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Abstract

suitable for comparative studies.
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Background: Viruses have unique properties, small genome and regions of high similarity, whose effects on
metagenomic assemblies have not been characterized so far. This study uses diverse in silico simulated viromes to
evaluate how extensively genomes can be assembled using different sequencing platforms and assemblers. Further,
it investigates the suitability of different methods to estimate viral diversity in metagenomes.

Results: We created in silico metagenomes mimicking various platforms at different sequencing depths. The CLC
assembler revealed subpar compared to IDBA_UD and CAMERA , which are metagenomic-specific. Up to a
saturation point, lllumina platforms proved more capable of reconstructing large portions of viral genomes
compared to 454. Read length was an important factor for limiting chimericity, while scaffolding marginally
improved contig length and accuracy. The genome length of the various viruses in the metagenomes did not
significantly affect genome reconstruction, but the co-existence of highly similar genomes was detrimental. When
evaluating diversity estimation tools, we found that PHACCS results were more accurate than those from CatchAll
and clustering, which were both orders of magnitude above expected.

Conclusions: Assemblers designed specifically for the analysis of metagenomes should be used to facilitate the
creation of high-quality long contigs. Despite the high coverage possible, scientists should not expect to always
obtain complete genomes, because their reconstruction may be hindered by co-existing species bearing highly
similar genomic regions. Further development of metagenomics-oriented assemblers may help bypass these
limitations in future studies. Meanwhile, the lack of fully reconstructed communities keeps methods to estimate viral
diversity relevant. While none of the three methods tested had absolute precision, only PHACCS was deemed

Background

Several studies have demonstrated the potential for re-
constructing genomes from viral metagenomes [1]. A
major obstacle for metagenomic reconstruction is the
existence of highly similar regions between coexisting
genomes which can lead to fragmented assemblies, like
repeats in single genome assemblies. In this regard, it
has become important to analyze the performance of dif-
ferent sequencing platforms and assemblers in a metage-
nomic context, and assess their strengths and limitations.
Initially, Mavromatis et al. [2] combined Sanger reads
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from sequenced bacterial isolates to form in vitro si-
mulated communities of different complexities and bench-
mark assembly and other metagenomic processing methods.
Pignatelli & Moya [3] derived short-read in silico simu-
lated metagenomes from this work to explore facets of the
assembly of high-throughput sequencing data. Charuvaha
& Rangwala [4] evaluated the effects of k-mer size on the
performance of the Bruijn-based assemblers. Later, Mende
et al. [5] studied the effect of quality filtering on the as-
sembly of Sanger, 454 and Illumina metagenomic datasets,
while Luo et al. compared [6] the assembly of 454 and
[llumina datasets from the same metagenome, and evalu-
ated single bacterial genome reconstruction in a metage-
nomics setting [7].

The above-mentioned studies of metagenomic assem-
bly all used bacterial communities and mainly focused
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on assessing functional and taxonomic annotations. While
many of their results and findings can be applicable
to the study of natural viral communities, viruses present
unique properties. Viral genomes are usually smaller than
those of Bacteria and it has become affordable to ob-
tain high coverage of viral metagenomes using current
high-throughput sequencing platforms and to attempt
reconstructing environmental genomes. Viral genome
reconstruction is an important step in the metagenomic
analysis of viral communities. Viruses lack a universal
phylogenetic marker gene that can be used as the ribo-
somal genes for cellular organisms. In this sense, both
accurate phylogenetic annotation and putative host de-
scription rely heavily on the almost complete recon-
struction of the viral genome. Additionally, the extent
of intra-group variability among viruses is greater than
in Bacteria due to their faster evolution rates, which
poses increased difficulties to the assembler. Recently,
Vézquez-Castellanos et al. [8] assessed the effects of dif-
ferent overlap-layout-consensus (OLC) assemblers for the
functional and taxonomic annotation of an iz silico simu-
lated 454 viral metagenome, and Solonenko et al. [9] com-
mented on how different library preparation choices bias
the outcome of virome assembly.

Community diversity is an important ecological char-
acteristic of natural communities, and its estimation
usually complements taxonomic and functional analyses
of viral metagenomes. There are currently three different
approaches to estimate viral richness in metagenomic
datasets; the use of clustering [10-12], PHACCS [13]
and CatchAll [14,15]. The latter two represent software
tools which rely on assembly results, more precisely con-
tig spectra for the fit of their diversity models. Unfor-
tunately, none of these methods have been the subject of
a comparative performance evaluation using viromes of
known diversity.

