents the fragmentation of the gen-
omes hosting v1 and v2, defined in the previous section.
Preliminary experiments show that there is indeed a
phase change in the number of inferred adjacencies
when b reaches the right hand side of the above equa-
tion (Figure 2). Above this value, the number of inferred
adjacencies is mainly constant, while it changes radically
for smaller values. In following experiments we then
fixed b to 1.05 times the right hand side of the above
equation, in order to be sure to be on the plateau fol-
lowing the phase change.

Exploration of the solution space
The dynamic programming scheme of DeCo allows the
quantitative exploration of the whole solution space. This
has been developed, in the DeCo model, in [31], where it
was shown how to explore all solutions (i.e. evolutionary
histories for adjacencies) under a Boltzmann probability
distribution defined as follows: for a given instance (pair
of gene trees and set of extant adjacencies) with solution
space S, the parsimony score of an adjacency history h is
denoted by s(h), and the Boltzmann probability of h is
defined as e−s(h)/kT/

∑
g∈S e−S(g)/kT. Here kT is a constant

that can be used to skew the probability distribution:
when kT is small, parsimonious histories dominate the
distribution, while a large kT leads to a more uniform
distribution over the whole solution space.
This allows to associate to a feature of a solution (here

an ancestral adjacency) a support defined as the ratio

between the sum of the probabilities of the solutions
that contain this feature and the sum of the probabilities
of all solutions. This approach has been implemented in
the DeClone software [31]. We integrated this possibility
to ARt-DeCo and thus associate a support to both
extant and ancestral adjacencies. Computations were
run with a value of the kT constant equal to 0.1 to
ensure that the Boltzmann distribution is highly domi-
nated by optimal and slightly sub-optimal solutions.
This value was chosen after preliminary tests on a sub-
set of instances that showed that scenarios sampled with
this value of kT were in very large majority optimal
scenarios.

Results
We tested ARt-DeCo on three data sets. The first one is
composed of 7 tetrapod species with only universal uni-
copy genes, and aims at comparing our method with the
method of Aganezov et al. [29]; on this data set, we
obtain comparable results. Then we ran ARt-DeCo on
the complete Ensembl Compara [30] database, including
69 eukaryotic species and 20,279 gene families with arbi-
trary numbers of duplications and losses. This shows that

Figure 2 Determination of a good value for base log b. We
simulated 550 fissions on a data set of 7 tetrapod species (see
Section Results) and evaluate the ability of ARt-DeCo to recover
broken adjacencies by the simulated fissions for different values for
the base log b. On the x axis is the multiplicative factor of⎡
⎢⎢⎢⎢⎢⎢⎢

(
1 − p(S)
p(S)

) 1
Br

⎤
⎥⎥⎥⎥⎥⎥⎥
, where Br = 1. As we can see on the graph,

there is a phase change at 1.0, meaning that from this value a good
number of adjacencies can be proposed. Increasing the
multiplicative factor does not qualitatively change the results. This
experiment was repeated for different numbers of simulated fissions
(see Additional file 2) and different species trees, and in all cases
results exhibited the same profile.
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ARt-DeCo scales up and can process large data sets of
whole genomes; for this data set we examine carefully
one scaffolding adjacency proposed by ARt-DeCo in the
poorly assembled panda genome and provide evidence it
is likely a true scaffolding adjacency. The third data set
we consider is the restriction to the 39 eutherian mam-
mals genomes of the previous data set. The computa-
tional efficiency of ARt-DeCo allows to reproduce the
computation many times with simulated missing adjacen-
cies, and replicates to obtain empirical error bars on the
measures. We performed all experiments with fixed costs
for adjacency gains (Gain) and breakages (Br), respec-
tively set to 3 and 1. There are several reasons for this
discrepancy: first the actual number of adjacencies is
very low compared to the space of possible adjacen-
cies, which makes more probable to break a particular

one

(
p =

1
#adj

)
than to gain a particular one(

p =
2

#genes × (#genes − 1)

)
: there is a huge unob-

served space of possible solutions that should affect
the costs; second it has been remarked that good sta-
tistical estimates of genomic distances when genomes
are coded by the presence or absence of adjacencies
are obtained with a state of possible adjacencies 3
times larger than the number of adjacencies [32].

