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Abstract

Background: Drug resistance has become a severe challenge for treatment of HIV infections. Mutations
accumulate in the HIV genome and make certain drugs ineffective. Prediction of resistance from genotype data is
a valuable guide in choice of drugs for effective therapy.

Results: In order to improve the computational prediction of resistance from genotype data we have developed a
unified encoding of the protein sequence and three-dimensional protein structure of the drug target for
classification and regression analysis. The method was tested on genotype-resistance data for mutants of HIV
protease and reverse transcriptase. Our graph based sequence-structure approach gives high accuracy with a new
sparse dictionary classification method, as well as support vector machine and artificial neural networks classifiers.
Cross-validated regression analysis with the sparse dictionary gave excellent correlation between predicted and
observed resistance.

Conclusion: The approach of encoding the protein structure and sequence as a 210-dimensional vector, based on
Delaunay triangulation, has promise as an accurate method for predicting resistance from sequence for drugs
inhibiting HIV protease and reverse transcriptase.

Background
HIV/AIDS is a pandemic disease and more than 30 mil-
lion people are infected worldwide [1]. There is no
effective vaccine or medicine to completely cure AIDS;
however, the long-term survival of many patients has
been enabled by drug therapy. Highly Active Antiretro-
viral Therapy (HAART) using three or four different
drugs with different viral targets is very effective in sta-
bilizing the infection [2]. These antiviral drugs target
different stages in the viral life-cycle. Two important
drug targets are the HIV protease (PR) and reverse tran-
scriptase (RT), which have essential roles in viral repli-
cation. HIV RT converts the viral RNA genome into
DNA, which is translated by the host cell machinery
into the viral precursor proteins. HIV PR functions to

cleave the large viral precursor proteins into individual
enzymes and structural proteins, which produces infec-
tious viral particles. Among the 23 approved drugs in
current clinical use, there are seven nucleoside RT inhi-
bitors (NRTIs), four non-nucleoside RT inhibitors
(NNRTIs), and eight PR inhibitors (PIs) [3]. The
approved PIs were designed to bind in the active site of
HIV PR, and prevent the processing of viral precursor
proteins (Figure 1). NRTIs are chemical analogs of the
natural nucleoside substrates of the HIV RT that bind
to the protein active site and block its activity in synthe-
sizing DNA from viral RNA. The inhibitors in the
NNRTI class also decrease the enzymatic activities of
RT, however, they bind in an allosteric site in the palm
domain of the p66 subunit instead of the active site of
RT (Figure 1).
Despite the success of HAART, current therapy is lim-

ited by the rapid emergence of drug resistance [3]. The
virus can mutate to acquire resistance during therapy
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due to the lack of proofreading by RT [4] and high
replication rate [5]. These resistance mutations alter the
drug targets such as PR and RT [6]. Some of the 35
mutations associated with resistance to PRIs alter amino
acids located in the active site of PR while the majority
alter residues in distal regions of the enzyme structure
[7]. Similarly for RT, several of the mutations associated
with resistance to NRTIs alter amino acids in the active
site of the enzyme while others are located in more dis-
tal regions. The amino acid mutations occurring in asso-
ciation with resistance to the NNRTIs tend to cluster
around the inhibitor binding site [8,9]. The molecular
mechanisms for these antiviral drugs are described in
the review [10].
These resistance mutations lower the effectiveness of

specific drugs and may cause failure of the treatment.
Infections with resistant HIV are prevalent; surveys in
North America and Europe show that 8-20% of HIV
infections in untreated people contain primary drug
resistance mutations [10]. Over time, multiple mutations
can accumulate giving a huge number of possible combi-
nations of mutations in each protein. This persistent pro-
blem led to the recommendation for resistance testing to
guide the choice of drugs in AIDS therapy [11-13]. Fast
sequencing of the genome of the infecting virus can be
combined with computational predictions of resistance
to guide the choice of effective antiviral drugs [13]. Accu-
rate and fast computational predictions are desirable to
avoid the expense, limited availability and time involved
for performing an experimental cell-based assay for resis-
tance where results can take four weeks.
Accurate predictions can be valuable for prescribing the

most effective drugs for infections with resistant HIV.
Most genotype interpretation algorithms in clinical use are
knowledge based [14]. These interpretation algorithms

