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Abstract

in these scenarios is still an active research area.

change thresholds.

A major application of RNA-Seq is to perform differential gene expression analysis. Many tools exist to analyze
differentially expressed genes in the presence of biological replicates. Frequently, however, RNA-Seq experiments
have no or very few biological replicates and development of methods for detecting differentially expressed genes

In this paper we introduce a novel method, called IsoDFE, for differential gene expression analysis based on
bootstrapping. We compared IsoDE against four existing methods (Fisher's exact test, GFOLD, edgeR and Cuffdiff)
on RNA-Seq datasets generated using three different sequencing technologies, both with and without replicates.
Experiments on MAQC RNA-Seq datasets without replicates show that IsoDE has consistently high accuracy as
defined by the gPCR ground truth, frequently higher than that of the compared methods, particularly for low
coverage data and at lower fold change thresholds. In experiments on RNA-Seq datasets with up to 7 replicates,
IsoDE has also achieved high accuracy. Furthermore, unlike GFOLD and edgeR, IsoDE accuracy varies smoothly with
the number of replicates, and is relatively uniform across the entire range of gene expression levels.

The proposed non-parametric method based on bootstrapping has practical running time, and achieves robust
performance over a broad range of technologies, number of replicates, sequencing depths, and minimum fold

Introduction

RNA-Seq has become the new standard for the analysis of
differential gene expression [1-3] due to its wider dynamic
range and smaller technical variance [4] compared to tra-
ditional microarray technologies. However, simply using
the raw fold change of the expression levels of a gene
across two samples as a measure of differential expression
can be unreliable, because it does not account for read
mapping uncertainty or capture, fragmentation, and
amplification variability in library preparation and sequen-
cing. Therefore, the need for using statistical methods
arises. Traditionally, statistical methods rely on the use of
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replicates to estimate biological and technical variability in
the data. Popular methods for analyzing RNA-Seq data
with replicates include edgeR [5], DESeq [6], Cuffdiff [7],
and the recent NPEBSeq [8].

Unfortunately, due to the still high cost of sequencing,
many RNA-Seq studies have no or very few replicates [9].
Methods for performing differential gene expression ana-
lysis of RNA-Seq datasets without replicates include var-
iants of Fisher’s exact test [4]. Recently, Feng et al.
introduced GFOLD [10], a non-parametric empirical Baye-
sian-based approach, and showed that it outperforms
methods designed to work with replicates when used for
single replicate datasets.

In this work, we present a novel method for differential
gene expression analysis for RNA-Seq data, called IsoDE.
Our method uses the traditional bootstrapping approach
[11] to resample RNA-Seq reads, in conjunction with the
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accurate Expectation-Maximization IsoEM algorithm
[12] to estimate gene expression levels from the samples.
Experimental results on RNA-Seq datasets generated
using three different technologies (Illumina, ION Tor-
rent, and 454) from two well-characterized MAQC [13]
samples show that IsoDE has consistently high accuracy,
comparable or better than that of Fisher’s exact test,
GFOLD, Cuffdiff, and edgeR (we did not compare
directly with NPEBSeq since installation was not success-
ful). Notably, and unlike other methods, IsoDE maintains
high accuracy (sensitivity and PPV around 80%) on low
coverage RNA-Seq datasets and at lower fold change
thresholds.

Recent studies such as Rapaport et al. [14] have reiter-
ated the fact that increasing the number of replicate sam-
ples significantly improves detection power over increased
sequencing depth. We explored the effect of the number
of replicates on prediction accuracy using a RNA-Seq
dataset [15] with 7 replicates for each of two conditions
(control and E2-treated MCE-7 cells). Although all meth-
ods generally benefit from the use of additional replicates,
GFOLD and edgeR show a marked discontinuity when
transitioning from 1 to 2 replicates. In contrast, IsoDE
accuracy varies smoothly with changes in the number of
replicates.

