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Abstract

Background: The alignment of short reads generated by next-generation sequencers to genomes is an important
problem in many biomedical and bioinformatics applications. Although many proposed methods work very well
on narrow ranges of read lengths, they tend to suffer in performance and alignment quality for reads outside of
these ranges.

Results: We introduce RandAL, a novel method that aligns DNA sequences to reference genomes. Our approach
utilizes two FM indices to facilitate efficient bidirectional searching, a pruning heuristic to speed up the computing
of edit distances, and most importantly, a randomized strategy that enables effective estimation of key parameters.
Extensive comparisons showed that RandAL outperformed popular aligners in most instances and was unique in
its consistent and accurate performance over a wide range of read lengths and error rates. The software package is
publicly available at https://github.com/namsyvo/RandAL.

Conclusions: RandAL promises to align effectively and accurately short reads that come from a variety of
technologies with different read lengths and rates of sequencing error.

Background
The alignment of reads to genomes is an important pro-
blem in many biomedical applications that relied on
next-generation sequencing technologies. This problem
is motivated by the fact that genomes for many species
have been sequenced. And since one expects genomes
within the same species differ little, such “referenced”
genomes can facilitate the assembly of new genomes of
other individuals within the same species from short
reads. To address this problem, researchers have pro-
posed many approaches together with software packages.
Nevertheless, sequencing technologies have advanced
rapidly, rendering many of these approaches ineffective
or inefficient or both. One aspect that continually
changes is the read length. Advanced technologies gener-
ally produce longer reads (with better accuracy). On the

other hand, technologies that produce shorter reads can
be less expensive and are therefore attractive in terms of
cost. Thus, it is desirable to have algorithms and tools
that perform well across different read lengths ranging
from 35 to several hundreds basepairs.
Nevertheless, many existing algorithms struggle to per-

form consistently across a wide range of read lengths.
Methods such as Bowtie [1] and Burrows-Wheeler Align-
ment (BWA) [2] tend to perform better with shorter
reads. Bowtie uses the Burrows-Wheeler Transform
(BWT) and FM index to build a permanent index of the
reference genome. It then applies backtracking algorithm
to find alignments. BWA also utilizes the BWT, but unlike
Bowtie, can handle gaps and mismatches in the reads.
More advanced versions of these methods include Bowtie2
[3] and BWASW [4] which are designed to work with
longer reads. Bowtie2 can align reads with gaps and works
better than Bowtie at longer reads. BWA-SW exploits the
BWT and several heuristics to speed up the local align-
ment of reads.
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Many techniques utilize data structures and techni-
ques such as the BWT, FM index, suffix arrays, suffix
trees/tries, hash tables or q-grams [5-11], aiming to
speed up substring querrying. Additional heuristics are
also used to enhance efficiency. Bowtie2 [3] and
CUSHAW2 [12], for example, use seeds to quickly iden-
tify true candidates for alignment. GASSST [9] uses a
filtering technique to reduce noisy seeds. Implementa-
tions of some of these approaches, e.g. Bowtie2,
CUSHAW2, take advantages of parallelism or special-
purpose architectures. The use of heuristics can improve
performance several folds, but might lead to over-tuning
parameters to a particular set of inputs, e.g. read
lengths, species, or base error rates.
We introduce RandAL, an aligner based on a novel algo-

rithm that performs consistently well over a wide range of
read lengths, from 35 to several hundreds base pairs. We
employ two FM indices for efficient bidirectional (exact)
substring matching. To deal with inexact matching (i.e.
allowing gaps), first, we find common substrings between
reads and the reference genome. Then, these common
substrings are extended to complete alignments based on
a bounded threshold on the edit distance. We use a special
pruning mechanism to shorten vastly the running time of
computing edit distances in a vast majority of cases. The
use of randomization in aligning reads to genomes
increases the probability of finding seeds quickly and
enables us determine methodologically important para-
meters to speed up the entire alignment process. Prelimin-
ary results show that our algorithm performed
consistently well on a wide range of read lengths across
several bacterial and eukaryotic genomes. The alignment
quality of our method was better or generally as good as
that of all compared methods.