apply a set of rules or scores for each mutation and drug.
The performance of several commonly used interpretation
algorithms: Stanford HIVdb [15], HIV-grade [16], REGA
and ANRS (http://www.hivfrenchresistance.org/) has been
compared [16]. In addition, many computational classifica-
tion techniques have been evaluated for predicting drug
resistance from the genotype data. The standard classifica-
tion techniques of artificial neural networks (ANN)
[17-21], decision tree [19-22], random forests [21], support
vector machine (SVM) [21-23] and regression analysis [19]
have been applied in HIV drug resistance predictions. Sta-
tistical methods can also be applied to analyze the rela-
tionship between genotype and phenotype. The
association of mutations with resistance to the PIs saqui-
navir (SQV) and indinavir (IDV) was determined using
cluster analysis, recursive partitioning, and linear discrimi-
nant analysis [24]. These methods are limited by the high
dimensionality of the genotype data, hence non-parametric
methods have been proposed and tested on resistance data
for the PI amprenavir [25,26]. Protein structural informa-
tion has been used to generate statistical potentials of
mutants for training with SVM or random forest learning
algorithms and tested in predicting resistance to the RT
inhibitor nevirapine (NVP) [27].
We have evaluated an efficient encoding of information

from the three-dimensional protein structure for the pre-
diction of resistance from genotype. The structural encod-
ing via Delaunay triangulation improves the quality of the
predictions by representing interactions between amino
acid neighbours in the three-dimensional structure unlike
the linear sequence representation of other methods. This
unified sequence-structure representation was used in
supervised training with SVM, ANN, and a new sparse
dictionary classification method. The compressive sensing/
sparse dictionary representation [28,29] has been applied

Figure 1 Crystal structures of HIV-1 PR and RT. The structure of HIV-1 PR dimer in complex with the inhibitor (PI) saquinavir is shown from50.
The two subunits of HIV-1 PR are shown in green and cyan. The PI is colored red. The structure of HIV-1 RT dimer is shown in complex with
DNA and bound NNRTI nevirapine (NVP) and NRTI zidovudine (AZT) from 51-52. The p66 subunit is shown in green and the p51 subunit is
shown in purple. NRTI is shown in blue, and NNRTI is red. Double stranded DNA is indicated in orange.
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successfully in image analysis to enhance learning capacity
and efficiency. Sparse representation has been employed
for image restoration [30,31], denoising [32], deblurring
[33], signal processing [34], and face detection [35]. Initial
tests of this procedure for classifying resistance to four PIs
was presented in [36]. Here, the structural encoding has
been expanded to regression analysis and classification of
genotype-phenotype data for seven PIs, six NRTIs and
three NNRTIs.

Results
We combined structural information with genotype for
regression analysis and supervised learning on resistance
data. The new graph based sequence-structure encoding
was tested with the Genotype-Phenotype Data from the
Stanford HIV drug resistance database [37] (http://hivdb.
stanford.edu/cgi-bin/GenoPhenoDS.cgi). Data were avail-
able for two different protein targets: HIV-1 PR and
HIV-1 RT. For HIV-1 PR, eight PR inhibitors atazanavir
(ATV), IDV, nelfinavir (NFV), ritonavir (RTV), lopinavir
(LPV), tipranavir (TPV) and SQV were tested. While for
the study of HIV RT inhibitor resistance, NNRTIs nevira-
pine (NPV), delaviridine (DLV), efavirenz (EFV), and
NRTIs lamivudine (3TC), abacavir (ABC), zidovudine
(AZT), stavudine (D4T), didanosine (DDI) and tenofovir
(TDF) were tested. The data include the protein sequence
(genotype) and resistance value (phenotype) from the
PhenoSense (ViroLogic™) assay for each virus isolate.
Genotype-phenotype data were available for 744 to 1674
isolates for different inhibitors of HIV PR, while RT was
represented by 353 to 746 records for the 9 different
NRTIs and NNRTIs. The preprocessing of the sequence
and resistance data is detailed in Methods. Genotypes
were expanded to unique protein sequences due to the
presence of more than one amino acid at some positions.
This expansion resulted in a total of 10,228 to 17,545
unique sequences of HIV PR mutants and 2,004 to
11,367 RT mutants for the various inhibitor resistance
values.

Graph based protein sequence/structure representation
using Delaunay triangulation
The sequences were combined with information from the
three-dimensional protein structures by employing a
graph generated by Delaunay triangulation as described
in [38]. Two structure templates were used: 3OXC [4] for
HIV-1 PR, and 2WOM [39] (from http://www.pdb.org).
Only one structure vector is needed for each protein. In
other words, all PR mutant sequences are combined with
a single 210-dimensional vector derived from one PR
structure, and similarly, a single structure vector is used
for the RT mutants in subsequent regression and classifi-
cation of resistance data. As a result, all mutants are
represented as vectors of constant dimensionality, which

is a desirable property for most of the pattern recognition
algorithms. This structure vector was combined with
sequences in regression analysis and classification for
resistance.