In the present study, we investigate the ability of vari-
ous sequencing Platform — Assembler — Depth (PAD)
combinations to reconstruct the genomes from a high-
throughput in silico simulated virome, and explore how
genome relatedness impacts the success of genome re-
construction. Furthermore, we evaluate the applicability
of three different methods to estimate viral community
diversity. Collectively, our results should guide resear-
chers undertaking deep viral metagenomic studies to ad-
equate methods for genome reconstruction and diversity
estimation, as well as understand their limitations.

Results

Metagenomic assembly

Using a single virtual viral community, composed of 300
genomes with different degrees of relatedness, from both
ssDNA (Microviridae, Circoviridae, and Nanoviridae)
and dsDNA (Siphoviridae, Podoviridae, and Myoviridae)
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viral families, we generated a large number of metage-
nomic reads mimicking Roche’s 454 and Illumina’s GAIIx
sequencing platforms. Sequencing costs were kept similar
for each technology (based on Reagent cost/Mb values),
resulting in different sequencing depths. We also pro-
duced lower coverage datasets, containing 10% of the
reads of these high coverage datasets, and complemen-
ted them with additional Illumina Miseq and Hiseq low
coverage metagenomic libraries.

Assembly statistics

We assessed assembly of these data using three de Bruijn
k-mer-based assemblers, chosen either for their wide-
spread use (CLC), or for their claimed performance in a
metagenomic setting (CAMERA, IDBA_UD). The various
platform-assembler-depth (PAD) combinations were eval-
uated based on contig length statistics, accuracy of the
generated contigs, and comprehensiveness of the recon-
structed genomes. There were some differences in the as-
sembly statistics of different PADs (Table 1). Based on
assembly results for the high-coverage datasets (Table 1a),
CAMERA performed better than CLC with the 454 data-
set with respect to the maximum contig size and N50 pa-
rameters. For the Illumina GAIIx dataset, and compared
to the CLC assembler, IDBA_UD also had a much larger
N50, even if it produced many more contigs (translating
into an overall lower mean and median values). We com-
pared the effect of scaffolding on these statistics by com-
paring IDBA_UD with and without scaffolding. For both
high and low coverage datasets, the most striking diffe-
rence was an increase in N50 when scaffolding.

We then compared sequencing platforms, focusing on
the assembly statistics obtained with the best tested assem-
bler for each platform (CAMERA for 454, and IDBA_UD
for Illumina). For the high coverage datasets (Table 1la),
[lumina GAIIx achieved a higher number of contigs, con-
tig sum and N50 than 454. Similarly, for the low coverage
datasets (Table 1b), Illumina GAIIx outperformed 454, and
even surpassed the high coverage dataset by assembling
the same amount of reads in fewer, larger contigs. This
outcome indicates that the simulated community may have
been oversequenced by the GAIlx high coverage dataset,
and is consistent with the inability of Bruijn k-mer based
assemblers to deal with large numbers of sequencing er-
rors, resulting in more fragmented assemblies [16]. Illu-
mina Miseq and Hiseq (low coverage) contigs (Table 1b)
were also more numerous and longer than those of 454,
and there were no major differences between them, other
than Hiseq having a slightly larger N50 value. All Illumina
platforms were able to completely recover the longest gen-
ome in the dataset (Pseudomonas_phage_phiKZ, 280 kbp).

We also analyzed the behavior of 454 and Illumina
technologies using an empirical metagenomic data de-
rived from a single Antarctic freshwater viral community
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Table 1 Sequencing and assembly statistics
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#reads Read length Read sum #contigs Contig sum Contig mean Contig max N50
a ) High-coverage mock
454-CAMERA 02 M 700 140 M 2,515 88 M 3,526 279 K 10.7 K
454-CLC 02 M 700 120 M 2,798 76 M 2,737 103 K 455K
GAlIx-CLC 265 M 2x150 7950 M 2,359 80 M 3,392 280 K 9.86 K
GAlix-IDBA 265 M 2x150 7950 M 4,002 99 M 2476 280 K 256 K
GAlIx-IDBA* 265 M 2x150 7950 M 4,040 9.8 M 2447 280 K 206 K
b) Low-coverage mock
454- CAMERA 0.02 M 700 14 M 1,856 22 M 1,223 51K 141K
GAlix-IDBA 265 M 2x150 795 M 3,406 10.1 M 2,973 280 K 323K
GAlix- IDBA* 265 M 2x150 795 M 3,476 10.1T M 2912 280 K 277 K
Miseq-IDBA 165 M 2x300 990 M 3,859 99 M 2,565 280 K 270K
Hiseq -IDBA 920 M 2x100 1840 M 2,674 95 M 3,568 280 K 323K
c) Empirical
454- CAMERA 0.023 M 220 51 M 147 017 M 1177 8K 138K
GAlIx-IDBA 198 M 2x75 297 M 2,774 455 M 1,643 114 K 198 K

*No scaffolding.

