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Abstract

about each algorithm.

databases between them.

Background: MicroRNAs are short RNA molecules that post-transcriptionally regulate gene expression. Today,
microRNA target prediction remains challenging since very few have been experimentally validated and sequence-
based predictions have large numbers of false positives. Furthermore, due to the different measuring rules used in
each database of predicted interactions, the selection of the most reliable ones requires extensive knowledge

Results: Here we propose two methods to measure the confidence of predicted interactions based on
experimentally validated information. The output of the methods is a combined database where new scores and
statistical confidences are re-assigned to each predicted interaction. The new scores allow the robust combination
of several databases without the effect of low-performing algorithms dragging down good-performing ones. The
combined databases obtained using both algorithms described in this paper outperform each of the existing
predictive algorithms that were considered for the combination.

Conclusions: Our approaches are a useful way to integrate predicted interactions from different databases. They
reduce the selection of interactions to a unique database based on an intuitive score and allow comparing

Background

MicroRNAs (miRNAs) are a novel class of endogenous,
~22 nt long RNAs that post-transcriptionally regulate
gene expression [1]. They guide the RNA-induced silen-
cing complex (RISC) to their mRNA targets by sequence
complementarity. In animals, miRNAs generally bind to
the 3'UTR of the mRNA imperfectly and in most cases
lead to translational inhibition of its targets [2]. In
plants, most miRNAs match perfectly to the coding
region of their targets causing mRNA degradation [3].
However, some other interactions have been identified
in vitro, e.g. interactions with the 5’UTR and with the
coding region of transcripts in mammals, with the
3UTR of plants transcripts and even some expression-
enhancing miRNAs[4].
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MiRNAs are known to be involved in development
[1], cell proliferation [5] and differentiation [6], apopto-
sis [7], cell cycle progression [8], tumorigenesis[9], and
many other physiological and pathological processes[10].

There are several experimentally defined rules of
miRNA targeting in mammals. Sequence complementar-
ity with the “seed”, generally the nucleotides 2 to 7, is
sufficient to produce the repression of most animal
mRNAs [5,11]. The seed matches are grouped into four
canonical types: 6mer, 7mer-m8, 7mer-Al and 8mer.
There are also other features outside this region. In fact,
sequence complementarity to nucleotides 13-16 of the
miRNA can either enforce the affinity (supplementary
pairing) or compensate for an incomplete seed pairing
(complementary pairing). Furthermore, G:U wobbles
within the seed are unfavorable to the regulation by
miRNAs[12]. The thermodynamic stability of the duplex
is a crucial feature of the interaction [13]. There are few
other specificities for the mode of action of miRNAs in
plants and metazoa[14].
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Development of deep-sequencing methods have
increased considerably the number of newly discovered
miRNAs[15]. MirBase[16] is up to date the most com-
plete database of precursor and mature miRNAs. Its lat-
est update (release 20, June 2013) covers 206 species and
contains 30,424 precursors and 24,521 microRNAs.

Presently there is a plenty of algorithms and databases to
predict miRNA-mRNA interactions based on sequence,
physical-chemistry properties, expression levels or even
experimental validations. For a common molecular biolo-
gist this panorama represents yet another level of com-
plexity to its every day work since there is no single
answer to the questions of what are the target genes for a
single miRNA? Which prediction algorithms or databases
is the best performing one? How can I reduce the number
of predicted targets? The nature of the questions reflects
the current panorama. In this work we try to provide
answers to those questions by proposing a methodology
that combines and re-score the miRNA-mRNA interac-
tions from all different available sources. Our intention is
to provide the community with a unique source for
miRNA-mRNA interactions based on the goodness of all
available ones.

miRNA-mRNA interactions
Experimentally validated interactions. Currently there
are several databases with experimentally-validated inter-
actions such as: miRWalk[17], miRecords[18], TarBase
[19], miRTarBase[20] and starBase[21]. They differ mainly
on the number of interactions they host. The starBase
database includes interactions validated only by HITS-
CLIP and by Degradome Sequencing. These techniques
provide more accurate information about direct miRNA-
mRNA interactions, and also about the exact binding site
[22]. Table 1 contains detailed information about data-
bases and number of interactions per organism.
Computationally predicted interactions. Today, the
use of computational methods has sped up considerably
miRNA target analysis. Currently available computa-
tional methods can be grouped into ab initio, machine
learning and hybrid methods [15].

Table 1 Number of experimentally validated interactions.