Seven tetrapods - comparison with the method of
Aganezov et al. [29]
By querying Biomart [33], we produced a data set simi-
lar to the one described in Aganezov et al. [29]: it con-
sists in 8,818 universal unicopy gene families from
Human, Chimp, Macaque, Mouse, Rat, Dog and
Chicken. The latter was not present in the data set of
Aganezov et al. [29], and we included it here because of
a fundamental difference between the two methods: our
method works with rooted phylogenies whereas Agane-
zov et al. [29] is not sensitive to the position of the
root. This means that our method cannot scaffold an
outgroup species, simply because, for any adjacency
absent from the outgroup, it is more parsimonious to
assume it is gained in all ingroup species. So we just
added a distant outgroup to scaffold the 6 species used
in [29].
We produced different sets of randomly fragmented

genomes by considering n = 50 to n = 1050 random
artificial breaks (or “fissions”) in genomes, sticking to
the described experiments in [29]. This means we sim-
ply removed n random adjacencies per genome from
the data set. For each n, we replicated the experiment
30 times.
For each replicate with n random artificial adjacency

breaks, let T P be the number of removed adjacencies

that ARt-DeCo retrieves and F P be the number adja-
cencies not in the removed ones but proposed by ARt-
DeCo.
We measured, following [29], approximations of the

sensitivity and precision:

′True positive′ =
TP

n + FP

′False positive′ =
FP

n + FP

Aganezov et al. report that “True positive“ takes values
between 75% and 87%, and “False positive“ takes values
from 0.5% to 9%, varying in function of n. We report
similar values for all our experiments (see Table 1).
Thus, on small data sets and discarding gene families

with complex histories, we obtain similar performance.
The next experiments illustrate that the contribution of
our method is then to be able to process much larger
and much more complex data sets.

69 eukaryotes - a proof of scaling up
We ran ARt-DeCo on the full Ensembl Compara data-
base (1,222,543 protein coding extant genes in 69 extant
species) in about 18 h. The input contains 1,023,492
adjacencies in the extant genomes, showing that many
genomes assemblies are highly fragmented, from 11
chromosomes for the perfectly assembled opossum gen-
ome to 12,704 contigs for the wallaby genome, an order
of magnitude comparable to the number of genes. In
Figure 3, the black bars show the proportion of genes
with 0, 1 or 2 syntenic neighbors in the extant input
genomes. Around 30% of genes have at most one neigh-
bor, while we would expect less than 1% for perfectly
assembled genomes.
ARt-DeCo predicts 36,445 new extant adjacencies. As

shown in Figure 3 (red bars) there is a significant
increase in extant genes with 2 syntenic neighbors, as in

Table 1 Statistics on adjacencies recover by ARt-DeCo on
7 tetrapods dataset with different number of simulated
breaks

#Breaks (n) 50 150 250 350 450 550

T P 283 829 1364 1895 2418 2922

F P 14 16.5 21 24.5 32 40

True positive 88.64% 89.98% 89.38% 89.00% 88.32% 87.35%

False positive 4.40% 1.78% 1.39% 1.15% 1.18% 1.19%

#Breaks (n) 650 750 850 950 1050

T P 3431 3917 4398 4875 5338

F P 46 57 63 73.566 83

True positive 86.84% 85.87% 85.12% 84.38% 83.58%

False positive 1.17% 1.25% 1.22% 1.27% 1.30%
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a bona fide scaffolding, at the expense of a very small
number of genes with more than two neighbors, corre-
sponding to syntenic conflicts. Complementary compu-
tations show that more than 99.6% contigs in extant
species remain linear (two genes having degree 1 and
others degree 2), in spite of the large number of contig
connections inferred in some species (e.g., the number
of contigs goes from 2,599 down to 1,864 for Ailuro-
poda melanoleuca or from 11,528 down to 7,930 for
Tarsius syrichta). Figure 4 shows the percentage of
improvement given by the method relatively to the
initial data. Precisely, this percentage is obtained by

computing
CI − CN

CI − p
on extant species which are not

completely assembled, where CI, resp. CN and p are the
number of contigs in the initial genome, resp. the num-
ber of contigs after adjacency inference by ARt-DeCo
and the expected number of chromosomes. The figure
shows that the more fragmented is the initial genome,
the better ARt-DeCo improves it.
Figure 5 shows the average degree of non-linearity of

extant species with at least one non-linear contig, repre-
senting 43 of 69 species, computed only on non-linear
contigs. Degree of non-linearity (Dnl) correspond to sup-
plementary degree of genes that are not consistent with
a linear conformation and computed as follow:

Dnl =
n∑

x=1
(dx − 2) + (m − 2)

n = N umber of genes with degree >2
dx = N umber of degree of gene x

m = N umber of genes with degree = 1
On 43 species with non-linear contigs, 23 have non-

linear contigs with only one extra branch. For the 20
remaining species, contigs are more branchy and few
are circular.
We also reconstruct 1,547,546 ancestral adjacencies on