Methods
Given a reference genome S and a set of reads R =
{r1, …, rn}, the main problem is to align each ri to S .
The reference genome S and the reads are DNA
sequences, or strings over the alphabet of 4 characters,
Σ = {A, G, C, T}. The alignment of a read r to S is
essentially finding a substring of S that matches r the
most. At the moment, we assume that these reads are
not paired-end reads. The set of reads R are substrings
of another genome R that is different from, but
belongs to the same species as S . By aligning reads in
R to S , we implicitly reconstruct the genome R .
Our strategy for read alignment is based on these

ideas:

1. Detection of identical substring matches between
r and S is based on common substrings of r and
S . As we know r and S differ only slightly, we
expect long common substrings exist.

2. A special data structure called the FM index is
used to facilitate memory-efficient, time-optimal
exact string matching. This data structure facilitates
efficient detection of long common substrings
between r and S .
3. Randomization is employed to find common sub-
strings between r and S efficiently and methodologi-
cally. Randomization empowers us to methodologically
determine important parameters that are used in criti-
cal steps of the algorithm. This translates into consis-
tent performance in terms of time and accuracy across
different species.
4. To account for insertion/deletion polymorphisms,
we utilize the edit distance to provide an accurate
measure for read alignment. Additionally, we employ
a pruning heuristic to shorten the computation of
edit distance, without com promising quality of
alignment.

These ideas will be discussed in greater detail in the
following sections.

Indexing the reference genome
Naive string matching takes quadratic time and there-
fore is too costly. Researchers have used data structures
such as suffix tree, suffix array, and FM index to speed
up string matching significantly. The FM index [13] in
particular is desirable because it allows exact string
matching to be done optimally in O(m) time, where m
is the length of the query (i.e. the read), and is very
space efficient. The FM index of the genome is a sub-
string index that takes advantage of properties of the
Burrows-Wheeler transform to search incrementally all
suffices of a read in the reference genome. This allows
linear time (in read length) searching for exact substring
matches. By design, the search direction is in reverse
(backward) order with respect to the sequence.
To facilitate bidirectional string matching (to be dis-

cussed next), we employ two FM indices. A conventional
FM index that traces substring matches backward is
denoted as B. To facilitate searching in the forward
dimension, we created an FM index for the reverse of
the reference genome, S . Searching using this index,
denoted as F , is equivalent to search in the forward
direction in S . The pair of indices (F,B) helps us
identify long identical stretches of DNA in the reference
genome S and each read ri.

Finding common substrings between reads and genomes
Given a read r and a specific position p in r, Algorithm 1
outlines the steps in finding longest common substrings
of r and the reference genome S , with respect to p;
Figure 1 illustrates the conceptual goal of this algorithm.
Longest common substrings (with respect to p) are
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constructed by concatenating maximal matches between
substrings of S and those of r, which begin and end at p.
Searching for matches between substrings of S and sub-
strings of r is facilitated by the backward and forward FM
indices B and F . To save time and reduce false positives,
we only consider common substrings with lengths at
least W.
The choice of W is important. If W is too small, M is

large, and we will consider many common substrings
between the read and the genome to construct align-
ments between the read and the genome. The more
common substrings we consider, the more likely we can
find the correct position of the read in the genome to
align; but we also more likely make mistakes of aligning
the read to an incorrect position. In other words, with
smaller W, we might get more true positives (correct
alignments) and more false positives (incorrect align-
ments) at the same time. On the other hand, if W is too
large, we might not be able to find any common sub-
strings and consequently unable to align the read to the
genome. Therefore, inappropriate choices of W results
in bad performance.