Mirtarbase Tarbase Mirwalk Mirecords

Caernorhabditis elegans 30 - - 17
Drosophila melanogaster 115 - - 81
Danio rerio 102 - - 32
Gallus gallus 16 - - -
Homo sapiens 2860 878 5668 1276
Mus musculus 537 70 2749 194
Rattus norvegicus 231 - 1514 39

Summary of the number of validated interactions for each species we have
studied as well as the source where this interaction was reported.
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Ab initio algorithms are based on the experimentally
defined rules of miRNA targeting. Among them, MiRanda
[23] uses an estimated complementarity score to select the
duplexes, MicroTar[24] considers different sequence com-
plementarities in the seed (nt 1-7 and nt 2-8) allowing for
G:U wobbles. PITA[13] selects seed matches of six to
eight nucleotides, allowing up to one G:U wobble in 7 and
8-mers and up to one mismatch in 8-mers. TargetScan
[11] first searches perfect complementarities to the seed
and then calculates a score, based on the site type, local
A-U enrichment and other aspects of the seed match con-
text. Finally, FindTar[25] finds seed matches allowing up
to one G:U wobble and scores them by the position of the
central loop. Except TargetScan, these methods consider
the thermodynamic stability of duplexes using Vienna
RNA package [26]. For instance, RNAhybrid[27] and miR-
iam[28], first maximize the thermodynamic stability of
the miRNA-mRNA pair and then search for sequence
complementarities.

Machine learning algorithms, such as REMirTarget [29]
and MultiMiTar[30], filter predictions from ab initio
algorithms by using classifiers trained with feature pat-
terns extracted from experimentally-validated interac-
tions. RFMirtarget is based on a random forest classifier
that evaluates 17 features extracted from a previous pre-
diction performed using miRanda on the test dataset.
MultiMiTar is a support vector machine-based algorithm
that rewards 90 features of the miRNA-mRNA pair.
These features are selected by means of the novel multi-
object metaheuristic technique AMOSA([31] integrated
with SVM. Both methods were trained 289 interactions
extracted from miRecords database and 289 systemati-
cally identified tissue-specific negative examples and eval-
uated using an independent experimentally validated set
of interactions.

One example of hybrid methods is NBmiRTar algo-
rithm [32]. It first applies the miRanda algorithm, and
then uses a Niive Bayes classifier to filter the output
based on 57 features. NBmiRTar was trained with a set
of 225 positive miRNA targets of 5 animal species and
38 negative interactions from TarBase.

Databases of predicted interactions. Some computa-
tionally predicted interactions have been incorporated to
different databases: EIMMo([33], DIANA-microT[34],
Microcosm [35], http://Microrna.org[36], TargetScan
[37], MirDB[38], PITA, miRWalk-predictive [17] and
TargetSpy.

Among them, MiRWalk algorithm first searches for
perfect complementarities in the seed and then extends
it until a mismatch is found. EIMMo searches possible
target sites of a microRNA in four different species,
retrieves the number of species in which the site is con-
served and using Bayes statistics it calculates the prob-
ability of conservation of the seed. DIANA-microT
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searches for 7-, 8- or 9-nt long seed-matches, or 6-nt
seeds with one G:U wobble and retrieves the weighted
sum of conserved and non-conserved sites of a gene in
up to 27 species. Finally, MirDB uses the SVM-based
algorithm MirTarget2 [39]. A comparative description
of in silico prediction methods is shown in Table 2.

Combination of miRNA-mRNA interactions

One drawback of sequence-based methods is the large
numbers of false positives they predict. Some studies
have made use of conservation analysis for interaction
filtering. However, this can lead to the loss of species-
specific interactions.

In the last years, several unions and intersections of
different databases have been proposed to improve the
specificity and sensitivity of the predictions. One of
these attempts was done in [40]. Here the performance
of TargetScan, DIANA-microT, miRanda, TargetScanS$
and PicTar[41], as well as their combinations was com-
pared. The highest value of specificity was obtained for
the intersection of the five algorithms and the specificity
for the different proposed combinations was over 66.7%.

In [42], authors experimentally analyzed the intersec-
tion of the possible microRNA regulators predicted by
TargetScan, miRanda and PicTar for the human angio-
tensin II type 1 receptor (hAT1R). They validated one of
the initially considered interactions showing that using
the intersection of databases was a viable way of interac-
tion filtering.

Other approaches, such as, ComiR[43], ExprTarget
[44], Ranking Aggregation[45], BcmicrO[46], GenMiR3
[47] and a Bayesian Graphical model[48], combine the
scores of different databases (see Table S1 in additional
file 1).