(Table 1c). This dataset contains about 40% of the se-
quence information of the low coverage 454 and Illumina
GAlIx datasets. In this case, it was possible to assemble
more reads into contigs with Illumina than with 454,
leading to much higher maximum contig length and
N50 values.

Contig correctness

Contig length statistics alone cannot indicate the degree
to which assembly faithfully reconstructed the original
community. To this end, we compared the contigs gen-
erated by each PAD combination to the original ge-
nomes, assessing their accuracy and chimericity. Contig
accuracy represents how well a contig aligns to the gen-
ome its represents, while chimericity reflects how many
genomes contributed to each contig. Overall, the contigs
produced by all PAD combinations were accurate, with
average accuracy and percentage of high-accuracy con-
tigs usually over 98% (Table 2). The only exception was
GAIIx-CLC with an accuracy of 94 + 14%, and only 86%
of contigs with high accuracy. We also noted that accur-
acy was more consistent (smaller standard deviation) at
higher sequencing coverage and when scaffolding. No
notable differences in chimericity could be attributed to
the use of different assembly programs (Table 2). How-
ever, there were large differences between sequencing
platforms, with Roche 454 producing both less chimeric
contigs and a larger fraction of perfectly non-chimeric
contigs. The Illumina Miseq dataset also had a much lar-
ger fraction of perfectly non-chimeric contigs when
compared to that of Illumina Hiseq (21.9% and 5.2%
respectively). These results seem to indicate that longer

sequencing reads help prevent the formation of chimeras.
Another remarkable result is that while the effect of scaf-
folding on chimericity for the high coverage GAIIx-IDBA
dataset seems marginal, scaffolding reduced the fraction
of perfectly non-chimeric contigs from 20.5% to 8.6% for
its equivalent low coverage dataset.

Contig coverage

Next, we assessed how extensively the PAD combinations
recovered the information contained within the original

Table 2 Accuracy and chimericity statistics

Accuracy Accuracy Chimericity  Non-
>90%° chimeric®
a) High-coverage
mock
454- CAMERA 998+05 999%  093+1.09 42.9%
454-CLC 99.1+£34 99.4% 0.90£1.01 41.2%
GAlIx-CLC 940+ 86.0% 130+ 1.03 7.00%
14.0

GAlIx-IDBA 999+1.1  99.7% 1.27£094 6.10%
GAlIx-IDBA* 999+14  99.7% 1.25+0.95 6.20%
b) Low-coverage
mock
454- CAMERA 992+34  999%  059+087 53.8%
GAlIx-IDBA 996+ 1.6 99.6% 127 £0.78 8.60%
GAlIx-IDBA* 995+3.1  994% 1.26+0.79 20.5%
Miseq-IDBA 99.5+37  987% 1.32+0.99 21.9%
Hiseq-IDBA 98.7£39 98.2% 1.32£0.87 5.20%

*No scaffolding. + Represent SDs. *Percentage of contigs with accuracy >90%.
bPercentage of non-chimeric contigs (Chimericity = 0).
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genomes by calculating overall contig coverage, ie. the
percentage of genome covered by its contigs, and the
maximum contig coverage, i.e. the percentage of genome
covered by its longest contig. CLC produced significantly
lower overall contig coverage than both CAMERA (454
data) and IDBA (Ilumina GAIIx data) (paired Mann—
Whitney test; p <0.05) (Figure 1, and Additional file 1:
Tables S1 and S2). With regards to the sequencing
technology, Illumina GAIIx outperformed 454 at high
coverage. Differences became more pronounced at low
coverage, with values of 18 + 26 and 83 + 28 for CAMERA-
454 and GAIIx-IDBA respectively. Scaffolding produced
marginal yet significantly higher overall contig coverage
for the high but not low coverage dataset. No differ-
ences were observed between high and low coverage
GAIIx values. Maximum contig coverage comparisons
produced essentially the same results, with few excep-
tions. Mainly, scaffolding had a positive effect on both
the high and low coverage datasets, and the low coverage
GAIIx-IDBA produced larger maximum contig coverage
values than its high coverage counterpart, again suggesting
some detrimental effect associated with oversequencing.
The number of genomes showing maximum contig cover-
age above 95%/50% followed a similar pattern than the
above results.