Methods

Bootstrap sample generation

As most differential expression analysis packages, IsoDE
starts with a set A of RNA-Seq read alignments for each
condition. Bootstrapping can be used in conjunction
with any method for estimating individual gene expres-
sion levels from aligned RNA-Seq reads, estimation typi-
cally expressed in fragment per kilobase of gene length
per million reads (FPKM). In IsoDE, we use the [soEM
algorithm [16], an expectation-maximization (EM) algo-
rithm that takes into account gene isoforms in the infer-
ence process to ensure accurate length normalization.
Unlike some of the existing estimation methods, [soEM
uses non-uniquely mapped reads, relying on the distri-
bution of insert sizes and base quality scores (as well as
strand and read pairing information if available) to
probabilistically infer their origin. Previous experiments
have shown that IsoEM vyields highly accurate FPKM
estimates with lower runtime compared to other com-
monly used inference algorithms [17].

The first step of IsoDE is to generate M bootstrap
samples by randomly resampling with replacement from
the reads represented in A. When a read is selected dur-
ing resampling, all its alignments from A are included in
the bootstrap sample. The number of resampled reads
in each bootstrap sample equals the total number of
reads in the original sample. However, the total number
of alignments may differ between bootstrap samples,
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depending on the number of alignments of selected
reads and the number of times each read is selected.
The IsoEM algorithm is then run on each bootstrap
sample, resulting in M FPKM estimates for each gene.
The bootstrap sample generation algorithm is summar-
ized below:

1. Sort the alignment file A by read ID

2. Compute the number N of reads and generate a

list £ containing read IDs in the alignment file A

3. Fori=1,.., M do:
(a) Randomly select with replacement N read IDs
from [, sort selected read IDs, and extract in A;
all their alignments with one linear pass over A
(if a read is selected m times, its alignments are
repeated m times in A;)
(b) Run IsoEM on A; to get the i, FPKM esti-
mate for each gene

Bootstrap-based testing of differential expression

To test for differential expression, IsoDE takes as input
two folders which contain FPKM estimates from boot-
strap samples generated for the two conditions to be
compared. In case of replicates, a list of bootstrap
folders can be provided for each condition (one folder
per replicate, normally with an equal number of boot-
strap samples) - IsoDE will automatically merge the
folders for the replicates to get a combined folder per
condition, then perform the analysis as in the case with-
out replicates.

In the following we assume that a total of M bootstrap
samples is generated for each of the compared condi-
tions. We experimented with two approaches for pairing
the FPKMs estimated from the two sets of bootstrap
samples. In the “matching” approach, a random one-to-
one mapping is created between the M estimates of first
condition and the M estimates of the second condition.
This results in M pairs of FPKM estimates. In the “all”
approach, M* pairs of FPKM estimates are generated by
pairing each FPKM estimate for first condition with
each FPKM estimate for second condition. When pair-
ing FPKM estimate a; for the first condition with FPKM
estimate b; for the second condition, we use a,/b; as an
estimate for the fold change in the gene expression level
between the two conditions. The “matching” approach
thus results in N = M fold change estimates, while the
“all” approach results in N = M” fold change estimates.

The IsoDE test for differential expression requires two
user specified parameters, namely the minimum fold
change f and the minimum bootstrap support b. For a
given threshold f (typically selected based on biological
considerations), we calculate the percentage of fold
change estimates that are equal to or higher than f
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when testing for overexpression, respectively equal to or
lower than 1/f when testing for underexpression. If this
percentage is higher than the minimum bootstrap sup-
port b specified by the user then the gene is classified as
differentially expressed (DE), otherwise the gene is clas-
sified as non-differentially expressed (non-DE). The
actual bootstrap support for fold change threshold f, as
well as the minimum fold change with bootstrap sup-
port of at least b are also included in the IsoDE output
to allow the user to easily increase the stringency of the
DE test.