The aim of GenMiR3 and the Bayesian Graphical
model is not to combine different databases but to
extract the most outstanding interactions given the
miRNA and mRNA expression data as well as sequence
based information. However both perform database
combination internally and are based on logistic priors.

Ranking Aggregation method is designed to combine
different numbers of top-K ranked lists and is based on
Cross Entropy Monte Carlo method. It was successfully
evaluated in combining the ranked list of targets of
human miR-155-5p predicted by miRanda, TargetScan
and PicTar.

ComiR combines four databases by estimating the
probability of every gene of being targeted by the input
set of miRNAs by using an SVM algorithm. If available,
miRNA expression data is also considered.

ExprTarget uses a logistic regression to combine the
scores of different databases with expression data of
mRNAs and miRNAs. In their model, each of the scores
of the databases is weighted by means of their capability
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of replicating experimentally validated interactions.
Expression values are used to fit a linear model for each
pair and the obtained p-value of the fit is used as an
additional score in the model. ExprTarget is based on
miRanda, TargetScan and PicTar scores. TarBase is used
as gold standard. ROC curves [49] showed that
ExprTarget outperforms individual databases.

Finally, BCmicrO uses a probabilistic model to deter-
mine how likely is an interaction to be experimentally vali-
dated given the scores in different databases. This model is
expressed in terms of individual conditional probabilities,
one per database and interaction. The authors generated a
negative set of miRNA-targets to use as true negatives.
This method was tested with TargetScan, miRanda, Pictar,
mirTarget, PITA and DIANA-microT. ROC curves
showed BCmicrO method outperformed individual
databases.

Our approaches. Currently, there is no method consid-
erably better than others in predicting microRNA targets.
Some recently developed tools provide different ways to
combine predictions of several algorithms, assuming that
they perform similarly and share the same scoring system,
which is not necessarily true. Ideally, an integration of dif-
ferent prediction algorithms should take into account their
level of performance as well as the score of each interac-
tion when it is reported by more than one method. In this
study, we introduce two complementary approaches to
improve the miRNA-mRNA interactions by combining
nine predictive algorithms, as well as experimentally vali-
dated interactions. Global performance of the algorithms
as well as the individual score of every interaction reported
by different methods is taken into account. We show that
the combination outperforms previous approaches while
reducing the number of potential targets candidates.

Results and discussion

Reliability of databases. It is difficult to compare across
the different databases of interactions since they differ in
size, quality of the interactions and the ability of the
scores to reflect the quality of the interactions. We have
used a hypergeometric test to measure the reliability of
databases (see section “Measuring the reliability of data-
bases” in the Materials and Methods section). Results
are shown in Table 3.

This table shows the different databases sorted by z-
score that, in turn, is a measure of their enrichment in
experimentally-validated interactions when sorted by
their provided score. The first two rows of this table
correspond to WSP and LRS databases in this work and
we will refer to them later. EIMMo and DIANA-microT
are top-ranked according to the z-score. TargetScan,
although being lowly ranked by the z-score, has the
highest proportion of experimentally validated interac-
tions. It seems that TargetScan focuses on including



Table 2 Comparison of sequence-based algorithms for miRNA-mRNA target predictionn.

Method® Name Seed AG Conserv. Wobbles AAG Other features Type of Scoring DB? software? website
classifier
Al miRanda v v v matches with the first 11 nt's of the miRNA are score v v http://www.microrna.org
rewarded
Al TargetScan v v different seed types and AU content score v v http://www.targetscan.org
Al PicTar v / v score v http:/pictar.mdc-berlin.de/
Al RNA22 v / miRNA paired to statistically significant patterns in the http://omictools.com/
MRNA rna22-s5063.html
Al RNAhybrid v v MFEs modeled as extreme-value distributed MDE (energy) v http://bibiserv.techfak.uni-
bielefeld.de/rnahybrid/
Al PITA v v v v 1) G:.U allowed in 7mer seed score v vP http://genie.weizmann.ac.
il/pubs/mir07/
2) GU, 1 mismatch allowed in 8mer
Al EiMMo v v model the evolution of orthologous target sites in score v http://www.mirz.unibas.ch/
related species EIMMo3/
Al DIANA- v v v score v http://diana.cslab.ece.ntua.
microT gr/microl/
Al MicroTar v p-value v http://tiger.dbs.nus.edu.sg/
microtar
Al FindTar v v v central loop score to reduce false positives score and energy v http://bio.sztsinghua.edu.
cn/
Al miRiam v / v v v http://ferrolab.dmi.unict.it/
miriam.html
Al microcosm vV v Uses miRanda. Requires: complete seed score v http://www.ebi.ac.uk/
complementarity and conservation at the same enright-srv/microcosm/
position and in >2 species htdocs/targets/v5/
Al miRWalk v also a DDBB with experimentally-validated targets p-value http://mirwalk.uni-hd.de/
from text mining
ML miTarget v / Starting set: miRanda. Radial basis function SVM http://cbit.snu.ackr/
~miTarget/introduction.
html
ML MirTarget2 v v Initial set: TargetScan, PicTar, miRanda, MirTarget SVM score (from v http://mirdb.org
probabilities)
ML TargetSpy vV v Starting set: PicTar. Generates candidate zones of score v v http://www.targetspy.org
binding and a representative hybrid (1st or 2nd nt of
the miRNA is paired)
ML mirSVR v v Starting set: miRanda SVR mirSVR score v v http://microrna.org
(probability for
down-regulation)
H NBmiRTar v v NB classifier is applied to the output of the miRanda Naive NB score
program Bayes (probability)
a Al = Ab Initio, ML = Machine Learning, H = Hybrid
b Academic use only