Multiple regression on HIV protease inhibitor resistance
After each of the mutated sequences was represented by
a 210-dimensional vector, we performed the regression
analysis for the drug resistance data. We performed k-
fold (k = 5) regression analysis on the sequence and
resistance data. The predicted values for relative resis-
tance are plotted against the experimental values as
shown in (Figure 2) for the PR inhibitors ATV, NFV,
RTV, IDV, LPV, TPV and SQV.
The multiple regression gave high R2 values of 0.579-

0.783 and very low standard deviations as listed in Table 1.
The values are the average of all the R2 values from k-fold
regression. The high variance seen for high values of resis-
tance is likely due to limitations of the experimental assay
such that the measured resistance value has a cutoff at the
upper limit, while the viral strains may have an effective
resistance above this cutoff. The excellent correlations
demonstrate that relative resistance to PIs can be predicted
successfully from genotype by the new sequence/structure
encoding method. In order to avoid training to an “opti-
mal” n-fold set for cross validation, cross validation sets are
chosen independently for each training run. Therefore,
there is always a small variation in the results.

Multiple regression on HIV reverse transcriptase inhibitor
resistance
Multiple regression analysis was performed similarly on
genotype-phenotype data for drugs inhibiting HIV-1 RT.
The predicted and observed values are compared for
resistance to NRTIs: 3TC, ABC, D4T, DDI, TDF and
AZT in Figure 3; and NNRTIs: NPV, DLV and EFV in
Figure 4.
The regression results gave high R2 values of 0.614-0.975

for the different RT inhibitors, as shown in Tables 2 and 3.
The resistance to NRTIs was predicted with excellent R2

values of 0.85-0.90 and very low standard deviations, while
resistance predictions for NRTIs gave R2 values in the lar-
ger range of 0.61-0.98. Larger standard deviations were
obtained for analysis of ABC and DDI possibly because
the range of values in the dataset was smaller than for the
others. Therefore, graph based encoding had excellent
success in predicting resistance to RT inhibitors.

Classification of resistance with support vector machine
The support vector machine (SVM) was proposed by
Vapnik [40], and is widely used as a supervised learning
classifier in the machine learning classification area. In
this experiment, 5-fold cross validation tests were per-
formed by implementing in MATLAB SVM toolbox
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[41,42] and the linear kernel was used. The results are
shown in Tables 3, 4, 5 for HIV-1 PR inhibitors (PIs),
HIV-1 RT NRTIs and HIV-1 RT NNRTIs. This

classification shows high accuracy, sensitivity and speci-
ficity for all inhibitors. For PIs the accuracy values range
from a low of 0.93 to a high of 0.96, while sensitivity

Figure 2 Multiple regression on the predicted and observed resistance for HIV-1 PR inhibitors. The predicted resistance is plotted against
the observed value as blue dots. The observed resistance is measured relative to a value of zero for the standard non-resistant virus. The trend
line is shown. The regression results are shown for resistance to PIs: (A) IDV, (B) LPV, (C) TPV, (D) SQV, (E) ATV, (F) NFV, and (G) RTV.
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and specificity range from 0.92-0.96 and 0.94-0.98,
respectively. Resistance to NRTIs is classified with even
higher accuracies of 0.97-0.99, sensitivities of greater
than 0.98 and specificities of 0.95-0.99, while for

NNRTIs the classification performance was superior
with all values of over 0.97 for accuracy, sensitivity and
specificity. The excellent performance with the linear
SVM kernel demonstrates conclusively that the novel
encoding using Delaunay triangulation separates the
resistant and non-resistant data into two distinct
categories.

Classification with Artificial Neural Networks
As in the SVM experiment, the 5-cross validation test
was applied to the Artificial Neural Networks (ANN)

Table 1 Multiple regression on predicted relative
resistance to HIV-1 PR inhibitors

IDV LPV TPV SQV ATV NFV RTV

R2 values, mean 0.579 0.783 0.632 0.762 0.670 0.769 0.778

R2 values, stddev 0.037 0.014 0.045 0.018 0.035 0.029 0.016

Figure 3 Multiple regression on the predicted and observed resistance for HIV-1 NRTIs. The predicted resistance is plotted against the
observed value as blue dots. Observed resistance is measured relative to a value of zero for the standard non-resistant virus. The trend line is
shown. The regression results are shown for resistance to NRTIs: (A) 3TC, (2) ABC, (3) D4T, (4) DDI, and (5) AZT.
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to classify genotype-phenotype data for resistance. Spe-
cifically, the three-layer feedforward network was used
in Matlab [42-44]. The network had one hidden layer
of 20 nodes and was trained with backpropagation
with a maximum of 50 training epochs. The results are
shown in Tables 6, 7, 8 for HIV-1 PR inhibitors, and
RT inhibitors NRTIs and NNRTIs. The values calcu-
lated for accuracy, sensitivity and specificity for resis-
tance to PIs have a low of 0.91 and reach 0.97.
Improved performance was achieved for classifying
resistance to RT inhibitors compared with PIs. Results
for NRTIs gave values of accuracy, sensitivity and

Figure 4 Multiple regression on the predicted and observed resistance for HIV-1 NNRTIs. The predicted resistance is plotted against the
observed value as blue dots. Observed resistance is measured relative to a value of zero for the standard non-resistant virus. The trend line is
shown. The regression results are shown for resistance to NNRTIs: (A) NPV, (B) DLV, and (3) EFV.