Algorithm 1 CommonSubstrings(read r, position p)
1: Let B be substrings of reference genome S , which

match exactly & maximally to ri...p-1.
2: Let F be substrings of reference genome S , which

match exactly & maximally to rp...j.
3: M := ∅
4: for each b ∈ B do
5: for each f ∈ F do
6: Let s := b ⊕ f be a concatenation of b and f.
7: if s is a contiguous block in S and |s| ≥ W

then
8: M := M ∪ s
9: return M
Our strategy for determining good values of W is

based on randomization. As we shall see soon, the value
p given to Algorithm 1 would be a random index of the
read. To calculate W, first suppose that the correct sub-
string of the reference genome S to align to the read r
is r’. Let d be the edit distance between r and r’. These
d mismatches divide r into d + 1 blocks. Each block

(except the last one) includes the closest mismatch to it.
Let the sizes of the blocks be m1, m2, … … …, md+1. We
have |r| = m =

∑d+1
i=1 mi .

The random choice of p implies that the common
substring found by Algorithm 1 would be a random
block, which is selected with probability pi =

mi
m . This

implies that the expected size of block i is

E[Si] = mipi =
m2

i
m
. Thus, the expected size of a random

block, i.e. the expected length of the common substring,

is E[X] =
∑d+1

i=1 E[Xi] =
∑d+1

i=1
m2

i
m
.

The Cauche-Schwarz inequality tells us that

(
d+1∑
i=1

1
d + 1

mi

m

)2

≤
d+1∑
i=1

(
1

d + 1
)
2 d+1∑

i=1

(
mi

m
)
2

After simplifying, these imply that E[S] ≥ m
d+1 . In other

words, we have established that:
Lemma: The expected length of the common sub-

string between a read and the reference genome found
by Algorithm 1 is at least m

d+1 .
Although we do not know what d, the distance

between r and its aligned substring r’, is, it can be esti-
mated by the rates of single nucleotide polymorphism
(SNP) of the given genome and given rate of sequencing
error. Let b be the rate of each nucleotide being
mutated or sequenced erroneously, which we may
assume to be distributed by a binomial distribution with
mean µ = mb and variance s2 = mb(1 - b), where m is
the read length.
Although we do not know exactly what d is, its upper

bound t might be estimated by µ + cs, for some con-
stant c. With 100,000 reads, we found that c = 4 pro-
duces good performance with high true positives and
low false positives.
In summary, the two critical parameters of our

method t and W are methodologically derived as fol-
lows:

• The upper bound of the distance between a read

and its aligned string, t =
⌈
mb + 4

√
mb(1 − b)

⌉
.

Figure 1 Illustration of Algorithm 1: finding common substring. ri…p−1 and rp…j may match several substrings of the genome S , but fews
of these (e.g. b2 and f2) form contiguous substrings.
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• The lower bound of the expected length of com-
mon substrings, W ∼ m

t ≤ m
d+1 ≤ E[S] .

W appears in Algorithm 1, and t appears in Algorithm 2,
which is the next step after finding common substrings
between reads and the reference genome.
Algorithm 2 AlignRead(read r)
1: p := 1
2: m := |r|
3: for i from 1 to A do
4: C := ∅
5: M := CommonSubstrings(r, p)
6: for each s ∈ M , which is a substring of S do
7: Let ri…j be the substring of r that matches s

exactly.
8: Let sL be the (i − 1)-substring of S , preceding s
9: Let sR be the (m − j)-substring of S , following s
10: d := edit-dist(r1…i−1, sL) + edit-dist(rj+1…m, sR)
11: if d ≤ t then
12: C := C ∪ (sL ⊕ s ⊕ sR)
13: if C has at least one sequences then
14: Return “fail to align”, if C has more than 2

sequences.
15: Otherwise, align read r to each sequence of C.