As discussed in the results section, varying the boot-
strap support threshold b allows users to achieve a
smooth tradeoff between sensitivity and specificity for a
fixed fold change f (see, e.g., Figure 1). Since different
tradeoffs may be desirable in different biological con-
texts, no threshold b is universally applicable. In our
experiments we computed b using a simple binomial
model for the null distribution of fold change estimates
and a fixed significance level o = 0.05. Specifically, we
assume that under the null hypothesis the fold changes
obtained from bootstrap estimates are equally likely to
be greater or smaller than f. We then compute b as
Xmin/ N , where x,,,;, = min{x : P (X > x) < o} and X is a
binomial random variable denoting the number of suc-
cesses in N independent Bernoulli trials with success
probability of 0.5. For convenience, a calculator for com-
puting the bootstrap support needed to achieve a
desired significance level given the (possibly different)
numbers of bootstrap samples for each condition has
been made available online (see Availability).

The number M of bootstrap samples is another para-
meter that the users of IsoDE must specify. As discussed
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in the results section, computing the bootstrap support
for all genes takes negligible time, and the overall run-
ning time of IsoDE is dominated by the time to com-
plete the 2M IsoEM runs on bootstrap samples. Hence,
the overall runtimes grows linearly with M . Experimen-
tal results suggest that the “all” pairing approach pro-
duces highly accurate results with relatively small values
of M (e.g., M = 20), and thus results in practical run-
times, independent of the number of replicates. We also
note that for studies involving pairwise DE analysis of
more than two conditions, IsoDE only requires M inde-
pendently generated bootstrap samples per condition.
Since the time for computing pairwise bootstrap support
values is negligible, the overall running time will grow
linearly with the number of conditions.

Compared methods

The four methods that were compared to IsoDE are
briefly described below.

Fisher’s exact test

Fisher’s exact test is a statistical significance test for
categorical data which measures the association between
two variables. The data is organized in a 2x2 contin-
gency table according to the two variables of interest.
We use Fisher’s exact test to measure the statistical sig-
nificance of change in gene expressions between two
conditions A and B by setting the two values in the first
row of the table to the estimated number of reads
mapped per kilobase of gene length (calculated from
IsoEM estimated FPKM values) in conditions A and B,
respectively. The values in the second row of the contin-
gency table depend on the normalization method used.
We compared three normalization methods. The first
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Figure 1 Sensitivity, PPV, and F-Score of IsoDE-Match (M = 200 bootstrap samples per condition) on the lllumina MAQC data, with
varying bootstrap support threshold.
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one is total read normalization, where the total number
of mapped reads in conditions A and B are used in the
second row. The second is normalization by a house-
keeping gene. In this case, the estimated number of
reads mapped per kilobase of housekeeping gene length
in each condition is used. We also test normalization by
ERCCs RNA spike-in controls [18]. FPKMs of ERCCs
are aggregated together (similar to aggregating the
FPKMs of different transcripts of a gene), and the esti-
mated number of reads mapped per kilobase of ERCC
are calculated from the resulting FPKM value and used
for normalization. In our experiments, we used POLR2A
as a housekeeping gene.

The calculated p-value, which measures the signifi-
cance of deviation from the null hypothesis that the gene
is not differentially expressed, is computed exactly by
using the hypergeometric probability of observed or
more extreme differences while keeping the marginal
sums in the contingency table unchanged. We adjust the
resulting p-values for the set of genes being tested using
the Benjamini and Hochberg method [19] with 5% false
discovery rate (FDR).

GFOLD

GFOLD [10] is a generalized fold change algorithm
which produces biologically meaningful rankings of dif-
ferentially expressed genes from RNA-Seq data. GFOLD
assigns reliable statistics for expression changes based
on the posterior distribution of log fold change. The
authors show that GFOLD outperforms other com-
monly used methods when used for single replicate
datasets. We used GFOLD v1.0.7 with default para-
meters and fold change significance cutoff of 0.05.
Cuffdiff

Cuffdiff [7] uses a beta negative binomial distribution
model to test the significance of change between sam-
ples. The model accounts for both uncertainty result-
ing from read mapping ambiguity and cross-replicate
variability. Cuffdiff reports fold change in gene expres-
sion level along with statistical significance. In our
comparison, we used Cuffdiff v2.0.1 with default
parameters.