Table 2 Multiple regression on predicted relative
resistance for NNRTIs.

DLV EFV NPV

R2 values, mean 0.904 0.897 0.850

R2 values, stddev 0.015 0.012 0.015

Table 3 Multiple regression on predicted relative
resistance for NRTIs.

AZT 3TC ABC D4T DDI

R2 values, mean 0.770 0.975 0.614 0.767 0.707

R2 values, stddev 0.023 0.004 0.253 0.061 0.146

Table 4 Classification using SVM for Resistance to PIs.

ATV IDV NFV RTV LPV SQV TPV

Accuracy 0.955 0.960 0.933 0.946 0.962 0.946 0.961

Stddev (×102) 0.400 0.510 0.350 0.580 0.220 0.580 0.290

Sensitivity 0.943 0.951 0.923 0.945 0.952 0.945 0.957

Stddev (×102) 0.600 1.00 0.400 0.910 0.270 0.910 0.410

Specificity 0.968 0.970 0.943 0.947 0.972 0.947 0.965

Stddev (×102) 0.450 0.290 0.820 0.890 0.280 0.890 0.410

Table 5 Classification using SVM for Resistance to NRTIs.

3TC ABC AZT D4T DDI TDF

Accuracy 0.987 0.981 0.984 0.992 0.965 0.975

Stddev (×102) 0.484 0.234 0.390 0.371 0.289 0.914

Sensitivity 0.984 0.981 0.984 0.991 0.977 0.979

Stddev (×102) 0.613 0.379 0.627 0.417 0.436 1.21

Specificity 0.991 0.982 0.984 0.993 0.954 0.970

Stddev (×102) 0.510 0.397 0.470 0.505 0.625 1.76
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specificity of 0.96-0.99, while for NNRTIs all values
were greater than 0.98.

Classification using sparse dictionary
The sparse dictionary classifier was also implemented
using the 5-fold cross validation tests using the
approach described in [36]. The results are shown in
Tables 7, 8, 9 for HIV-1 PR inhibitors, HIV-1 RT NRTIs
and NNRTIs. High values were obtained for accuracy,
sensitivity, and specificity. Accuracies ranged from 0.95-
0.99 for resistance to PIs, 0.82-0.92 for NRTIs and 0.81-
0.84 for NNRTIs. The sensitivities were all greater than
0.93 for the calculations on resistance to PIs, and speci-
ficities were greater than 0.96. Lower values were
obtained for calculations on some of the RT inhibitors
where values for sensitivity ranged from 0.75 to 0.96,
while high specificity values from 0.86 to 1.00 was calcu-
lated. These performance measures are somewhat
poorer than for the standard SVM and ANN classifiers.
It is not surprising; however, that more development
may be necessary for applying the new sparse dictionary
as a classifier since previously it has been employed pri-
marily for image processing.

Comparison with standard genotype interpretation
methods
Finally, we compared our methods with the standard
drug resistance prediction methods HIV-GRADE,
ANRS-rules, Stanford HIVdb, and Rega, which are avail-
able at http://www.hiv-grade.de/cms/grade/, using the
same genotype-phenotype datasets described in Meth-
ods. The procedure discussed in [36] was used to

convert the protein sequences into nucleotide
sequences. Other methods usually give resistance inter-
pretations in three categories of “resistance, “intermedi-
ate” and “susceptible”. Since multiple classification is
difficult with SVM and ANN, only two classes were
considered for calculating the accuracy. Both “resistant”
and “intermediate” are considered as “resistant"; while
“susceptible” is considered as “non-resistant”. The
results are shown in Tables 10, 11, 12 for HIV-1 PR
inhibitors, HIV-1 RT NRTIs and NNRTIs. N/A means
that no output was obtained from the server for this
dataset.
The accuracies demonstrate that classification with

our structural encoding significantly outperforms other
state of the art methods for predicting resistance to PIs
for the three tested classifiers SVM, ANN and the sparse
dictionary. Accuracies of 93.4-99.0% were obtained with
structural encoding compared to 59.7-87.0% for the
standard methods. The highest accuracies of greater
than 95% were achieved with the sparse dictionary
method. The prediction accuracy for resistance to the
NRTI class of RT inhibitors also showed the advantages
of our structural encoding with values of 81.6-99.2%
compared with 72.7-95.9% for standard methods. In this
case, the SVM and ANN classifiers performed better
than the new sparse dictionary giving accuracies of at
least 97%. For the NNRTIs, the structural encoding with
SVM or ANN gave higher accuracies of 98.3-99.1%
compared with 94.8-98.7% for standard methods. The
sparse dictionary, however, showed lower performance
with accuracies of 81.1-84.4% for NNRTI resistance,