STOP.
16: p := random(1,|r|)
17: return “fail to align”

Extending common substrings to align reads to
referenced genomes
Using long exact common substrings as seeds to align
reads to genomes is similar to [3,12]. Our approach pro-
mises to be efficient because instead of exhaustively traver-
sing indices of a read to find optimal common substrings,
we find common substrings with respect to random index
p of the read.
In Algorithm 2, we iterate at most A times to find

long common substrings between S and each read r. In
each iteration, given a random position p, we invoke
Algorithm 1 to find the longest common substrings (M)

of S that match to a substring of r with respect to p.
As illustrated in Figure 2, each string s ∈ M corresponds
exactly to a substring ri…j of r. This exact match between
ri…j and s, naturally, pairs up r1…i−1 (a prefix of r) to sL,
the corresponding substring of S preceding s, and rj+1…
m (a suffix of r) to sR, the corresponding substring of S
following s. If the total edit distances of these two pairs
are less than the previously calculated upper-bound t, we
align r to the corresponding substring of S .
Note that in the first iteration, the position p is 1 and

not a random index of r. The reason for this is that we
would like the method of finding long common sub-
strings (Algorithm 1) to be symmetrical in the sense
that b and f could “wrap around” r. In other words,
when p = 1, b is a suffix of r and f is a prefix of r. In
this case, the concatenation of b ⊕ f is not a contiguous
substring, but rather two contiguous strings separated
by a big gap. This conceptualization of “wrapping
around” the read, or thinking of it as a circular instead
of linear string, turns out to be quite effective in prac-
tice. In many cases, p = 1 leads to very long common
substrings that lead to correct alignments of reads.
If we cannot align r to any substring of S after A

attempts, then r is unaligned to S , the reference genome.
So, it is important to choose A appropriately. If A is too
small, there will be many unaligned reads. If A is too
large, the algorithm is slow. To select an appropriate
value of A, let us again assume that the read and its cor-
rect alignment to the genome differ in d places (again d
≤ t), consequently diving the reads into d + 1 blocks. We
want to select a value for A so that the longest block
(longest common substring) can be sampled with high
certainty. The probability that the longest block is
selected (i.e. if a random index p lands inside it) is m∗

m ,
where m* is the length of the longest block. On the other
hand, the Pigeonhole Principle dictates that m∗ ≥ m

d+1
(Otherwise, the total lengths of d + 1 blocks would be
less than m.) This means, d + 1 ≥ m

m∗ , which is the
expected number of iterations to sample p to select the
longest block.

Figure 2 Illustration of Algorithm 2: extending common substring to alignment. Alignment of a read r to the reference genome S by
extending a common substring of r and S (found in Algorithm 1). There are generally many substrings of S that match identically to the
substring ri…j of r.
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Thus, setting A = t + 1 ≥ d + 1, the longest common
substring between a read and the genome is sampled
expectedly after A iterations. Further, if A = c … (t + 1),
then the probability of landing in the longest block is
exponentially increased as a function of c. Trading for
speed, c = 1 seems to work fine in practice, because even if
Algorithm 1 does not return the longest common sub-
string, it is often possible to extend it to find the correct
alignment for the read. But longest common substrings
minimizes the chance of running into repeats in the gen-
ome; i.e. common substrings upon which extensions will
lead to incorrect alignments.

Fast heuristic for computing edit distances
Computing edit distances consumes much time of the
alignment algorithm (Algorithm 2). In steps 10-11 of
Algorithm 2, we compute the edit distance between a
read and a substring of the genome and discard it if the
distance is greater than t. As each read often match with
few substrings of the genome, we expect that such edit
distances often exceed t. Examining lines 10-11 of Algo-
rithm 2, we see that actually we do not need to compute
the exact value of d(x, y), the edit distance of x and y, as
long as we can answer correctly the query d(x, y) ≤ t.
We claim that the edit distance of x and y, d(x, y) ≤ t

if and only if Bound(x, y, t) ≤ t, where Bound is defined
in Algorithm 3. To see this, observe that

• If d(x, y) ≤ t, then Bound(x, y, t) returns d(x, y).
• If d(x, y) > t, then Bound(x, y, t) returns either d(x,
y) or t + 1. The only difference between Bound and
the conventional edit distance lies in line 6 of Algo-
rithm 3. Analyzing line 5, we see that once di,j > t
for 1 ≤ j ≤ m (line 6), then dm,m > t.