3,245,572 ancestral genes. As previously noted [34], errors
in gene trees artificially inflate the number of ancestral
genes computed with gene tree/species tree reconcilia-
tions. Nevertheless, the pattern of ancestral gene neighbor-
hood shows mainly ancestral genes with 0, 1 or 2
neighbors, and some conflicts rapidly decreasing (Figure 3,
blue bars). More than 92% inferred contigs in ancestral
genomes are linear. Figure 6 presents the density histo-
gram of average degree of non-linearity for ancestral spe-
cies on inferred contigs that are not linear. As we can see
most of the species have an average of degree non-linearity
less than 20 meaning that in average non-linear ancestral
contigs have a degree of non-linearity less than 20. More-
over, more than 50% of ancestral species have a degree of
non-linearity less than 6 indicating that most of non-linear
ancestral contigs are weakly branchy. However a large
number of ancestral species have contigs strongly branchy
and circular and need additional processes to obtain linear
contigs. It is likely that better ancestral and extant gen-
omes would result from better input gene trees.
We analyze in details one predicted extant adjacency,

in order to understand why it is present in the output

Figure 3 Number of syntenic neighbors of extant and ancestral
genes. Distribution of the proportion of genes with a given number
of neighbors in extant and ancestral genomes before and after
adjacency prediction for the data set on 69 eukaryotes. Figure 4 Percentage of improvement of genome assemblies,

according to their initial fragmentation. Statistics are obtained
for the 69 eukaryotes dataset, excluding genomes that are already
well assembled (bold figures between parenthesis indicate
cardinalities of classes).
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of ARt-DeCo and not in the input. The adjacency we
chose is randomly taken from the predicted ones
between a contig and a chromosome in the panda gen-
ome (Ailuropoda melanoleuca). For this adjacency
between genes RCSD1 and CREG1, we analyze gene
neighborhoods around homologous adjacencies in
others species. On Figure 7, we represent the species
tree with information on evolutionary events that
occurred along species tree (adjacency loss, duplication
and gain, and gene loss and duplication) and adjacency

status with color code on species name (red for species
without RCSD1-CREG1 adjacency, blue for species with
RCSD1-CREG1 adjacency in Ensembl database and
green for species for which ARt-DeCo infers an adja-
cency between RCSD1 and CREG1 while not present in
Ensembl). To illustrate the validity of new adjacencies
inferred by ARt-DeCo we analyze the gene neighbor-
hood around RCSD1-CREG1 adjacency. As, we can see
on Figure 7, we observe that gene order and content is
the same between cat (Felis catus), human (Homo

Figure 5 Distribution of average degree of non-linearity on non-linear contigs by extant species. On this graph, only species with at least
one non-linear contig are shown, representing 43 of the 69 species. 23 of these species have an average degree of non-linearity of 2, meaning
that their non-linear contigs contain an extra branch (one gene of degree 3 and one extra gene with degree 1).
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sapiens) and panda except for ADCY10 gene (in black)
that is not present in panda genome. The RCSD1-
CREG1 adjacency is confirmed by adjacency support of
>99.96%, according to the exploration of the solution
space. Due to the high fragmentation of panda genome
and previous information it is reasonable to think that
this adjacency is true. We observe the same results for
the kangaroo rat (Dipodomys ordii) genome with gene
content similarity with close species, high adjacency
support (>99.99%) and high genome fragmentation
(9,720 contigs).
This analysis also allowed to see a possible lack of

data in Ensembl. As can be seen on the mouse lemur
(Microcebus murinus) genome, there is no adjacency
between CREG1 and RCSD1 because no RCSD1 gene
has been annotated in Ensembl for this species. How-
ever, the gene content and order around CREG1 is very
similar to that of close genomes (e.g., human). More-
over, Ensembl contains an incomplete DNA sequence
for the equivalent position of CD247 and RCSD1 genes
in mouse lemur. This implies that the genes CD247 and
RCSD1 could be present in mouse lemur but are not
annotated.