Genome and community characteristics effects on
genome reconstruction

It is noteworthy that the best PAD combination for con-
tig coverage (low-coverage GAIIx-IDBA) only yielded
maximum contig coverage above 95% for 162 out of the
300 different genomes in the community, a figure that
was not improved by increasing the sequencing effort
10-fold (Figure 1). This inability to obtain contigs span-
ning a large proportion of many original genomes, despite

-
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Figure 1 Overall and maximum contig coverage statistics. For
each platform-assembler-depth combination black bars represent
average overall contig coverage and gray bars average maximum
contig coverage, with the error bars representing SDs. Within the
gray bars, numbers represent the number of genomes showing max
contig values above 95% and 50% respectively. High; high coverage
datasets, low; low coverage datasets. *No scaffolding.
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high sequencing coverage may be due to: i) limits to what
the assembly algorithm can achieve given a particular
community, either theoretically or due to imperfect de-
sign, ii) variable genome coverage along genomes (e.g. due
to lower conservation or to GC bias), iii) large genome
length, iv) the existence of repeats regions in the genome,
and v) high community diversity.

Several of these factors were further studied using the
[lumina Hiseq dataset showing best overall performance
and likely future use, and while more contigs derived
from this dataset were chimeric compared to its Miseq
counterpart they were still highly accurate. Differential
coverage along genomes (due for instance to %GC bias)
was not studied as it was not modelled by the chosen
metagenomic simulator, although some less versatile
simulators include such feature [17]. First, we evaluated
to which degree the existence of repeats regions within
the genomes may have translated into low maximum
contig coverage. We then analyzed the genomes in our
evolved mock community for long repeats regions and
found that the longest repeats region did not span more
than 400 bp. Hence, the existence of repeats within the
original genomes was not likely the cause of low max-
imum contig coverage.

The initially exploration of the results (Figure 2) indi-
cated that the minimum coverages attained were suf-
ficient to recover both large and small genomes. This
result shows that the coverages attained were not a lim-
iting factor for genome reconstruction, in line with re-
cent results showing that a bacterial genome could be
recovered from a complex community with as little as
20x coverage [7]. Moreover, genome length did not seem
to have a strong influence on maximum contig coverage.
On the other hand, grouping genomes by relatedness
(unmodified genomes and genomes from groups of 2/8
siblings produced at a 0.0025/0.01 transition rates) re-
vealed that the number of siblings per group and espe-
cially their degree of relatedness likely contributed to
obtaining maximum contig coverage well below 95%.

Next, we studied whether or not we had retrieved at
least one almost complete genome for the intra-species
groups (a =0.0025), which exhibit the lowest maximum
contig coverage (Figure 2). For groups of two siblings,
the largest maximum contig coverage corresponded to the
genome with highest coverage (most abundant). However,
only for one out of ten existing intra-species (a = 0.0025)
sibling pairs did the maximum contig coverage value sur-
pass the 95% threshold, and this group was characterized
by the lowest coverage by others values (see below) of the
ten groups. On the other hand, the groups with eight sib-
lings showed a strikingly different behavior, with seven out
of ten groups having at least one member surpassing the
95% maximum contig coverage threshold. For six of these
groups, the genome showing greatest maximum contig
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Figure 2 Initial exploration of maximum contig coverage vs. genomic characteristics. The diameter of each bubble positively correlates
with genome length, and its color represent its complexity group; s1a0 represents the unmodified genomes, 's" denotes number of siblings and
‘a’ the nucleotide transition rates employed (al; a = 0.0025 intra-species. a2; a=0.01 inter-species). Only genomes longer than 1700 nt are shown
(see methods). Genome coverage; for each complexity group (color) no apparent trend of increasing maximum contig coverage (Y-axis) with
genome coverage (X-axis) is observed. Genome size; for each complexity group (color) no apparent trend of increasing maximum contig
coverage with decreasing bubble size (genome length) is observed. Number of sibling genomes; for each transition rate (a1, a2) the number of
sibling genomes (s2, s8) seems to influence maximum contig coverage values attained (e.g. blue vs. purple). Degree of relatedness; transition rates
employed had a profound effect on maximum contig coverage values obtained (e.g. green vs. blue).

coverage was not the most abundant, and maximum
contig coverage for the other sibling were very low. The
exception as before corresponded to a group with very
low coverage by others values, where all 8 siblings sur-
passed the 95% threshold. Subsequent principal coordi-
nates analyses based on pairwise nucleotide similarities
of the six groups showing a similar behavior revealed
that in five out of six cases the reconstructed genome rep-
resented a central genome within the group (Additional
file 1: Figure S1).

We then aimed to evaluate the effect caused by inter-
ferences between similar genomes by refining the results
obtained in Figure 2, studying the genomes’ coverage
by others to coverage ratio (CbO/C). This new measure
should serve as a proxy of the possible difficulties faced by
the assembler to reconstruct each genome due to the ex-
istence within the community of other genomes with
highly similar regions. Thirty eight genomes had no reads
by others, and all but one of them had large maximum
contig coverage (99.2 + 2.6%).