If d(x, y) > t, Bound(x, y, t) might not compute the
edit distance correctly. Nevertheless, d(x, y) ≤ t if and
only if Bound(x, y, t) ≤ t. For aligning reads to bacterial
genomes, Bound is much faster than the worst-case
complexity Θ(m2).
Algorithm 3 Bound(x, y, t)
1: di,0 := 0 for 0 ≤ i ≤ |x|
2: d0,j := 0 for 0 ≤ j ≤ |y|
3: for i := 0 to |x| do
4: for j := 1 to |y| do
5: di,j := min(di−1,j−1+(xi == yj), di−1,j+ 1, di,j−1+1)
6: return t + 1 if di,j > t for 1 ≤ j ≤ max{|x|, |y|}
7: return d|x|,|y|

Results
RandAL is implemented in C++; FM-index codes are
adapted from an external library (http://code.google.
com/p/fmindex-plus-plus). We compared our method
against several aligners including Bowtie [1], BWA [2],

Bowtie2 [3], BWA-SW [4], and CUSHAW2 [12]. We
chose these methods based on the fact that they
are recently published, very popular and their software
are available. Comparison tests were conducted on a
workstation with two Intel Xeon E5-2680 2.70GHz CPU
and 64 GB RAM.
Each aligner is tested with 100,000 simulated reads

generated for each of 6 bacterial genomes and 6 chro-
mosomes of eukaryotic genomes. Sizes of these genomes
range from 1.3 and 28 millions bases; see Table 1. Gen-
omes were obtained from EMBL-EBI (http://www.ebi.ac.
uk/genomes). Since recent sequencing technologies pro-
duce read lengths ranging from 35 to 400bp at greater
speed and lower cost than previous technologies (e.g.
Sanger sequencing) [14], we choose this range of read
lengths to evaluate the methods. More specifically, the
reads were generated at lengths 35, 51, 76, 100, 200, and
400 as these lengths have been mentioned in the litera-
tures. The wgsim C program, part of the SAMtool pack-
age [15], was used to generate reads.
Extensive comparisons were performed using SAM-

tool’s default settings, with base error rate at 2%; 15% of
polymorphisms are indels with lengths drawn from a
geometric distribution with density 0.7 * 0.3l−1. Addi-
tionally, we present summary results for 1% and 4%
base error rates with similar trends and conclusions.
Aligned reads from aligners are evaluated using the

wgsim_eval Perl script, a part of the SAMtool package,
using the default setting in which a read is mapped cor-
rectly if its mapping position is within a distance of 20
from the correct position. To compare alignment quality,
we defined:

Precision =
# correctly aligned reads

# aligned reads

Recall =
# correctly aligned reads

# reads

Alignment quality of 6 aligners
At the outset, we found that Bowtie and BWA were
decent performers when read lengths were short, i.e.
between 31-56 bases. When read length increased, how-
ever, these two aligners were not competitive. Figure 3
shows the average performance (precision in the y-axis
versus recall in the x-axis) of 6 aligners on 6 bacterial
genomes and 6 eukaryotic genomes, respectively. Both
BWA and Bowtie suffered from a decrease of precision as
read length increases. For BWA, recall peaked at around
94% even at longer reads. Bowtie did better at recall for
longer reads than BWA, but it was still not competitive
to the other 4 aligners, including RandAL. Its bad perfor-
mance at longer reads is unacceptable because technolo-
gical trends tend to produce longer reads. For this
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reason, we will drop them out of head-to-head compari-
sons at this point, and will only compare the 4 best
aligners: Bowtie2, BWA-SW, CUSHAW2 and RandAL.
A closer look at Figure 3 reveals that BWA-SW was