39 mammals - validity
We switched to a smaller dataset to measure the validity
of the method, because the computing time don’t allow

too many replicates in the entire database. We selected
all protein coding gene families from the 39 eutherian
mammal genomes stored in the Ensembl database [30].
ARt-DeCo proposes 1,056,418 ancestral adjacencies

and 22,675 new adjacencies in extant genomes. A pro-
portion of 95% of these adjacencies have a >0.9 support,
meaning that they are present in over 90% of parsimo-
nious solutions, computed as described in [31] for a kT
value equal to 0.1 (chosen to ensure that the probability
distribution over the solution space is highly dominated
by optimal solutions).
Figure 8A shows the shape of extant genomes through

the number or cumulative support of adjacencies inci-
dent to one gene. The distribution for all genes is
plotted for extant genomes in the input and in the out-
put, taking support into account or not. The figure
shows that the genomes scaffolded with ARt-DeCo host
more genes having exactly two neighbors (highest peak
in the figure, the input is in black and output is in red).
Peaks are integer numbers: unweighted measures have
all their values integer while weighted measures still
have peaks at integers. Complementary computations
show that more than 99.7% contigs in extant species are
indeed linear.
Figure 8B is the analog of Figure 8A but for ancestral

genomes: blue for the number of neighbors in the ver-
sion of ARt-DeCo without support (only one solution is
given), and pink for the version of ARt-DeCo with sup-
port. The several peaks of the graph illustrate that
ancestral genomes are not in the shape of disjoint paths,
as we would expect it from linear genomes. This was
already remarked in [12], and is likely due to errors in
gene trees in the Ensembl database [35,36]. Additional
computations show that ancestral species indeed contain
a larger proportion of nonlinear contigs: only 91.2%
contigs are linear for those species, among which con-
tigs hosting only one gene are more represented than in
extant genomes. Thus, a small part of the inferred adja-
cencies are incorrect, leading to some artificially tree-
like or cyclic contigs.
The bars with supports are more dispersed, as

expected, because they take their values from non integer
numbers. It puts the conflicts into perspective: when a
gene has more than two neighbors, usually one adjacency
is less supported.
We also performed experiments with artificial adja-

cency breaks as in the 7 tetrapods experiment. We
removed from 1 to 75% input adjacencies from the
human genome, and then from the horse genome. We
chose the human and horse genome because of their
phylogenetic position: one has many closely related gen-
omes, while the other is rather distant from its closest
neighbor inside the placentals. This allows us to measure
the effect of the presence of closely related genomes in

Figure 6 Density histogram of average degree of non-linearity
for ancestral species on non-linear contigs. Most of the ancestral
species have an average degree of non-linearity of 20 meaning that
in average contigs of ancestral species reconstructed by ARt-DeCo
have a degree of non-linearity less than 20. This figure shows that a
large number are non-linear and additional operations are necessary
to obtain linear contigs.
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the given phylogeny. The two situations are very different
because of the bias in taxonomic sampling around human.
The presence of very close relatives in the data set makes
the problem much easier for the human genome.
Indeed, as shown on Figure 9, the sensitivity (measured

by the “T rue positive“ rate as in the previous section, to
keep a coherence and comparability with [29]) of the
method is around 40% for the human genome, and 5%
for the horse genome. The precision is high in all cases,
decreasing with the number of broken adjacencies but
the number of “F alse positives“ stays quite low.
The complexity of the data is a real issue here. While

in a prepared, filtered data set of 7 tetrapods the sensi-
tivity was above 80% in all cases, here with all genes
from 39 genomes including duplications and losses, it is
much lower in all cases.
From all data sets, we observe that the precision of

ARt-DeCo is always high, while the sensitivity varies

according to the conditions. So we can see the method
as a rather sure predictor of a small number of scaffold-
ing linkages, without the pretension to reconstruct fully
assembled genomes.

Discussion and Conclusion
Ancestral gene order reconstruction, when ancestral
genes are given, can be seen as a scaffolding problem.
Indeed ancestral genes may be seen as contigs, and find-
ing an order between contigs is a similar problem in both
extant and ancestral genomes. If this similarity had
already been remarked and exploited in some way
[24,26,37], a fully integrated approach has only recently
been achieved by Aganezov et al. [29], with a method
which was limited to universal unicopy genes and a small
number of genomes. Extending DeCo [12], a software
aimed at reconstructing ancestral genomes and scaling
up to dozens of genomes with possibly complex histories,

Figure 7 Evolutionary history of the adjacency between RCSD1 (turquoise) and CREG1 (light green). ARt-DeCo infers the creation of this
adjacency at the root of Amniots. We integrated the different evolutionary events concerning the RCSD1-CREG1 adjacency along the species
tree. Empty red crosses represents an adjacency losses (i.e., cases where both adjacent genes are lost at the same time); each full red cross
represents a gene loss (only one of the genes is lost); each empty green square indicates an adjacency duplication (places where the two
adjacent genes are duplicated together); a full green square indicates a gene duplication and an orange triangle represents an adjacency gain.
Color code for species name gives information on adjacency status. In red species, RCSD1 and CREG1 genes are not adjacent, while blue species
host the RCSD1-CREG1 adjacency as described by Ensembl, and green species have the RCSD1-CREG1 adjacency inferred by ARt-DeCo (though
it is absent from Ensembl). For green species, the adjacency support is indicated. For some species, representing most of the clades in Ensembl,
we illustrate the gene content around the RCSD1-CREG1 adjacency, which illustrates strong similarities in the genomes of blue and green
species.
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we implement the additional possibility of scaffolding
extant genomes in the same process, by handling equally
ancestral and ancient genomes, with known and
unknown parts in genome structures.
We demonstrate the efficiency of this approach on