Table 6 Classification using SVM for Resistance to
NNRTIs.

NPV DLV EFV

Accuracy 0.982 0.983 0.991

Stddev (×102) 0.254 0.473 0.316

Sensitivity 0.972 0.976 0.986

Stddev (×102) 0.490 0.600 0.618

Specificity 0.992 0.991 0.996

Stddev (×102) 0.397 0.787 0.301

Table 7 Classification using ANN for Resistance to PIs.

ATV IDV NFV RTV LPV SQV TPV

Accuracy 0.958 0.944 0.917 0.934 0.963 0.957 0.951

Stddev (×102) 0.320 1.25 1.38 1.44 0.641 0. 723 1.27

Sensitivity 0.959 0.940 0.913 0.935 0.965 0.958 0.953

Stddev (×102) 0.460 1.56 2.46 1.13 0.741 0.483 1.89

Specificity 0.957 0.947 0.922 0.933 0.961 0.956 0.950

Stddev (×102) 0.440 0.944 1.05 1.97 0.598 1.06 0. 672

Table 8 Classification using ANN for Resistance to NRTIs.

3TC ABC AZT D4T DDI TDF

Accuracy 0.982 0.984 0.987 0.983 0.965 0.970

Stddev (×102) 0.469 0.525 0.164 0.452 0.176 1.21

Sensitivity 0.984 0.978 0.988 0.980 0.973 0.965

Stddev (×102) 0.994 0.700 0.428 0.983 0.434 1.67

Specificity 0.980 0.991 0.986 0.986 0.957 0.975

Stddev (×102) 0.835 0.474 0.490 0.687 0.168 1.00

Table 9 Classification using ANN for Resistance to
NNRTIs.

NPV DLV EFV

Accuracy 0.983 0.986 0.986

Stddev (×102) 0.524 0.488 0.503

Sensitivity 0.979 0.985 0.982

Stddev (×102) 0.507 1.24 0.955

Specificity 0.987 0.987 0.990

Stddev (×102) 0.554 0.448 0.462
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indicating some improvements may be needed for the
new classifier.

Discussion
The serious problem of drug resistance arising during
therapy of HIV-infected individuals can be tackled by
sequencing the HIV drug targets to identify mutations
followed by computational prediction of resistance to
guide the choice of effective therapy. Computational
predictions of the most effective drugs for the mutated
HIV provide a major advantage of low cost and speed
relative to experimental assays for resistance. Most stan-
dard prediction methods are knowledge based methods,
such as the genotype interpretation algorithms. These
algorithms either use a set of rules, for example, the
Visible Genetics/Bayer Diagnostics genotype interpreta-
tion rules [45], to generate the susceptibility of the
infecting virus for each drug; or apply a score or ‘pen-
alty’ for each drug such as the Stanford HIV database

[46] and mutation rate based score [47]. Also, a com-
bined rule-based and penalty-based method has been
proposed and applied to both HIV-1 PR and RT inhibi-
tors [48]. Although these methods are fast, they suffer
from the major disadvantage of relying on specific
known mutations strongly associated with resistance
and cannot identify newly appearing resistance muta-
tions, or assess the effects of many mutations more
weakly associated with resistance.
Various machine learning and statistical methods have

been applied to this problem, including the widely used
classifiers, ANN [17,18], decision tree [22], and SVM
[23]. Statistical methods such as cluster analysis, recur-
sive partitioning, and linear discriminant analysis have
been evaluated [24], and non-parametric methods pro-
posed for high dimensionality data [25,26]. Most of these
methods are based on the linear protein sequence and
omit potentially valuable information from the three-
dimensional protein structure. Additional information
has been introduced in the form of 544 physicochemical
descriptors for the amino acid mutations leading to cor-
relation coefficients of 0.75-0.94 [20]. Other groups have
included structural features such as PR-drug contacts in
the binding site with majority voting [18]. In another
example, Delaunay triangulation of the RT structure was
combined with a four-body statistical potential derived
from 1200 protein structures in predictions for resistance
to NVP and gave cross-validated accuracies of 85% with
SVM and 92% with random forest classifiers [27]. Mole-
cular mechanics calculations on the PR-drug structure
have been used to predict resistance of mutants, and gave
high correlation (R2 of 0.76-0.85) between caclulation
and IC50 from the experimental assay [51]. However,
these calculations must be performed for each mutant-
drug combination and will be slow for assessing large
numbers of mutants for resistance.
We have developed a simple graph representation of