relatively competitive but come roughly in the last place.
There is no consistent winner (in terms of both precision
and recall) among the top 3 performers, Bowtie2,
CUSHAW2, and RandAL. Nevertheless, we can see that
RandAL did noticeably better in terms of precision and
was still competitive in terms of recall. Importantly, we
see that across the wide range of read lengths from 35 to
400 for both bacterial and eukaryotic genomes, the per-
formance of RandAL was consistently high in terms of
both precision and recall; average precision was never
below 0.98 and average recall was never below 0.95. This
consistency distinguishes RandAL from the other top
aligners.
An even closer look at individual bacterial and eukar-

yotic genomes (Figure 4) further reinforces the consis-
tency in performance of RandAL. The lowest precision
RandAL got in all 12 genomes was about 0.96, and the
lowest recall was about 0.90. In comparison, for the other

top performers, the lowest precision was about 0.93 and
lowest recall was about 0.80.
All top 4 aligners perform really well in both precision

and recall as read length increases. Their performance
was quite similar at 400 read length. At shorter read
lengths, however, RandAL outperformed the rest, often
in both precision and recall.

Rates of misalignment of top 4 aligners
Misalignment means aligning a read at an incorrect position.
Misalignment increases the likelihood of running into pro-
blems later when we are interested in assembling reads into
a complete genome and to identify where the constructed
genome different from the reference genome (SNP calling).
The misalignment rate is calculated by dividing the

number of incorrect aligned reads by the total number
of reads. Figure 5 shows that averaging across all bacter-
ial and eukaryotic genomes, RandAL got noticeably
lower misalignments than the other aligners at all differ-
ent read lengths. This result suggests that RandAL will
likely work well with other tools and methods that
require alignment of reads to reference genomes.

Table 1 Reference genomes, obtained from EMBL-EBI (http://www.ebi.ac.uk/genomes).

Genome Accession # Size (bp)

Bacteria Wolbachia endosymbiont of Drosophila melanogaster AE017196 1,267,782

Staphylococcus aureus subsp. aureus TW20 FN433596 3,043,210

Escherichia coli 042 FN554766 5,241,977

Pseudomonas aeruginosa LESB58 FM209186 6,601,757

Streptomyces hygroscopicus subsp. jinggangensis 5008 CP003275 10,145,833

Sorangium cellulosum So ce56 AM746676 13,033,779

Eukaryota Debaryomyces hansenii CBS767 chromosome A CR382133 1,249,940

Ectocarpus siliculosus strain Ec 32 chromosome LG01 FN649726 3,745,584

Schizosaccharomyces pombe chromosome I CU329670 5,579,133

Caenorhabditis elegans chromosome I BX284601 15,072,434

Taeniopygia guttata chromosome 10 CM000527 20,806,668

Drosophila melanogaster chromosome 3R AE14297 27,905,053

Figure 3 Alignment performance across 6 different read lengths. Recall (x-axis) versus Precision (y-axis) averaged across bacterial genomes
and eukaryotic genomes, respectively, at read lengths of 35 bp, 51 bp, 76 bp, 100 bp, 200 bp and 400 bp.
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Alignment quality at different base error rates
We have compared performance of 4 different methods
using a base error rate of 2%; each nucleotide is mutated
with the probability of 2%. Due to the lack of space, we
cannot present a comprehensive comparison at different
base error rates, as we have at 2%. Nevertheless, analyses
at different base error rates show similar behaviors as we
have observed at 2% error rates. We present a summary

analysis at two other base error rates of 1% and 4% at read
lengths of 35 bp, 100 bp, and 400 bp. Table 2 summarizes
the average precision and recall of the top 4 aligners.
These numbers suggest the followings:

1 All methods performed well at 1% base error rate.
2 With 4% base error rates, the other methods suf-
fered, particularly with shorter reads. The best of