Comparison of different algorithms of miRNA-mRNA target prediction including different algorithm features, the databases and software availability, scoring method, type of classifier, and species for which the
algorithm was designed.
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Table 3 Reliability of databases.
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(1) (2

(3) 4 (5) (6)

Method Zscore #int. Zscore # DDBB # EV # EV / # DB % drawn
LRS -89.27 163829 4669137 4286 9.18E-04 9.2
WSP -84.52 123589 4669137 4286 9.18E-04 6.94
EiMMo -61.87 191582 1781671 2949 1.66E-03 10.75
DIANA-microT -54.51 269525 2889574 3010 1.31E-03 11.77
http://www.microrna.org -21.2 134227 737379 2685 3.64E-03 18.2
microcosm -17.99 6035 352016 784 2.23E-03 1.71
PITA -15.2 75683 206722 1425 6.89E-03 36.61
TargetSpy -14 178114 300000 653 2.18E-03 5937
miRWalk -9.92 422089 780000 1243 1.59E-03 54.11
TargetScan -9.29 19491 132809 1832 1.38E-02 14.68
mirTarget -5.08 149088 691265 234 3.39E-04 2157

(1) Minimum z-score of a hypergeometric distribution. The lower the z-score the more statistically significant the enrichment in experimentally validated
interactions is. (2) Number of interactions for the minimum z-score. (3) Total number of interactions in the database. (4) Number of experimentally validated (EV)
interactions in the database. (5) Proportion of EV interactions within the database. (6) Proportion of selected interactions in the database for the minimum z-

score.

only the most reliable interactions. On the other hand,
mirTarget is a medium-sized database, but the quality of
interactions, in terms of proportion of experimentally
validated interactions, is small, and therefore, lowly
ranked in this table. TargetScan results indicate that
using z-score as the unique parameter for database com-
parison is not sufficient (other factors should also be con-
sidered, for example, column (6) of table 3). However,
this measurement seems reasonable to compare data-
bases with large non-uncut lists of interactions. This is
the case of many of the databases used in this work.
Comparison of methods. Materials and methods
describe in detail the two approaches we propose to com-
bine predictive miRNA-mRNA interactions from nine dif-
ferent algorithms widely used by the scientific community.
The first one, named Weighted Scoring by Precision (WSP)
is based on summing up the weighted scores for different
databases whilst the second one applies logistic regression
to find the combined score (LRS). These approaches were
evaluated using four different experimentally validated
interactions databases to define the tradeoff between sensi-
tivity and specificity. The evaluation of our methods has
been restricted to the comparison against the predicted
databases and algorithms and compared with two widely
used integration methods: the union and the intersection.
Both approaches outperform any of the predicting
algorithms. A first evaluation of the predictions of our
two methods has been done using the hypergeometric
test used previously for database reliability measurement
(Table 3). It can be noted that both of them rank better
than any other considered database in terms of z-score
and number of interactions. Figure 1 shows the ROC
curve of the individual predicting algorithms as well as
the two combined approaches we introduced here. LRS

outperforms the rest of the algorithms in terms of the
ROC curve, while WSP also improves almost all the
other algorithms and behaves similarly to EIMMO. It is
important to notice that the number of interactions pre-
dicted by the different algorithms is quite different,
except for the combined approaches that use all miRNA-
mRNA pairs reported by the different methods (see
Table 3).