protein structure for fast classification. The protein
structure is a three-dimensional object that has many
physical and chemical factors potentially effecting stabi-
lity and activity. Previously, we showed that Delaunay
triangulation was the best of several tested graph-based
encodings of protein structure and sequence [37]. The
graph-based encoding algorithm condenses a compli-
cated three-dimensional object, a protein structure, into
a relatively small hash function with 210 unique values
per sequence and structure. One critical outcome is that
the graph-based encoding results in a linearly separable
data set that can be used readily by several different
machine learning algorithms. Similarly, the encoding is
sufficiently linear that straightforward multiple linear
regression can be performed on the training data. The
hash value maintains enough information about the

Table 10 Classification using sparse dictionary for
resistance to PIs.

ATV NFV RTV IDV LPV SQV TPV

Accuracy 0.973 0.946 0.962 0.969 0.974 0.970 0.990

Stddev (×102) 0.262 0.602 0.269 0.151 0. 292 0.139 0.277

Sensitivity 0.961 0.927 0.968 0.951 0.957 0.959 0.984

Stddev (×102) 0.244 0.635 0.976 0.529 0.494 0.604 0.423

Specificity 0.986 0.967 0.958 0.989 0.992 0.981 0.995

Stddev (×102) 0.661 1.44 1.23 0.297 0.361 0.692 0.199

Table 11 Classification using sparse dictionary for
resistance to NRTIs.

3TC ABC AZT D4T DDI TDF

Accuracy 0.918 0.915 0.932 0.879 0.816 0.852

Stddev (×102) 3.44 3.14 4.20 5.06 7.63 7.20

Sensitivity 0.963 0.872 0.947 0.814 0.801 0.789

Stddev (×102) 2.60 5.08 4.73 6.81 6.11 8.45

Specificity 0.888 0.973 0.933 0.987 0.860 0.972

Stddev (×102) 6.78 0.185 8.75 1.02 12.1 4.19

Table 12 Classification using sparse dictionary for
resistance to NNRTIs.

NPV DLV EFV

Accuracy 0.826 0.844 0.811

Stddev (×102) 2.46 2.49 6.43

Sensitivity 0.761 0.773 0.753

Stddev (×102) 3.48 3.82 8.43

Specificity 0.938 0.973 0.935

Stddev (×102) 2.87 2.11 3.55
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complicated object to provide useful information for
machine learning and regression.
This unified sequence-structure encoding gave high

accuracy in initial tests on four PIs [36]. Here, we
demonstrate successful application of the structure vec-
tor in multiple regression analysis and classification on
resistance data for seven inhibitors of HIV PR and nine
inhibitors of RT. The 5-fold validated regression analysis
gave excellent correlation between predicted and
observed resistance with excellent R2 values of 0.58-0.78
for PIs, 0.61-0.98 for NRTIs and 0.85-0.90 for NNRTIs.
Classification with SVM, ANN or a new sparse diction-
ary method gave high accuracies for predicting the resis-
tance for PR and RT inhibitors. The structure vector
encoding had superior accuracy to predictions on the
same sequences using standard interpretation algo-
rithms. The sparse dictionary classifier was the best of
tested classifiers for prediction of resistance to PIs,
whereas SVM classification gave the best performance
on resistance prediction for RT inhibitors. This struc-
ture vector encoding of genotype data has the advantage
of using a single 210-dimensional vector for each pro-
tein target. The algorithm has one slow step for prepar-
ing the encoding from a single protein structure that
can be applied to all genotypes in a fast calculation, in
contrast to molecular mechanics calculations that must
be set up in a non-trivial manner for each individual
protein sequence. The entire protein sequence is com-
bined with the structure vector, so there is the potential
for accommodating new mutations or combinations of
mutations with weak but concerted effects on resistance.
The procedure can be extended easily in future calcula-
tions for resistant mutants with insertions in the protein
sequence, which occur commonly in RT [3]. The new
sparse dictionary classification approach can be
extended to multiple classifiers by using more than two
dictionaries, which is a significant advantage over the
tested standard SVM or ANN classifiers, and may per-
mit accurate predictions for different levels of resistance.