Figure 4 Recall versus precision of top 4 aligners. Performance of top aligners on bacterial genomes (top 6 figures) and eukaryotic genomes
(bottom 6 figures). X-axis is recall; Y-axis is precision.
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them (Bowtie2) got ∼63% recall at 35 bp. Low recall
rate means few reads (out of the total number) were
aligned correctly.
3 Our method consistently achieved the highest per-
formance (or among the highest performance) across
different read lengths and base error rates. In preci-
sion, our method always got the highest, consistently
above 97.8%. In recall, even at worst case of 4% base
error rate and 35 bp read length, we got ∼94%.

Raw running times of top 4 aligners
Theoretically, asymptotic complexity of our method in
aligning a read of length m is proportional to m + m2.
The worst case complexity of m2 is due to edit distance
computation. The heuristic for computing edit distance,
however, reduces this worst-case complexity significantly
in practice. Our testing showed that the running times
of other methods, like ours, did not depend much on
genome sizes.
Table 3 shows the averaged running times (in sec-

onds) of the 4 aligners in aligning 100,000 reads. Our
method suffered with shorter reads, but were the second
fastest with longer reads (≥ 100 bp). It seems that the

benefit of randomization becomes more evident with
longer reads.
Bowtie2 was the fastest across the board, but as shown

in the previous section, its alignment quality is not as
good as our method or CUSHAW2. Compared to ours,
CUSHAW2 was significantly slower. Observing running
times at different read lengths, we speculate that
CUSHAW2 might be much be slower than ours with
longer reads.

Difficulty of alignment in the presence of repeats
Although eukaryotic genomes are expected to be harder
to align than bacterial genomes, an examination of per-
formance of the top 4 aligners in Figure 4 reveals that
these aligners did not always perform better on bacterial
genomes; eukaryotic genomes were not always harder to
align. To quantify the degree of difficulty in aligning
reads to genomes, we define repeat density as a measure
of how many repeats a genome has. Since repeats directly
affect alignment quality, the notion of repeat density is
meant as a quantifiable approximation of genome com-
plexity. More precisely, given a genome S and one of its
length-k substrings, l, let f (l) be the number of times
l occurs in S. We define the k-mer density of S given k
to be

D(S|k) =
∑

l∈S,f (l)≥2 f (l)

|S| − k + 1

D(S|k) can be interpreted as the probability that a
random read of length k is a repeat. The larger D(S|k)
is, the more repeats S has and the harder it is expected

Figure 5 Rate of misalignment. Rate of misalignment averaged
across bacterial and eukaryotic genomes.

Table 2 Average precision and recall at 1% and 4% base error rates.

35 bp 100 bp 400 bp

Precision Recall Precision Recall Precision Recall

1% base error BWA-SW 97.60 82.86 98.30 98.29 98.98 98.98

Bowtie2 97.60 93.40 98.31 98.25 99.00 99.00

CUSHAW2 97.59 92.81 98.33 98.33 98.99 98.99

RandAL 98.88 95.49 99.09 97.04 99.18 98.45

4% base error BWA-SW 97.64 44.93 98.31 97.05 98.97 98.96

Bowtie2 97.61 62.92 98.32 91.62 98.96 98.94

CUSHAW2 97.67 60.67 98.34 98.12 98.95 98.95

RandAL 97.80 93.55 98.66 97.48 99.08 98.48

Table 3 Average running times of top 4 aligners at
different read lengths.