Plotting CbO/C against maximum contig coverage values
revealed a particular phenomenon (Figure 3); while there is
still the possibility of maximal reconstruction with high
interference from other genomes, it diminished with
growing ratio, and it seems to be unrelated from gen-
ome length. Hence, there is a tendency of diminishing
maximum contig coverage with increasing CbO/C, but

with noticeable dispersion. We further studied the main
outlier group representing genomes with both very large
CbO/C and maximum contig coverage (Figure 3, grey
bubbles). Interestingly, these genomes belonged to the
groups of 8 intra-species siblings (a =0.0025) previously
shown to produce a single reconstructed genome in detri-
ment of its siblings’ maximum contig coverage. This indi-
cates that the dispersion observed from the prominent
tendency of diminishing maximum contig coverage with
increasing CbO/C is due to foreign reads being assem-
bled during he reconstruction of particular genomes to
the detriment of the reconstruction of their original ge-
nomes (positive and negative dispersion along the Y-axis
respectively).

Estimating community diversity

We used PHACCS and CatchAll to estimate the num-
ber of viral species in the evolved simulated community
using contig spectra derived from sub-samples of the
[lumina GAIIx dataset. Since we observed that the as-
semblers were not able to resolve all cases between
highly similar genomes we expected richness estimates
ca. 200 — 300. However, both methods over-estimated
the number of species (Additional file 1: Table S3), with
CatchAll being always 1 to 3 orders of magnitudes off
compared to PHACCS, and richness estimates increased
with sequencing depth.
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To further investigate the accuracy of viral diversity
estimation tools, we tested them on 100 simulated com-
munities with different richness and evenness. For com-
parison, we complemented this analysis with richness
estimates based on the number of clusters formed by
UCLUST. The richness estimates of CatchAll and UCLUST
were orders of magnitude higher than those obtained
by PHACCS, which was the closest to the expected
richness (Figure 4). While not absolutely accurate, the
estimates produced by PHACCS were consistent with
community richness and evenness (Additional file 1:
Figure S2). When accounting for average genome length
in the community (see Methods), UCLUST estimates im-
proved dramatically, while CatchAll estimates were still
at least one order of magnitude higher than expected
(Additional file 1: Figure S3).

Discussion

Our ability to accurately reconstruct the viral genomes
within a deep metagenomic dataset represents a black
box. Assembly success is usually described in terms of
rather subjective proxies such as assembly statistics, or
the number of apparently complete genomes recovered.
However, as we remain ignorant of the richness, struc-
ture, and genetic diversity of the community it is not
possible to work with more objective measures of suc-
cess. This is especially true for viruses that have no ribo-
somal genes to help us estimate its composition, richness
and structure. In this study, we have shed some light on
this black box’s internal functions and mechanisms.

The assembly statistics derived from each PAD com-
bination revealed that both CAMERA and IDBA_UD
outperformed the popular commercial assembler CLC in
terms of both total information in contigs (Sum) and

N50, likely due to the fact that they have been specifi-
cally developed for metagenomic studies. For the high
coverage datasets, both 454 and Illumina performed simi-
larly. However, for the low coverage scenarios all Illumina
platforms greatly outperformed 454, with Hiseq perform-
ing slightly better than Miseq. This result was apparent in
the empirical metagenomic datasets, where Illumina was
able to recover 26 times the amount of bases in contigs
of 454.

Since single point errors in contigs can alter gene call-
ing and predicted translated proteins, contig accuracy is
important. The contigs and scaffolds produced by all
PAD combinations were generally highly accurate, but
CLC exhibited a lower accuracy that could substantially
compromise annotation efforts. Concerning chimericity,
no major differences between assemblers were observed.
However, the 454 platform produced less chimeric con-
tigs and a larger fraction of non-chimeric contigs than
the Illumina platforms. Moreover, Miseq also produced
a larger fraction of perfectly non-chimeric contigs com-
pared to Hiseq. Both results indicate that read length
correlates negatively with chimericity.