For this particular application, both, the number of False
Positives and True Negatives, cannot be exactly estimated.
To limit the effect of this missing information, we proposed
the use of the precision curve described in Figure 2. The
ranking of the different methods resemble those reported
in the ROC curve, however, the improvement in perfor-
mance of the combined approaches is now clearer. Figure 1
shows an example of this effect is ROC AUC of the inter-
section (0.91), it is much higher than those of the proposed
methods (i.e., 0.79 for WSP and 0.84 for LRS). It appears
that the intersection is the best-performing method in
terms of ROC AUC. This appreciation is misleading. Inter-
section seems to be the best method since it is the most
conservative one. Intersecting all the prediction databases
results in only 117 interactions and most of them are
obviously experimentally validated. The ROC curve is also
misleading because since there are no databases containing
non-interactive miRNA-mRNA pairs, the number of False
Positives and True Negatives cannot be exactly estimated.
There is no optimal solution available for this and that is
why we proposed the use of the precision curve described
in Figure 2. As can be seen in Figure 2, the intersection is
not the most prominent. On the other hand, it is known
that if the positive and negative populations are not evenly
balanced, the ROC curve does not reflect adequately the
behavior of the classifier[49].
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Figure 1 ROC curve for all predictive algorithms as well as the two combined approaches. The area under the curve and the number of
interactions are also included for every algorithm.

Differences between the two proposed approaches are
apparent in both the ROC curve and the Precision
curves. We noticed, however, that the main inconsisten-
cies concern the first 400 interactions, which represents
less than 0.01% of the entire universe of predicted
miRNA-mRNA pairs. This is a very small percentage of
interactions. Our observation is that the exact score
values in the method are not as important as being in the
top of the list with a high prediction value. From that
perspective, both methods are perfectly compatible.
These differences are highlighted in Figure S2 in the sup-
plementary material.

In this work we have compared our methods with the
two most used integration and straightforward
approaches: the union and the intersection. Although a
full comparison with all available methods would be ideal,
this is not always possible for several reasons: a) The idea

in this contribution is to use the largest amount of indivi-
dual prediction methods and databases available and
therefore the integration needs to be performed with the
same databases and algorithms to make a fair compari-
son. Most of the integration approaches that we cite in
the paper use only a subset of the databases and this
would make the comparison very unfair. b) Availability of
the code or data: most of these methods do not provide a
full code we can run and modify or the full interactions
data; therefore, a full comparison is in some cases vir-
tually impossible. ¢) Lack of simple ways to reproduce
and calculate these results several times.

Despite of our efforts in making a full comparison, only
ExprTarget could be included, even if the comparison was
not totally equal in the conditions we have used for the
union and intersection. Supplementary section 4 contains all
details.
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We consider that, as it is already happening in other
areas, there is a need of community efforts to provide the
data, and algorithms available to facilitate comparison.

All the interactions from the computational methods
described in this work, as well as all the experimentally
validated interactions are available to the scientific com-
munity in a database accessible via web at http://m3rna.
cnb.csic.es. Predictions are sorted according the criteria
presented here. Each individual prediction is reported with
a new combined score. This functionality allows research-
ers to access a unified repository with most of the available
and known information about miRNA-mRNA interactions
and use it to compare it with their own methods.

Conclusions

No miRNA-mRNA algorithm makes perfect predictions
under every condition. Because of the multi-faceted nature
of miRNA targeting, and the lack of consensus among
existing predictions, it makes sense to combine them in a
way that maximizes the number of true predicted results
while minimizing that of false ones. There have been pre-
vious attempts to combine the predictions of several algo-
rithms by first taking their union or intersection, as a way
to improve accuracy or coverage, balancing out their sen-
sitivity and specificity, and finally, choosing the most likely
candidates by consensus. Most of these approaches give
the freedom to choose which combination of prediction

algorithms to use. The main issue is that a significant pro-
portion of users do not have the necessary information
about each algorithm’s performance to make an educated
decision.

Our approaches present alternative solutions to this
problem by assigning confidence scores to each predic-
tion regardless the algorithm that originally predicts it.
Both methods provide a score that objectively quantifies
the quality of a particular interaction given its score and
the database (or databases) that predict it. This solves the
implicit problem of choosing a candidate by consensus in
which the confidence of the predictions is not taken into
account. In addition, it solves the problem of setting the
thresholds (different for each of the prediction databases)
to decide whether a predicted interaction is sufficiently
reliable or not.