35 bp 51 bp 76 bp 100 bp 200 bp 400 bp

BWA-SW 8.1 13.4 21.6 30.1 56.9 105.2

Bowtie2 2.8 4.1 5.8 8.1 18.3 41.6

CUSHAW2 4.2 7.8 12.7 19.3 67.8 228.5

RandAL 11.1 12.9 13.6 14.5 26.2 81.6

Vo et al. BMC Genomics 2014, 15(Suppl 5):S2
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for aligners to align k-mer reads to S . To investigate
how much repeat density correlates with the difficulty of
aligning short reads to genomes, first, we computed
D(S|k) for k at each read length 35, 51, 76, 100, 200,
and 400. To get a glimpse of its distribution, we show
the values of D(S|k) of the bacterial and eukaryotic
genomes, for k’s equal to these read lengths, in Table 4.
Second, for each k, we computed the Pearson correla-
tion between D(S|k) of all bacterial and eukaryotic gen-
omes and the performance (precision and recall) of each
aligner on aligning reads of length k to the genomes.
Table 5 shows that repeat density is correlated highly

negatively to performance (precision and recall) of all
aligners. This means the larger D(S|k) is, the worse any
aligner will perform. In other words, D(S|k) is good
indicator of alignment difficulty. That said, we also
observe that for BWA-SW at small lengths (k = 35, 51),
the negative correlation was weakest. This is probably
due to BWA-SW trimming short reads.

Conclusions
We introduced RandAL, a novel randomized approach
to aligning reads to reference genomes. We showed that
it performed among some of the top aligners that

currently exist. Unlike the other aligners, however, Ran-
dAL distinctly performs consistently well across a wide
range of parameters (read lengths and error rates) across
all tested bacterial and eukaryotic genomes. As current
sequencing technologies can produce reads in the tested
range at low cost [14], our approach promises to work
well with these technologies.
Using repeat density as a measure of genome complexity,

we showed that this measure correlated highly negatively
with alignment quality (precision and recall). This implies
that for larger and more complex genomes with many more
repeats, these aligners will similarly suffer, as expected.
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Table 4 Repeat density of genomes, D(S|k), at various length k.

Genome Repeat density at various k

35 51 76 100 200 400

Bacteria Wolbachia endosymbiont.... 0.181 0.161 0.144 0.134 0.107 0.077

Staphylococcus aureus... 0.064 0.058 0.053 0.050 0.043 0.036

Escherichia coli 042 0.053 0.044 0.036 0.031 0.023 0.017

Pseudomonas aeruginosa ... 0.041 0.037 0.033 0.031 0.026 0.021

Streptomyces hygroscopicus ... 0.046 0.042 0.038 0.036 0.031 0.025

Sorangium cellulosum ... 0.038 0.030 0.024 0.020 0.015 0.011

Eukaryota Debaryomyces hansenii ... 0.036 0.032 0.028 0.025 0.019 0.013

Ectocarpus siliculosus ... 0.092 0.073 0.056 0.046 0.030 0.020

Schizosaccharomyces pombe ... 0.050 0.047 0.045 0.042 0.036 0.030

Caenorhabditis elegans ... 0.138 0.105 0.080 0.066 0.039 0.024

Taeniopygia guttata ... 0.129 0.100 0.070 0.050 0.017 0.002

Drosophila melanogaster ... 0.068 0.065 0.062 0.060 0.052 0.042

Table 5 Pearson correlation coefficients of repeat density and performance

k = 35 k = 51 k = 76 k = 100 k = 200 k = 400

Correlation of repeat density and precision BWA-SW -0.94 -0.95 -0.96 -0.95 -0.97 -0.95

Bowtie2 -0.94 -0.95 -0.96 -0.96 -0.97 -0.95

CUSHAW2 -0.94 -0.94 -0.95 -0.95 -0.95 -0.93

RandAL -0.84 -0.83 -0.87 -0.88 -0.93 -0.94

Correlation of repeat density and recall BWA-SW -0.64 -0.37 -0.90 -0.95 -0.97 -0.95

Bowtie2 -0.95 -0.94 -0.96 -0.97 -0.97 -0.96

CUSHAW2 -0.95 -0.94 -0.95 -0.95 -0.95 -0.93

RandAL -0.95 -0.96 -0.97 -0.97 -0.97 -0.96
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