edgeR

edgeR [5] is a statistical method for differential gene
expression analysis which is based on the negative bino-
mial distribution. Although edgeR is primarily designed
to work with replicates it can also be run on datasets
with no replicates. We used edgeR on counts of uniquely
mapped reads, as suggested in [15]. We followed the
steps provided in the edgeR manual for RNA-Seq data.
calcNormFactors(), estimateCommonDisp(), estimate-
TagwiseDisp(), and exactTest() were used with default
parameter, when processing the MCEF-7 replicates. When
processing MAQC data and a single replicate of MCF-7
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data, estimateTagwiseDisp() was not used, and the dis-
persion was set to 0 when calling exactTest(). The results
where adjusted for multiple testing using the Benjamini
and Hochberg method with 5% FDR.

Mapping RNA-Seq reads

MAQC Illumina reads were mapped onto hgl9 Ensembl
63 transcript library; all other datasets were mapped
onto hgl9 Ensembl 64 transcript library. Illumina data-
sets (MAQC and MCF-7) were mapped using Bowtie
v0.12.8 [20]. ION Torrent reads were mapped using
TMAP v2.3.2, and 454 reads were mapped using
MOSAIK v 2.1.33 [21]. For edgeR, non-unique align-
ments were filtered out, and read counts per gene were
generated using coverageBed (v2.12.0). Read mapping
statistics are detailed in Table S1 in Additional File 1.
Number of mapped reads per kilobase of gene length
used in Fisher’s exact test calculation are based on
IsoEM FPKMs.

Ground truth definition

On MAQC dataset the ground truth was defined based
on the available qPCR data from [13]. Each TagMan
assay was run in four replicates for each measured gene.
POLR2A (ENSEMBL gene ID ENSG00000181222) was
chosen as the reference gene and each replicate CT was
subtracted from the average POLR2A CT to give the
log2 difference (delta CT). For delta CT calculations, a
CT value of 35 was used for any replicate that had CT
> 35. The normalized expression value of a gene g
would be: 2*{2(CT of POLR2A)-(CT of g)}. We filtered
out genes that: (1) were not detected in one or more
replicates in each samples or (2) had a standard devia-
tion higher than 25% for the four TagMan values in
each of the two samples. Of the resulting subset, we
used in the comparison genes whose TaqgMan probe IDs
unambiguously mapped to Ensemble gene IDs (686
genes). A gene was considered differentially expressed if
the fold change between the average normalized Tagq-
Man expression levels bin the two conditions was
greater than a set threshold with the p-value for an
unpaired two-tailed T-test (adjusted for 5% FDR) of less
than 0.05. We ran the experiment for fold change
thresholds of 1, 1.5, and 2.

For experiments with replicates we used the RNA-Seq
data generated from E2-treated and control MCEF-7 cells
in [15]. In this experiment, we compared [soDE with
GFOLD and edgeR. The predictions made by each
method when using all 7 replicates for each condition
were used as its own ground truth to evaluate predic-
tions made using fewer replicates. The ground truth for
IsoDE was generated using a total of 70 bootstrap sam-
ples per condition.
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Evaluation metrics

For each evaluated method, genes were classified
according to the differential expression confusion matrix
detailed in Table 1. Methods were assessed using sensi-
tivity, positive predictive value (PPV), F-score, and accu-
racy, defined as follows:

L (TPOE + TPUE)
Sensitivity =
(TOE + TUE)
(TPOE + TPUE)
PPV =
(POE + PUE)
(TPOE + TPND + TPUE)
Accuracy =
(TOE + TND + TUE)
TPR x SPC
F — score = 2 x
TPR + SPC

Results and discussion

Datasets

We conducted experiments on publicly available RNA-
Seq datasets generated from two commercially available
reference RNA samples and a breast cancer cell line.