There are some limitations in our approaches that
represent open research problems for the scientific com-
munity and could be interesting future research direc-
tions. For example, we assume that prediction algorithms
have a high precision when they contain many validated
interactions in their top scores, but this does not necessa-
rily mean that algorithms with low precision are not pre-
dicting true interactions. It may just mean that the
interactions they predict are harder to prove experimen-
tally, or because the necessary experiments to validate
them were never carried out. Almost all prediction
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algorithms, however, make this assumption. Another
weak point in our approaches is that they start with the
predictions that were reported by their authors and that
are publicly available. It turns out that different reported
interaction databases use different versions of sequence
databases and therefore, the universe of mRNA used for
predictions by the different algorithms is not exactly the
same. Rerunning all prediction algorithms with the same
mRNA and miRNA sequences would solve this limita-
tion. It is difficult, however, to reproduce the same results
than the ones reported on the authors’ web sites because
of parameters selection and availability of the code. This
issue has no simple solution and no statistical tests or
algorithms would solve it. We consider that a community
effort by the algorithms’ providers is the only way to
solve this problem, either by making all codes available
or by providing updated results of their prediction based
on a common set of miRNAs and mRNAs. Our methods
presented here do the best they can with the available
information and helps in minimizing the negative effect
of this lack of homogeneity of the databases. As a final
limitation, the lack of information at the transcript level
from both predicting algorithms and experimentally vali-
dated databases create an important limitation to any
method that combines predicting algorithms. Interac-
tions make more sense when they are described at the
transcript level, if possible.

As our understanding of miRNA targeting improves and
experimental methods become cheaper and more precise,
our combined database will become more sensitive and
specific. A good example is the starBase database [21] that
contains interactions identified by the latest and more pre-
cise high-throughput techniques. It will certainly become
one of the reference databases for experimentally validated
miRNA-mRNA interactions. Integrating starBase, as well
as any other new database, will be a future logical conti-
nuation of this work and a good input for future versions
of M°RNA. Besides the databases of experimentally vali-
dated miRNA-target interactions, there are quite a few
large-scale expression-based analyses which can also be
used as alternatives for prediction validation [50]. We have
developed these approaches to serve as a useful way to
obtain higher-confidence predictions using all available
information and thus we hope that new opportunities will
span from this.

Methods

Heterogeneity of formats and normalization of
scores. Prior to the combination of databases, the het-
erogeneity of information as well as storing formats
must be taken into account. One of such heterogeneities
concerns transcript-wise or gene-wise identification of
interactions. In order to unify those from different data-
bases, we converted transcript-wise predictions to the
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gene level. Similarly, we unified gene and microRNA
names by translating from one nomenclature to another
by using dictionaries. We have used a dictionary between
microRNA names from mirbase (ftp://mirbase.org/pub/
mirbase/CURRENT /aliases.txt.gz), and translations
between different gene names retrieved from Ensembl
Biomart. Finally, with the aim of unifying the different
scores used in each database, we normalized each score
by scaling them to range between 0 and 1, being 1 the
highest confidence for the interaction. Another normali-
zation strategy was tested to eliminate the effect of high
dense scoring ranges in the original databases. To that
end, the scores from each database were substituted by
one minus their cumulative density function (cdf) evalu-
ated at the location of the score. In other words, the
scores from each database were sorted in an increasing
manner and its new score was calculated as one minus
their rank, and then divided by the number of interac-
tions. The results with this normalization method do not
show any improvement on the approaches we propose
here, which reflects their robustness.

Measuring the reliability of databases. As a measure
of the reliability of the databases, a similar measuring
approach to that described in [51] was used. In brief, the
reliability is measured as the enrichment in experimen-
tally validated interactions and it is determined from the
hypergeometric distribution. Let’s assume that E is a set
that includes all the interactions predicted by any of the
databases with any score. Few interactions in E have been
experimentally validated. Each of the databases provides
a set of scored interactions. For each database, we sort
the interactions according to their scores and we run one
hypergeometric test for each threshold in the scores.
Finally, we determine the highest enriched set of interac-
tions by selecting the threshold associated to the lowest
p-value. The p-value is an indicative of the enrichment in
experimentally validated interactions. The lower the p-
value the more enriched the selected set will be. Since
the p-values are very small, it is likely to have round-off
errors and therefore the approximation suggested in [52]
was used. Results are included in Table 3.

Combination of experimental databases. The experi-
mentally validated interactions have been used here as a
gold standard to measure the reliability of predicted
interactions. In this work, the union of all the experi-
mentally validated interactions has been considered. A
brief description of the databases used can be found in
Table 1.