Conclusions
The simple unified encoding of structural information
with genotype gives high accuracy for prediction of
resistance to HIV PR and RT inhibitors as well as excel-
lent correlation coefficients in regression analysis. The
improvement over algorithms using only linear sequence
information suggests the importance of local interac-
tions between mutated residues in the protein structure,
which is consistent with the correlated local changes
observed in the crystal structures of a highly resistant
PR mutant with 20 substitutions [49]. Graph-based
encoding of sequence and structure holds promise for
fast and accurate predictions of resistance from
sequence in order to guide the choice of effective drugs

for treatment of HIV infections. In future, this approach
can be expanded to predict resistance for other drugs
and more diverse types of data.

Materials and methods
Data sets and data preparation
All the datasets were retrieved from Genotype-Pheno-
type Data on the Stanford HIV drug resistance database
[37] (http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.
cgi). In this experiment, the proposed algorithm was
tested on two different systems: HIV-1 PR and HIV-1
RT resistance data. For HIV-1 PR, eight PR inhibitors
atazanavir (ATV), indinavir (IDV), nelfinavir (NFV),
ritonavir (RTV), IDV, LPV, TPV and SQV were tested.
While for the study of HIV RT inhibitor resistance,
NNRTIs nevirapine (NPV), delaviridine (DLV), efavirenz
(EFV), and NRTIs lamivudine (3TC), abacavir (ABC),
zidovudine (AZT), stavudine (D4T), didanosine (DDI)
and tenofovir (TDF) were tested.
For the drug resistance study on the HIV PR and HIV

RT inhibitors, all the genotypes were expanded to indi-
vidual unique amino acid sequences using the method
discussed in [36]. This expansion was needed since the
genotyping experiment resulted in more than one possi-
ble amino acid at several positions in each genotype,
due to potential experimental error or existence of mul-
tiple viral sequences infecting one patient. For each of
the HIV-1 PR inhibitors the results were: for the inhibi-
tor IDV, a total of 16846 sequences were obtained from
1622 isolates; for the inhibitor LPV, a total of 16269
sequences were obtained from 1322 isolates; for the
inhibitor TPV, a total of 10228 sequences were obtained
from 744 isolates; for the inhibitor SQV, a total of
17118 sequences were obtained from 1640 isolates; for
the inhibitor ATV, a total of 12084 sequences were
obtained from 1012 isolates; for the inhibitor IDV, a
total of 16846 sequences were obtained from 1621 iso-
lates; for the inhibitor NFV, a total of 17545 sequences
were obtained from 1674 isolates; and for the inhibitor
RTV, a total of 16652 sequences were obtained from
1589 isolates.
For each of the HIV-1 RT inhibitors the results were:

for the inhibitor NPV, a total of 11367 sequences were
obtained from 746 isolates; for the inhibitor DLV, a
total of 11299 sequences were obtained from 732 iso-
lates; and for the inhibitor EFV, a total of 11354
sequences were obtained from 734 isolates; for the inhi-
bitor 3TC, a total of 4850 sequences were obtained
from 633 isolates; for the inhibitor ABC, a total of 4846
sequences were obtained from 628 isolates; for the inhi-
bitor AZT, a total of 4847 sequences were obtained
from 630 isolates; for the inhibitor D4T, a total of 4845
sequences were obtained from 630 isolates; for the inhi-
bitor DDI, a total of 4849 sequences were obtained from
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632 isolates; for the inhibitor TDF, a total of 2004
sequences were obtained from 353 isolates.
All positive and negative instances of a given mutant

were removed from either training or testing dataset
before the cross-validation. This may avoid the potential
problem of having negative instances associated with a
positive test item or positive instances associated with a
negative test item, and thus assure the training accuracy.

Pre-processing of the datasets
In order to unify the data in the original datasets, those
sequences with an insertion, deletion, or containing a
stop codon relative to the consensus have been removed
so that the data represent proteases of 99 amino acids.
Many of the sequence records in the dataset have multi-

ple mutations at the same sites yet share the same drug-
resistance value, which may be due to sequencing limita-
tions or to the existence of multiple viral strains in the
same isolate. In order to represent a single amino acids
sequence for each mutant protein, we need to expand the
data to multiple sequences with single amino acids at each
location. For instance, in one 99-amino acid mutant of
HIV PR, at one site there are two different types of amino-
acids, and another site has three. In this case, this record
must be expanded to a total of 6 = (2 × 3) different
sequences, each of which has only one amino-acid for
each of its 99 residues, sharing the same drug resistance.
We designed a fast way to perform this expansion as
detailed in [36], which significantly enriches the test data.)