To compare the accuracy of different methods, we used
RNA-Seq data RNA samples that were well-characterized
by quantitative real time PCR (qRT-PCR) as part of the
MicroArray Quality Control Consortium (MAQC) [13];
namely an Ambion Human Brain Reference RNA, Cata-
log # 6050), henceforth referred to as HBRR and a Strata-
gene Universal Human Reference RNA (Catalog #
740000) henceforth referred to as UHRR. To assess accu-
racy, DE calls obtained from RNA-Seq data were com-
pared against those obtained as described in the Methods
section from TagMan qRT-PCR measurements collected
as part of the MAQC project (GEO accession GPL4097).

We used RNA-Seq data generated for HBRR and UHRR
using three different technologies: Illumina, ION-Torrent,
and 454. Details about the datasets and their SRA acces-
sion numbers (or run IDs for ION Torrent datasets) are
available in Table S1 in Additional File 1.

The MCF-7 RNA-Seq data was generated (from the
MCEF-7 ATCC human breast cancer cell line) by Liu

Table 1 Confusion matrix for differential gene expression
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et al. [15] using Illumina single-end sequencing with
read length of 50 bp. A total of 14 biological replicates
were sequenced from two conditions: 7 replicates for
the control group and 7 replicates for E2-treated MCF-7
cells. Sequencing each replicate resulted produced
between 25 and 65 millions of mapped reads. Details
about this dataset and accession numbers are also avail-
able in Table S1 in Additional File 1.

Bootstrapping support and pairing strategy effects on
IsoDE accuracy and runtime

We evaluated both the “matching” and “all” pairing stra-
tegies of IsoDE (referred to as IsoDE-Match and IsoDE-
All) for fold change threshold f of 1, 1.5, respectively 2,
and bootstrap support threshold b between 40% and
95%. The results of IsoDE-Match with M = 200 boot-
strap replicates per condition are shown in Figure 1.
The results show that, for each tested value of f, varying
b results in a smooth tradeoff between sensitivity and
PPV, while the F-score changes very little. For the
remaining experiments we used a bootstrap support
level b computed using a significance level of 0.05 under
the binomial null model detailed in the Methods sec-
tion. Note that the value of b selected in this way
depends on the number N of fold change estimates,
which in turn depends on both M and the pairing strat-
egy (N is equal to M for IsoDE-Match, respectively to
M? for IsoDE-All).

To determine the best pairing strategy, we ran IsoDE-
Match and IsoDE-All with number of bootstrap samples
M varying between 10 and 200 (results not shown). For
the considered measures, IsoDE-All achieved an accu-
racy very close to that of IsoDE-Match when run with a
comparable value of N . For example, as shown in
Tables 2, 3, 4, IsoDE-All run on M = 20 bootstrap sam-
ples (N = 400) had similar accuracy with the largest
number of bootstrap samples we could use with IsoDE-
Match (M = N = 200).

Since for a fixed N IsoDE-Match requires 2N boot-
strap samples while IsoDE-All requires only 2.,/N of
them, using IsoDE-All is significantly faster in practice.
Indeed, most of the IsoDE time is spent generating
bootstrap samples and estimating expression levels for
each of them using the IsoEM algorithm, with bootstrap
support computation typically taking a fraction of a
minute. Figure 2 shows the time required to generate

Predicted

Ground truth

Over-Expressed (TOE)

Non-Differential (TND) Under-Expressed (TUE)

Over-Expressed (POE) TPOE

Non-Differential (PND)

TPND

Under-Expressed (PUE)

TPUE
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Table 2 Accuracy, sensitivity, PPV and F-Score in % for MAQC lllumina dataset and fold change threshold f of 1, 1.5,

and 2.