Overall, scaffolding marginally improved both contig
length statistics and accuracy, with the tradeoff of in-
creasing contig chimericity, which is consistent with
previous results [5]. Both overall and maximum contig
coverage derived from CLC assemblies were lower than
for their CAMERA and IDBA_UD counterparts. 454
produced lower yet relatively similar values when com-
pared to Illumina GAIIx for the high coverage datasets.
However, its ability to reconstruct the original genomes
(overall and maximum contig coverage) was much re-
duced in the low coverage dataset, when compared to
all Illumina platforms.
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Interestingly, while some large genomes were recov-
ered completely as a single contig, we could not obtain
contigs spanning a large proportion of many original ge-
nomes despite the high coverage values attained. This
issue was further explored using the Illumina Hiseq data-
set, which showed that genome length, sequencing co-
verage, or the existence of repeat regions had little effect
on genome reconstruction. However, the co-existence
of highly similar genomes within the community had a
strong effect on genome reconstruction. It is noteworthy
that usually, for pairs of highly similar genomes, the lar-
gest maximum contig coverage corresponded to the most
abundant genome. However, in the more complex cases
with eight intra-species genomes, a single genome was
normally reconstructed. Instead of representing the most
abundant species, the reconstructed genome tended to be
that showing closest similarity to its siblings. In this sense,
it seems that it is not possible to ascertain whether a re-
trieved genome corresponds to a single strain, or rather to
a group of highly similar strains. One could take steps to
study the intra-population structure of a given genome, e.
g. by re-mapping onto it all metagenomic reads and then

evaluating its nucleotide diversity, or using more sophisti-
cated software [18,19].

Despite advances in sequencing technologies and bio-
informatic tools, the assembly of viral metagenomes thus
remains incomplete. Since all genomes cannot be recon-
structed, even with very high sequencing coverage, me-
thods to estimate viral diversity in deep metagenomes
remain highly relevant. PHACCS and CatchAll are so-
phisticated tools that model community diversity based
on the assembly of metagenomes, while clustering is a
simple method that provides a proxy for viral richness
and has been used to generate rarefaction curves. Using
100 simulated viromes, we showed that CatchAll results
are orders of magnitude higher than expected, due to its
underlying assumption that each contig belongs to a
different viral genome. The use of a discounted model
was not sufficient to alleviate this fundamental limi-
tation. By its nature, clustering creates many clusters
for each genome and its richness estimates can thus be
considered upper bounds of viral richness. However,
correcting clustering results for genome length dramat-
ically improved richness estimates, which suggest a new
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direction for modeling viral diversity in metagenomes.
PHACCS was the most accurate of the tested tools,
reaching a 44.5% +33.0 relative error. Note that these
results were obtained using the more thorough ‘cha’
mode and providing the exact average genome length
in the community, which is rarely known with preci-
sion. We suggest that assuming an average for the viral
genome length limits the absolute accuracy of PHACCS.
However, PHACCS richness and evenness estimates were
consistent with community structure, which makes
PHACCS well suited for the estimation of viral diver-
sity of communities in comparative studies.

Conclusions

The amount of metagenomic information available for
genome reconstruction had a profound effect on as-
sembly success, as evidenced by the low performance
demonstrated by the low coverage and empirical 454
datasets. However, despite the fact that all Illumina com-
binations tested likely presented per-genome coverage in
excess of what seems to be needed for accurate genome
reconstruction, they were unable to recover all genomes
in the community, because of the presence within the
community of genomes bearing highly similar regions.
The assemblers were nevertheless generally able to re-
cover at least a single genome from a highly similar
group of genomes. Overall, we recommend the use of
[lumina platforms such as HiSeq and MiSeq, bearing
in mind that oversequencing may be detrimental,and a
metagenomic-aware assembler such as IDBA-UD for
the assembly of viral metagenomes; this PAD combina-
tions provide good value for money, and yield long, ac-
curate contigs.

Deep metagenomic studies can be complemented by
analyses of community diversity, some of which are based
on contig assembly. While our simulation results argue
against the use of CatchAll for this purpose, PHACCS was
shown to be well suited for comparative work. Clustering
might also prove a worthy alternative in the future, pro-
vided average genome length in the community is taken
into account.

Methods
The evolved mock community
To evaluate PAD combinations, we devised an in silico
simulated community containing 300 genomes from six
DNA virus families (both single and double-stranded)
most commonly found in freshwater environments. Each
family was given the same relative abundance and con-
tained 40 evolved genomes (details below) (Additional
file 1: Table S4).

The rank-abundance curve for the genomes of each
family followed a power-law distribution (Additional file 1:
Figure S4), with few abundant genomes and a long tail of
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low-abundance species as seen in many environmental
viral communities [20] (Additional file 2). Within this dis-
tribution, we intercalated one original genome for each
four evolved genomes to assess genome reconstruction
without sibling noise.

We used the GemSIM simulator [21] to generate mock
metagenomes with empirically derived, sequence-context
based error mimicking the widespread sequencing plat-
forms Roche 454 FLX + and Illumina GAIlx, Hiseq and
Miseq. The GemSIM error models were derived from
data obtained from our local sequencing center (454
FLX+, Hiseq, and Miseq) or published data (GAIIx) [22]
(Additional file 3).