Evaluating the performance. The comparison of the
performance of our both approaches and the predictive
databases was carried out by using the ROC and the Preci-
sion curves. The set of the parameters of the ROC curve,
number of true positives (TP), number of false positives
(FP), number of true negatives (TN) and number of false
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negatives (FN) have been determined by considering the
experimentally validated interactions. In fact, an interac-
tion will be considered to be a: TP in case it has been pre-
dicted and validated, a TN in case it has neither been
predicted nor validated and a FP or FN in case it has either
been predicted and not validated or it has been validated
but not predicted.

In machine learning, the area under ROC Curve (AUC)
is one of the most widely used approaches for perfor-
mance measurements. In the ROC curve, the TPR (True
Positive Rate) is plot against the FPR (False Positive Rate).
The sensitivity or True Positive Rate (TPR) is calculated
as: TPR = TP/(TP+FN) while 1-specificity of False Positive
Rate (FPR) is calculated as FPR = FP/(FP+TN). Each point
in a ROC curve is obtained by setting different threshold
values to the normalized scores. This threshold is varied in
decreasing order, from 1 (most stringent) down to 0
(more relaxed). Figure 1 shows the ROC curve for all pre-
dictive algorithms used in this study as well as the two
integrating approaches described here.

This evaluation approach has some caveats. First, not all
real interactions have been experimentally validated. And
secondly, in general, databases with experimentally vali-
dated interactions do not include tested and not validated
interactions. Therefore, some of the false positives and
almost all true negatives will be erroneously labeled. This
implies that the ROC curve can produce to unavoidable
misleading evaluations.

An alternative approach could be to use the Precision-
Recall curve (PR). In this curve, the Precision = TP/(TP+
FP) is plotted against the TPR, also known as recall. How-
ever, it has been shown that an approach that dominates
in the ROC space it also dominates in the PR space [53].
Hence, the Precision-Recall curve also suffers from the
same restrictions.

To cope with this situation and to complement the
information from the ROC curve, we introduce the Pre-
cision curve. For every database, the normalized scores
are sorted in descending order and the accumulated
precision values are determined. The resulting curve
shows the fraction of the predicted interactions that
have been experimentally validated versus the number
of predicted interactions. This approach is not immune
to the potential missing information since there is still a
dependency of false positive values, which cannot always
be estimated. However, the effect of true negatives is
not taken into account, which minimizes an important
source of missing information. Figure 2 shows the preci-
sion curve for all predicting algorithms as well as for
two combination methods described in this manuscript.

Concerning the evaluation of the LRS method using
the ROC curve it is important to point out that the
model could be overestimated, since the same experi-
mentally validated interactions have been used for both
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the prediction and the evaluation. However, given that
the number of parameters used in the model is much
smaller than the number of interactions, this overesti-
mation is not expected to be large. In fact, using glmnet
[54] the R package that internally performs cross-valida-
tion to find out the values of the regressors, we got a
very similar AUC (0.84 using all the data vs. 0.836 using
cross-validation) (see supplementary section 3).

Approach #1. Weighted scoring by precision (WSP).
The WSP method combines the scores of each interac-
tion in different databases by calculating a weighted sum
of their normalized individual scores (see Figure 3.a)).
The weights are included to consider that the scoring
methods used in different databases are not equally reli-
able. To this aim, the interactions in each database are
sorted from the best to the worst and then, the accumu-
lated precision (TP/(TP+FP)) for each of the positions in
the sorted list (each interaction) is determined. The accu-
mulated precision for one interaction takes into account
the number of TPs and FPs from the first interaction. In
order to account for the reliability of the database, the
precision value of each interaction is corrected by sub-
tracting the expected precision value for the database,
obtaining positive values only for those interactions that
are not performing similarly to randomly selected ones.
Each new integrated score is then calculated as the sum
of each individual score from each database multiplied by
the precision of that interaction in the specific database
(weight).

With this method, highly re-scored interactions will be
those that: a) have been highly scored in individual data-
bases, b) are more likely to be experimentally validated
and c¢) have been predicted with high score in many of the
predictive databases. This global score is robust to the
incorporation of low-performing scores, i.e. databases with
low-performing score will not drag down good scoring
ones.

Approach #2. Logistic Regression combined Scoring
(LRS). The LRS method assumes that the higher the prob-
ability of an interaction of being experimentally validated,
the higher its reliability is. This method, first, determines
the probability of each interaction in each database of
being experimentally validated and then, combines them to
get for each interaction a single probability by using a logis-
tic regression model. The steps, detailed in Figure 3.b) are
the following: 1) interactions in each database are ranked
according to their scores, then 2) the scored list of each
database is divided into a number of bins for which the
fraction of the number of experimentally-validated interac-
tions is determined, 3) the obtained set of points is interpo-
lated using smoothing splines and 4) finally, these new
scores are combined using a logistic regression model.