several eukaryote genomes data sets. It runs fast enough,
proposes many additional supported adjacencies in
extant genomes, and from several investigations we
think we can state that such links are very likely to exist
in reality. We are able to detect the less likely ones by
assigning a support on ancestral and extant adjacencies
by the same principle.
The main computational difference with the approach of

Aganezov et al. [29] is that adjacencies are supposed to

evolve independently. It has several notable consequences.
The first one is the running time, because we switch from
an NP-complete to a polynomial problem, and we are able
to handle a large number of whole genomes. The second
one is the shape of ancestral genomes. While methods
modeling rearrangements [29] end up with bona fide gen-
ome structures, as linear arrangement of genes, our adja-
cency sets can be conflictual, both in ancestral and extant
genomes. This means a gene can have more than two
neighbors, unlike in real genomes. Whereas this can be
seen as a serious drawback because genomes are not rea-
listic, we would like to argue that it has several advantages,
in addition to the running time. Indeed, the amount of
conflicts can be a measure of uncertainty of the methods

Figure 8 Weighted neighborhoods of extant (A) and ancestral genes (B). Distribution of the proportion of extant and ancestral genes with
a given neighborhood weight in extant genomes before and after adjacency prediction, with or without support, for the data set on 39
mammals. The neighborhood weight of a gene is the sum of the supports of all adjacencies involving this gene. Continuous values are binned
by intervals.

Figure 9 Capacity of ARt-DeCo to recover adjacencies after simulated breaks on human and horse genome.
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and data. It has been remarked many times that data sets,
and in particular gene trees, are far from perfect. But bet-
ter gene trees produce ancestral genomes with less con-
flicts [34]. Conflicts can point at problems that don’t
necessarily concern the method itself, but give an overview
of the quality of the data. This overview is lost if we force
the data to fit in a linear structure. But if a linear ancestral
genome is really needed, linearization techniques exist
[38], even if we would argue for linearization techniques
that also put into question the input data.
Some limitations would be still to overcome. For

example we don’t handle the orientation of the genes.
This would be desirable to have a finer account of
ancestral and extant genomes, and to have a better fit
between the a priori probability of an adjacency (com-
puted in an oriented mode) and the reconstructed adja-
cencies. It would not be conceptually much complicated
because adjacencies can be considered between gene
extremities instead of between genes. But it would result
in a loss of sensitivity because inversions of a single
gene, which seem to be frequent, would fall into a rear-
rangement signal, increasing the probability to lose the
traces of neighborhoods. We leave this open for a future
work.
Another perspective is to be able to question extant

adjacencies given in the input. In our framework they have
probability 1, but a scaffolding is not necessarily only giv-
ing an order to the contigs. It can be inserting a contig
inside another, or cutting a chimeric contig because a bet-
ter arrangement can be proposed. Assembly errors are
often numerous, not only because of a lack of information,
but also because of false information [39]. It could be
done by re-assigning an a priori probability to each extant
adjacency, and not only to the ones outside the contigs.
Finally, following the idea introduced in RACA [26], it
could be interesting to pair the predictions of ARt-DeCo
with sequence information such as mate-pairs or even
physical or optical maps in order to integrate both evolu-
tionary signal and sequencing data.

Additional material

Additional File 1: Figure 10 ARt-DeCo dynamic programming
scheme. Recurrence formulas used in ARt-DeCo to reconstruct
adjacencies in ancestral and extant genomes.

Additional File 2: Figure 11 Effect of number of adjacencies breaks
on adjacencies recover in function of base log value. On the left,
graph represents the number of adjacencies recovery in function of
multiplicative factor for the log base for 50 simulated breaks in each
species of 7 tetrapods dataset. On the right, the same graph but with
1050 simulated breaks for each species. As we can see the histogram
profile is quietly similar between these two experiments and the one
with 550 simulated breaks (see Figure 2). In conclusion, Number of
adjacencies breaks didn’t impact the optimal value for the log base.
(Values are available in Table 1.
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