Sequencing depths were chosen based on: i) the amount
of sequences being reported for environmental viromes,
and ii) existing sequencing costs associated with each
technology (Reagent cost/Mb) [23]. We thus produced
high-coverage datasets containing 200,000 reads for Roche
454 FLX + (ca. 700 bp in length) and 26,500,000 read pairs
for Illumina GAIIx (150 bp in length). In addition, we also
produced low-coverage datasets representing 10% of their
high-coverage counterparts, and complemented them
with 1,657,913 MiSeq and 9,201,420 HiSeq read pairs
(based on Reagent cost/Mb values provided by our local
sequencing center).

Evolved genomes

To simulate realistic communities, in which closely re-
lated viral species and strains co-exist, we used MetaSim’s
population sampler, which produces evolved sequences
based on a source genome (Additional file 4) and a given
evolutionary tree [24]. We employed the default tree-
simulation parameters but included two different nucleo-
tide transition rates a (0.01 and 0.0025), and generated
groups of two and eight sibling genomes for each transi-
tion rate. An initial exploration on the outcome of chosen
transition rates on a single genome to produce 10 siblings
resulted in average nucleotide identities (ANIs) ranging
0.786 — 0.947 (0.85 + 0.04) and 0.935 — 0.985 (0.96 + 0.01)
for a 0.01 and 0.0025 respectively. The chosen « levels ap-
proximately correspond to intra and inter-species siblings
based on the fact that 95% ANI can be considered a rough
boundary for species in Bacteria [25]. Nevertheless, we ac-
knowledge that this value may represent a rather artificial
boundary with viruses. For each viral family we introduced
five categories of genomes; 10 unmodified genomes, two
pairs of sibling genomes produced using o at 0.01, two
pairs of sibling genomes produced using « at 0.0025,
two groups of eight sibling genomes produced using o
at 0.01, and two groups of eight sibling genomes pro-
duced using o at 0.0025. Hence, we produced 40 evolved
genomes from 8 original genomes for each family by gen-
erating duplicates of the four combinations (2 X «a levels
[0.01/0.0025] X group sizes [2/8]).
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The Limnopolar empirical community

We compared the assembly results derived from our
simulated community to an actual viral metagenome ob-
tained from Lake Limnopolar and composed mainly
of unknown and ssDNA viruses [26]. We maintained
the costs associated to each technology and compared
23,249 (average 220 bp in length) Roche 454 sequen-
ces against 1,989,155 (75 bp in length) Illumina GAIIx
sequence pairs. The 454 virome was assembled with
the CAMERA assembler and the Illumina version with
IDBA_UD.

Metagenomic assembly

A series of filtering and trimming steps were undertaken
to remove low quality reads and bases using the prinseq-
lite software [27] (trim_qual_right 28, trim_qual_type
mean, trim_qual_window 5). Additionally, Lake Limno-
polar 454 reads were dereplicated with prinseq and
sequences shorter than 50 bp removed. The resulting
reads were assembled into contigs using different as-
semblers; 454 reads were assembled using the CAMERA-
assembler [28], and CLC Genomics Workbench 6.0 (CLC
Inc, Aarhus, Denmark. Trial version). Illumina reads were
assembled using CLC and IDBA_UD [29]. CAMERA and
CLC were used with default settings, and IDBA_UD with
recommended metagenomic settings (mink 20, maxk 120,
pre_correction). In all cases, contigs shorter than 500 bp
were removed from further analysis.

Contig analysis

In order to evaluate the performance of the different
PAD combinations we used previously developed analyt-
ical strategies for short read metagenomic assembly [4].
We calculated metrics reflecting the extent of genome
reconstruction: overall contig coverage, the percentage
of each genome covered by all its contigs, and maximum
contig coverage, the percentage of each genome covered
by its longest contig. First, contigs were aligned to the
input genomes using nucmer (c 30, 1 15) [30]. Then, the re-
sults were filtered allowing only >95% identity and >100 bp
length alignments. For each contig, only the best-scoring
alignments to a genome was allowed. Finally, a dedi-
cated python script recorded the alignment position in-
formation for each contig, with the collection of all
such positions for a given genome representing its con-
tig coverage, expressed as a percentage of the total gen-
ome length. The same alignment file produced for the
contig coverage calculations was parsed using an in-
house script to obtain the proportion of the original ge-
nome’s length covered by the longest aligning contig
(maximum contig coverage). To assess which particular
PAD combination produced the best maximum and over-
all contig coverage, we conducted paired Mann—Whitney
tests with R.
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The accuracy of assemblies was established using a
chimericity and contig accuracy metrics. Chimeric con-
tigs are defined as contigs formed by reads derived from
more than one genome. However, due to the short
length of reads issued from high-throughput sequencing
platforms and the existence of closely related viral ge-
nomes, chimericity does not necessarily mean lack of
correspondence between a contig and its source genome.
Reads were re-mapped to contigs using the bowtie2 read
aligner [31] reporting only best hits at high stringency
(score-min L,0,-0.2). For each contig, we used the counts
of reads from each original genome to calculate chimeri-
city, defined here as the entropy of the contigs:

Entropy = — Zpi.log(pi) (1)

Where p; is the proportion of mapped reads arising from
genome i.