Fold Change Method Accuracy % Sensitivity % PPV % F-Score %
FishersTotal 7041% 70.79% 91.24% 79.72%
FishersHousekeeping 65.60% 65.22% 95.05% 77.36%

1 GFOLD 78.13% 80.06% 92.67% 85.90%
Cuffdiff 11.37% 6.96% 100.00% 13.01%
edgeR 73.03% 73.26% 95.56% 82.94%
IsoDE-Match 82.63% 87.46% 83.70% 85.54%
IsoDE-All 82.22% 87.17% 82.82% 84.94%
FishersTotal 74.05% 78.20% 84.85% 81.39%
FishersHousekeeping 76.68% 73.61% 93.67% 82.44%
1.5 GFOLD 79.15% 79.35% 90.41% 84.52%
Cuffdiff 2843% 8.60% 100.00% 15.85%
edgeR 80.01% 79.92% 92.07% 85.57%
IsoDE-Match 78.98% 86.23% 84.62% 85.42%
IsoDE-All 79.01% 86.42% 84.49% 85.44%
FishersTotal 7843% 81.86% 82.44% 82.15%
FishersHousekeeping 81.20% 80.00% 8821% 83.90%
2 GFOLD 82.94% 78.84% 92.37% 85.07%
Cuffdiff 40.96% 10.47% 100.00% 18.95%
edgeR 83.67% 81.63% 91.17% 86.13%
IsoDE-Match 82.04% 85.58% 85.19% 85.38%
IsoDE-All 81.20% 86.74% 83.07% 84.87%

The number of bootstrap samples is M = 200 for IsoDE-Match and M = 20 for IsoDE-All, and bootstrap support was determined using the binomial model with

significance level o = 0.05.

Table 3 Accuracy, sensitivity, PPV and F-Score in % for lon Torrent dataset and fold change threshold f of 1, 1.5,

and 2.
Fold Change Method Accuracy % Sensitivity % PPV % F-Score %
FisherTotal 71.68% 72.76% 90.56% 80.69%
FisherHousekeeping 67.15% 66.87% 94.74% 7840%
FisherERCC 71.39% 7245% 88.97% 79.86%
1 GFOLD 75.77% 77.55% 90.43% 83.50%
IsoDE-Match 81.75% 86.38% 82.18% 84.05%
IsoDE-All 81.46% 86.07% 82.13% 84.05%
FisherTotal 74.16% 78.39% 85.06% 81.59%
FisherHousekeeping 76.06% 73.23% 92.96% 81.93%
FisherERCC 74.31% 78.59% 8545% 81.87%
15 GFOLD 7547% 77.63% 87.88% 82.44%
IsoDE-Match 77.66% 83.94% 84.75% 84.34%
IsoDE-All 77.81% 84.13% 84.45% 84.29%
FisherTotal 79.71% 83.02% 84.00% 83.51%
FisherHousekeeping 81.75% 80.70% 88.75% 84.53%
FisherERCC 7942% 82.56% 84.12% 83.33%
2 GFOLD 80.58% 76.74% 90.66% 83.12%
IsoDE-Match 81.75% 85.81% 84.63% 85.22%
IsoDE-All 81.61% 86.28% 84.13% 85.19%

The number of bootstrap samples is M = 200 for IsoDE-Match and M = 20 for IsoDE-All, and bootstrap support was determined using the binomial model with

significance level o = 0.05.
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Table 4 Accuracy, sensitivity, PPV and F-Score in % for the First 454 dataset and fold change threshold f of 1, 1.5,

and 2.
Fold Change Method Accuracy % Sensitivity % PPV % F-Score %
FisherTotal 34.01% 30.50% 95.63% 46.24%
FisherHousekeeping 24.52% 20.12% 94.74% 33.38%
1 GFOLD 55.62% 54.18% 92.11% 68.23%
IsoDE-Match 75.33% 79.57% 7741% 7847%
IsoDE-All 78.85% 84.67% 81.04% 82.82%
FisherTotal 48.18% 3537% 89.81% 50.75%
FisherHousekeeping 42.48% 24.86% 97.74% 39.63%
1.5 GFOLD 62.19% 58.13% 85.39% 69.17%
IsoDE-Match 64.09% 74.19% 72.52% 73.35%
IsoDE-All 72.85% 79.54% 80.62% 80.08%
FisherTotal 57.96% 39.53% 85.43% 54.05%
FisherHousekeeping 55.33% 29.30% 97.67% 45.08%
2 GFOLD 69.05% 61.16% 83.49% 70.60%
IsoDE-Match 67.15% 76.51% 70.30% 73.27%
IsoDE-All 75.18% 80.93% 78.03% 79.45%