Cutoffs for resistance/susceptibility for each drug
For the HIV-1 PR inhibitors: ATV, IDV, NFV, and RTV,
among all these genotype sequences, those mutants with
the relative resistant fold < 3.0 were classified as non-
resistant (susceptible), denoted as 0; while those with the
relative resistant fold ≥ 3.0 were classified as resistant,
denoted as 1 [19].
With the HIV-1 RT inhibitors: for ABC and TPV, those

mutants with the relative resistant fold < 2.0 were classified
as non-resistant, denoted as 0; while those with the relative
resistant fold ≥ 2.0 were classified as resistant, denoted as
1; for 3TC, AZT, NPV, DLV, EFV, SQV, IDV and LPV
those mutants with the relative resistant fold < 3.0 were
classified as non-resistant, denoted as 0; while those with
the relative resistant fold ≥ 3.0 were classified as resistant,
denoted as 1; for D4T, DDI and TDF, those mutants with
the relative resistant fold < 1.5 were classified as non-resis-
tant, denoted as 0; while those with the relative resistant
fold ≥ 1.5 were classified as resistant, denoted as 1 [19].

Encoding structure and sequence with Delaunay
triangulation
The sequence and structure of the protein were repre-
sented using a graph-based encoding as described in

[36]. Delaunay triangulation was used to define a graph
which spanned the protein structure and defined adja-
cent pairs of amino acid residues. Adjacent pairs of
amino acids were summarized into a vector of the 210
unique kinds of amino acid pairs by calculating the dis-
tance for each adjacent pair in the structure and tabulat-
ing by the types of amino acids in that adjacent pair.
Only the sequences of the mutated proteins are needed
and only one protein structure is necessary. As a result,
all mutants are represented as vectors of the same
dimensionality, which is a desired property for most of
the pattern recognition algorithms. The structures
3OXC [4] for HIV-1 PR, and 2WOM [39] for HIV-1 RT
(from http://www.pdb.org) were used as templates for
Delaunay triangulation.

k-fold validation
In order to fully use all the data, a k-fold cross-valida-
tion was performed in all the experiments for all the
drugs. Specifically, we randomly choose (k-1)/k of all the
sequences (some are drug resistant, while others are
non-drug resistant) for training the classifier and the
remaining 1/k data are used for testing. These tests used
k = 5. Independent randomly selected k-folds were cho-
sen throughout the study to avoid bias in the results.

Regression analysis for drug resistance prediction
The Genotype-Phenotype Datasets provide a drug resis-
tance value, with respect to a certain type of drug, with
each genotype. The mutations relative to a standard
sequence are denoted as x1, x2, . . . , xN; xi ∈ �210 where N
is the total number of mutations and �210 is the structure
vector. Also the corresponding drug resistance values are
denoted as the real numbers y1, y2, . . . , yN; y ∈ � includ-
ing 0 for the resistance value of the wild type virus. We
then seek a linear model between the xi’s and yi’s by mini-
mizing the cost function E :

E :=
N∑

i=1

(yi − A · xi − b)2 (1)

with respect to the 210 dimensional vector A and sca-
lar b.
Furthermore, in order to better utilize the available

data set, we performed a k-fold cross-validation (in this
work, k = 5). Specifically, the training set of size N is
randomly divided into k groups. Among them, k - 1
groups are utilized for constructing the linear model as
in Equation (1). Then, the linear model is used to pre-
dict the drug resistance for the remaining group with
N/k mutations. The predicted resistances are compared
with the measured ones and the R2 values are recorded.
Finally, the average and standard deviation of the k R2

values are computed.
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Sparse dictionary classification
In this experiment, we applied our newly proposed
method described in [36] on both HIV-1 PR and HIV-1
RT data sets. In this case, the sequences of the mutants
are considered as the group of signals, and given these
signals, we would like to construct a dictionary to repre-
sent them sparsely.
The construction of a dictionary can be considered as

finding a suitable over-complete basis (frame), in which
the signals of interest would be represented with far
fewer non-zero coefficients, than in an arbitrary fixed
basis such as a Fourier basis. The newly constructed
basis is also called a dictionary. This dictionary can be
used to assess how well the new signal fits the model
represented by the dictionary, and therefore, it can be
used as a new classification method.
In our experiment, we assume there are 2 groups of

signals: one for drug resistant mutants, while the other
group is non-drug resistant mutants. We construct two
dictionaries for each group, respectively. After that,
given a new signal (mutant, in our case), we use both
dictionaries to represent this signal. By calculating and
comparing the reconstruction error, the dictionary with
the smaller error indicates that the signal belongs to this
category. Based on the theory of the dictionary, it can
be observed that the group number is not limited to 2,
and such procedure could be used as a multi-group
classification method. The 2 dictionaries for each set of
drug resistance data were constructed and the classifica-
tion performed as described in [36].
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