The level to which each contig accurately represents
the information contained within the original genomes
was assessed using a contig accuracy score, defined as
the identity of the local alignment multiplied by the ratio
of alignment length to contig length. Contig accuracy
values were also obtained by processing the filtered nucmer
files with a dedicated script.

Genome reconstruction

Both genome and community characteristics may impact
our ability to assemble a particular genome from a com-
plex community. We have used the PAD combination
showing best overall performance (Hiseq) to assess the
effect on maximum contig coverage caused by genome
length, relative abundance, existence of closely-related
genomes in the community, and repeats regions within
the genome. Due to the interaction between the circu-
lar nature of many genomes and chosen alignment
thresholds genomes shorter than 1700 nt were removed
from further analysis as there is the possibility that
their maximum contig coverage may have been slightly
underestimated.

In most instances, the assembly only recovered one of
the genomes (maximum contig coverage >95%) from the
groups of eight intra-species genomes (a =0.0025). We
studied the possible effect of intra-group genetic similar-
ity on genome recovery by obtaining pairwise nucleotide
similarities between sibling genomes, which were then
analyzed by principal coordinate analysis using the dudi.
pco function of the ade4 package [32] in R.

The existence within a community of genomes bearing
highly similar regions may also hamper the reconstruc-
tion of a genome. For instance, the reads originating
from a particular genome might be used in the recon-
struction of other genomes with OLC assemblers, or it
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may lead to graph structures not properly resolved with
de Bruijn graph-based assemblers. To analyze this as-
pect, we mapped all metagenomic reads to each genome
using bowtie2 with default parameters but allowing all
above-threshold hits. Then we recorded the number of
metagenomic reads mapping to each genome minus the
number of reads originating from each genome, and
normalized for differing genome sizes dividing by gen-
ome length, obtaining a coverage by others parameter.
Finally, we used the ratio of coverage by others to coverage
as a proxy to assess possible genome reconstruction bias
produced by this sort of interference.

The hundred mock communities

We generated 100 in silico mock metagenomes with
different community structures to benchmark the ac-
curacy of viral diversity estimation methods more thor-
oughly. To this end, >2,200 complete genomes from
the NCBI RefSeq database [33] were used as reference
for the Grinder read simulator [34]. Each metagenome
contained 200,000 reads designed to follow the length
(~450 bp) and errors typical of 454 GS-FLX Ti pyro-
sequencing. The metagenomes followed a power law
rank-abundance and were classified in four community
structures, varying in richness (100 or 1,000 species)
and evenness (most abundant genome at 2.0 or 25%
relative abundance). We let Grinder automatically ran-
domly generate 25 metagenomes of each type (total of
100 metagenomes) for statistical replication.

Estimation of viral diversity

Using the GAIIx evolved mock metagenome, we de-
termined the effect of metagenome size on estimated
community viral diversity. We produced subsets of this
metagenome containing 24,658, 248,525 and 2,485,933
reads. Their contig spectra was calculated with Circon-
spect [1] using the Minimo assembler [35] employing
all reads and default parameters (98% identity, 35 bp
overlap). Then, both PHACCS and CatchAll were em-
ployed with their default values to fit the contig spectra
using all available models.

Using the hundred 454 mock metagenomes, we calcu-
lated the accuracy of viral diversity estimates obtained
using PHACCS, CatchAll and UCLUST as a function of
community structure. Contig spectra were generated
with Circonspect at 3X fold coverage using Minimo
(and default options). These contig spectra were pro-
vided to CatchAll and the estimated richness using the
best model and the best discounted model were re-
corded. PHACCS was also given these contig spectra to
estimate the viral richness and evenness, letting its op-
timization algorithm look for the best fit using the more
exhaustive ‘cha’. For the clustering method, the entire
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metagenome was used as input to UCLUST (cluster_
smallmem program, both strands, minimum identity of
98, 90 and 75%) and the number of resulting viral clus-
ters was calculated. In an attempt to improve their
accuracy, the UCLUST and CatchAll estimates were di-
vided by the average genome length minus average read
length.
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