The number of bootstrap samples is M = 200 for IsoDE-Match and M = 20 for IsoDE-All, and bootstrap support was determined using the binomial model with

significance level o = 0.05.

M = 20, respectively M = 200, bootstrap samples for
both conditions of several MAQC datasets. All timing
experiments were conducted on a Dell PowerEdge R815
server with quad 2.5 GHz 16-core AMD Opteron 6380
processors and 256 Gb RAM running under Ubuntu
12.04 LTS. IsoEM is run on bootstrap samples sequen-
tially, but for each run its multi-threaded code takes
advantage of all available cores (up to 64 in our experi-
mental setup). As expected, the running time scales line-
arly with the number of bootstrap samples per
condition, and thus generating M = 20 bootstrap sam-
ples per condition is nearly 10 times faster than generat-
ing M = 200 of them. Overall, IsoDE-Match with M =
20 has reasonable running time, varying between 1 hour
for the smallest 454 dataset to 3.5 hours for the Illumina
dataset.

454-Second
1.31 million reads

—

| 20 Runs

—
—
—

W 200 Runs

454-First
1.01 million reads

lon_Torrent
12.11 millions reads

Illumina
12.6 million reads

0 20,000 40,000 60,000 80,000 100,000 120,000

Time in seconds
Figure 2 Running times (in seconds) of IsoDE-Match with
M = 200 and IsoDE-All with M = 20 on several MAQC datasets.
The indicated number of reads represents the total number of
mapped reads over both conditions of each dataset, for more
information on the datasets see Table S1.

Results for DE prediction without replicates

We compared IsoDE against GFOLD, Cuffdiff, edgeR,
and different normalization methods for Fisher’s exact
test; namely total normalization, housekeeping gene
(POLR2A) normalization, and normalization using
External RNA Controls Consortium (ERCC) RNA spike-
in controls [18]. Cuffdiff results were considerably worse
on the Illumina MAQC dataset, compared to other
methods. Consequently, Cuffdiff was not included in
other comparisons. edgeR was also not included in
further comparisons due to lack of clear definition of
uniquely mapped reads for ION-Torrent and 454 data-
sets which were mapped using tools based on local
alignment algorithms. ERCC spike-ins were available
only for ION Torrent samples; therefore, ERCC normal-
ization for Fisher’s exact test was conducted only for
ION Torrent datasets.

Table 2 shows the results obtained for the MAQC
[llumina dataset using minimum fold change threshold f
of 1, 1.5, and 2, respectively. Table 3 shows the results
obtained from combining the ION Torrent runs listed
in Table S1 (Additional File 1) for each of the MAQC
datasets using the same values of f. Table 4 shows the
results for the First 454 MAQC dataset, while results for
the Second 454 dataset are presented in Table S2 in
Additional File 1. For each fold change threshold, the
best performing method for each statistic is highlighted
in bold.

IsoDE has very robust performance, comparable or
better than that of the other methods for differential
gene expression. Indeed, IsoDE outperforms them in a
large number of cases, across datasets and fold change
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thresholds. Very importantly, unlike GFOLD and Fish-
er’s exact test, [IsoDE maintains high accuracy (sensitiv-
ity and PPV around 80%) on datasets with small
numbers of mapped reads such as the two 454 datasets.
This observation is confirmed on results obtained for
pairs of individual ION-Torrent runs, presented in
Tables S3 and S4 in Additional File 1. This makes
IsoDE particularly attractive for such low coverage
RNA-Seq datasets.