Figure S1 of the supplementary materials shows the
interpolating splines for each of the databases that in



Tabas-Madrid et al. BMC Genomics 2014, 15(Suppl 10):S2
http://www.biomedcentral.com/1471-2164/15/510/S2

Page 10 of 12

Computationally predicted (CP) J

Experimentally validated (EV) J

microT (2289574) (score)
I miR- 495 : cr' = 282

m|R708 i NNAT : —35

P s mlR 1207-5p - TA

miR-1205 DR ’Mf&oifbdm (352016) (pval)
miR-574-5p KLE7...:..22

‘miR-106a*; BC""" " 70 miR-9 SNX7  365E11

miR-9 - ONECUT1 - 1.53E08
miR-98 LRIGZ : 1.04E-08

miR-141 (GO
 miR-1826 © |GDF
miR-801° TM9SF2 © 005

miR-801° MAGEAL2 - 0.05

Tarbase (878)
Iet7 3
e Po)idqrecordsmm
fffffﬂrﬁ'ﬁM"Al
“um mirtarbase (2860)
..... TRINTL len7a | Tusc2
oeedenoo] let-7b : FARP1
328 L COM . miR100: FGFR3
chona 5

_ miR-9 ONECUT2
‘miR9 | CDH1

:

ormalize to [0,1]
J max(S,J) = mm(S,j)

2) ;

“Tcumulative

€ [0,1]

TP
(TP +FP),
/
Precision \
003 | \
Precision
0.0001
L] >
Score Score
0.9 0.53 J

Sy - (precision,-j - thresholdi)

n
S
=1

b)

"~ )
splines 1
P(EV1S;)
P(EV)
\ J

@ \

N ﬂaglsttc regressnon ™

ﬁO +Zﬁz xu +Zﬁtk mm-{xu:xdc}l
_ o (P(EVISy)
_,,,g( ) )

Combl ned score

§=Fo+ Zb’; xy Zﬂ.k "

Figure 3 Description of the WSP and LRS methods. In the WSP method, box a), a new score for each interaction in each database is
calculated by weighting their original scores with their associated accumulated precision. To this aim, for each of the databases, the interactions
are sorted and their corresponding accumulated precisions are calculated. The obtained precision values are considered to be reliable in case
they are larger than the randomly expected precision of the database. In the LRS method, box b), each interaction in each database is re-scored
by assigning its probability of being experimentally-validated. To this aim, for each database, the probability of each interaction of being
experimentally-validated is calculated. The probabilities in different databases are then combined considering their possible dependencies.




Tabas-Madrid et al. BMC Genomics 2014, 15(Suppl 10):52
http://www.biomedcentral.com/1471-2164/15/510/52

turn, provide the probability of each interaction in a
database of being experimentally validated. The pro-
posed logistic regression model is equivalent under
some conditions to a probabilistic model (see supple-
mentary material). The logistic model includes cross-
terms across the databases to accommodate possible
redundancies in their information.

miRNA-mRNA database: m*RNA. The combined
databases obtained with both methods have been
included into a web page (also accessible via webser-
vices). This webservice also includes the computationally
predictions interactions from the different databases
used here. miRBase and Ensembl names have been used
as the reference name for miRNAs and genes and tran-
scripts respectively.

The database has been implemented using postgreSQL,
and all operations and accessions are managed by a Ruby
interface. This interface is connected to a SOAP webser-
vices server to provide a remote programmatic access
allowing read only operations. Users can access the infor-
mation within the webservice by providing the organism
and a list of miRNAs and/or genes. Data is returned in
table format with: the combined databases, names of the
miRNAs and mRNAs involved in each interaction,
experimental information in case available and, the nor-
malized scores and precisions for every predictive
algorithm.

To access the information in a more friendly manner,
we have created a website on top of the webservices
using the web application framework Ruby on Rails.
Further information can be found in the “Help” section
of the web page. The database is available at http://
m3rna.cnb.csic.es

Availability of supporting data

M’RNA website is freely available on the web at http://
m3rna.cnb.csic.es/

Additional material

Additional File 1: Contains a table with a brief description of
methods for the combination of miRNA-mRNA interactions from
different databases, figures of the alternative and discarded scoring
normalization method for predictive databases, a mathematical
description of the LRS method, cross validation results to test
overfitting of the model and comparison with other integration
methods.
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