DE prediction with replicates
We also studied the effect of the number of biological
replicates on prediction accuracy using the MCF-7 data-
set. We performed DE predictions using an increasing
number of replicates. IsoDE was run with a total of 20
bootstrap samples per condition, distributed equally (or
as close to equally as possible) among the replicates, as
detailed in Table S5. GFOLD and edgeR were evaluated
for 1 through 6 replicates using as ground truth the
results obtained by running each method on all 7 repli-
cates (see the Methods section). For IsoDE, we also
include the results using M = 20 bootstrap samples
from all 7 replicates as its ground truth is generated
using a much larger number of bootstrap samples (M =
70). Figure 3 shows the results of the three compared
methods for a fold change threshold of 1, results for
fold change thresholds 1.5 and 2 are shown in Figures
S1 and S2 in Additional File 1.

Since for this experiment the ground truth was
defined independently for each method, it is not mean-
ingful to directly compare accuracy metrics of different
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methods. Instead, we focus on the rate of change in the
accuracy of each method as additional replicates are
added. Generally, all methods perform better when
increasing the number of replicates. However, the accu-
racy of IsoDE varies smoothly, and is much less sensitive
to small changes in the number of replicates. Surpris-
ingly, this is not the case for GFOLD and edgeR sensi-
tivity, which drops considerably when transitioning from
1 to 2 replicates, most likely due to the different statisti-
cal models employed with and without replicates.
Although we varied the number of replicates without
controlling the total number of reads as Liu et al. [15],
our results strongly suggest that cost effectiveness
metrics such as those proposed in [15] are likely to
depend on to the specific method used for performing
DE analysis. Therefore, the analysis method should be
taken into account when using such a metric to guide
the design of RNA-Seq experiments.

Effect of gene abundance

We also studied the effect of gene abundance on the
IsoDE, GFOLD, and edgeR prediction accuracy. We
selected the subset of genes that are expressed in at least
one of the two RNA samples. We sorted these genes by
the average of the gene’s expression. We used the FPKM
values predicted by IsoEM, the FPKM values predicted by
GFOLD, and the number of uniquely mapped reads, for
IsoDE, GFOLD, and edgeR, respectively. The genes were
then divided into quintiles, for each method indepen-
dently, where quintile 1 had the genes with the lowest
expression levels, and quintile 5 had the genes with the
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highest expression levels. Sensitivity, PPV, and F-score
where calculated for each quintile separately.

Figure 4 shows that, for results with both 1 and 6 repli-
cates, sensitivity, PPV, and F-score of IsoDE are only
slightly lower on genes with low expression levels com-
pared to highly expressed genes (similar results are
achieved for intermediate numbers of replicates and
higher fold change thresholds). In contrast, GFOLD shows
a marked difference in all accuracy measures for genes in
the lower quintiles compared to those in the higher quin-
tiles. The sensitivity of edgeR is also lower for genes
expressed at low levels, however it's PPV is relatively con-
stant across expression levels.

Conclusions

A practical bootstrapping based method, [soDE, was
developed for analysis of differentially expressed genes in
RNA-Seq datasets. Unlike other existing methods, IsoDE
is non-parametric, i.e., does not assume an underlying
statistical distribution of the data. Experimental results
on publicly available datasets both with and without

replicates show that IsoDE has robust performance over
a wide range of technologies, sequencing depths, and
minimum fold changes. IsoDE performs particularly well
on low coverage RNA-Seq datasets, at low fold change
thresholds, and when no or very few replicates are
available.

Availability

IsoDE has been implemented in Java and can be run on
any platform with a Java virtual machine. The source
code and installation instructions are available at http://
dna.engr.uconn.edu/software/IsoDE/. A web-based cal-
culator for computing the bootstrap support based on
the desired number of bootstrap samples and signifi-
cance level is available at http://dna.engr.uconn.edu/
~software/cgi-bin/calc/calc.cgi.

Additional material

Additional file 1: Supplementary figures and tables are supplied in
PDF format.
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