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Abstract

Background: The introduction of benchtop sequencers has made adoption of whole genome sequencing possible
for a broader community of researchers than ever before. Concurrently, metagenomic sequencing (MGS) is rapidly
emerging as a tool for interrogating complex samples that defy conventional analyses. In addition, next-generation
sequencers are increasingly being used in clinical or related settings, for instance to track outbreaks. However,
information regarding the analytical sensitivity or limit of detection (LoD) of benchtop sequencers is currently
lacking. Furthermore, the specificity of sequence information at or near the LoD is unknown.

Results: In the present study, we assess the ability of three next-generation sequencing platforms to identify a
pathogen (viral or bacterial) present in low titers in a clinically relevant sample (blood). Our results indicate that the
Roche-454 Titanium platform is capable of detecting Dengue virus at titers as low as 1X10%* pfu/mL, corresponding
to an estimated 5.4X10" genome copies/ml maximum. The increased throughput of the benchtop sequencers, the
lon Torrent PGM and lllumina MiSeq platforms, enabled detection of viral genomes at concentrations as low as
1X10" genome copies/mL. Platform-specific biases were evident in sequence read distributions as well as viral
genome coverage. For bacterial samples, only the MiSeq platform was able to provide sequencing reads that could
be unambiguously classified as originating from Bacillus anthracis.

Conclusion: The analytical sensitivity of all three platforms approaches that of standard gPCR assays. Although all
platforms were able to detect pathogens at the levels tested, there were several noteworthy differences. The
Roche-454 Titanium platform produced consistently longer reads, even when compared with the latest chemistry
updates for the PGM platform. The MiSeq platform produced consistently greater depth and breadth of coverage,
while the lon Torrent was unequaled for speed of sequencing. None of the platforms were able to verify a single
nucleotide polymorphism responsible for antiviral resistance in an Influenza A strain isolated from the 2009 H1N1
pandemic. Overall, the benchtop platforms perform well for identification of pathogens from a representative
clinical sample. However, unlike identification, characterization of pathogens is likely to require higher titers,
multiple libraries and/or multiple sequencing runs.
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Background
Metagenomic sequencing involves high-throughput se-
quencing of complex samples comprised of nucleic acid
from multiple organisms. Although the technique is
relatively new, published examples of metagenomic se-
quencing to detect and/or characterize a causal agent in
diseases of animals and humans are already too numer-
ous to be summarized here. In some cases, as in the case
of a novel filovirus that caused an outbreak in Uganda in
2007, metagenomic sequencing was used to follow up
when results from traditional diagnostic assays indicated
a novel agent. For instance, the Ugandan filovirus had
produced a positive result in a broadly cross-reactive
IgM capture assay followed by mixed results in RT-PCR
assays for known filoviruses, and so metagenomic se-
quencing was employed to characterize the genome of
the novel virus [1]. Another example whereby more
traditional diagnostic assays and metagenomic sequen-
cing both played a role in detection is the identification
of human metapneumovirus causing fatal infection of
wild Rwandan gorillas [2]. The opposing scenario, in
which traditional diagnostic assays completely fail and
metagenomic sequencing plays more than just a sup-
porting role, includes a recent report of astrovirus en-
cephalitis in an immune-compromised teenage boy [3].
Metagenomic sequencing has many advantages over
more traditional methods of pathogen detection, such as
PCR, ELISA, cytopathic effect, etc. These advantages in-
clude relative speed, the ability to detect non-culturable
organisms, and, perhaps most importantly, the fact that
metagenomic sequencing requires little to no a priori
knowledge of the organism(s). However, despite these
advantages, there are some significant challenges in-
volved. These difficulties may include computationally
intensive analyses; in some cases the lack of appropriate
reference genomes for comparison; difficulties in sample
preparation, including matrix effects and biases intro-
duced from extraction; as well as the need for sufficient
depth and breadth of coverage to detect pathogens at
potentially very low levels in a given sample. It is also
important to note that there are currently no standards
in terms of what constitutes “identification” of a patho-
gen in a sample. A number of organism-specific reads
will be necessary to make a true positive call, but how
many reads or signatures is necessary to invoke confi-
dence is not standardized and may vary as per sample
type/complexity or may be organism-dependent. It is
likely that increased depth of coverage would increase
confidence in a species or strain call, but again, there is
no agreed upon standard regarding depth of coverage
for metagenome samples, and in many cases it would be
reasonable to expect that a region of a pathogen genome
detected within a metagenome sample may be only
present within the reads at 1X coverage.
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Just as there is currently no agreed upon standard to
indicate what breadth or depth of coverage would be re-
quired to make an “identification,” there is currently a
paucity of knowledge regarding the actual limits of de-
tection (LoD) for each sequencing platform and proto-
col. Detection of even one or several pathogen-specific
reads in a clinical sample that are not found in control
samples is likely to be interpreted as a positive result.
However, in the absence of LoD data, it is difficult to
conclude with any confidence that a pathogen is not
present simply because no pathogen-specific reads are
detected. Recently, Moore et al. conducted a LoD study
whereby viral RNA in serial dilutions was spiked into a
colorectal biopsy sample and sequenced using the Illu-
mina platform. In this study, although the proportion of
viral reads detected was less than expected, potentially
due to issues quantitating the RNA, virus-specific reads
were detected from samples spiked with less than pico-
gram quantities [4]. In another study, Cheval et al. spiked
plasma and cerebrospinal fluid with known concentrations
of eleven different viruses to assess the level of detection
by Roche-454 pyrosequencing as compared to Illumina,
and found that the higher output (number of reads) pro-
duced by the Illumina platform resulted in better detec-
tion of the viruses per run. The authors report detection
of viruses by their 454 sequencing at titers of 1X10
pfu/ml and higher, and by Illumina of viral genomes
present at 1X10>* genome copies/ml and higher [5].

Other studies have suggested that the LoD by 454
sequencing for an RNA virus with a genome size
of ~10-11 kb lies between 1X10% and 1X10° pfu/mL [6].
Likewise, in a recent study using artificially constructed
marine metagenomes, Pochon et al. determined that the
454 GS Junior was capable of detecting DNA from spe-
cies present at levels greater than 0.64% of the whole. It
should be noted, however, that this study used ampli-
cons from a single gene to determine sensitivity [7].
Finally, variation in extraction techniques and/or sample
preparation kits have been shown to affect the compos-
ition of sequence reads [8,9]. Thus, any reported LoD is
likely to be very protocol specific, as modifications intro-
duced at each step of the procedure can have drastic ef-
fects on overall sequence read output and quality.

In a previous study, we assessed the ability of
the Roche-454 platform to detect low-level pathogens
present in a complex host background, insect vectors
[6]. Results indicated that pathogen reads present in pro-
portions of 0.1% were sufficient to cover 90% of a viral
genome at a depth of >4X. The same study postulated
the number of sequence reads required to identify a
pathogen present in a sample in which 1 out of 100
pooled mosquitoes is infected. The projected number
of reads necessary was expected to vary depending on
titer, with high titer infections requiring hundreds of



Frey et al. BMC Genomics 2014, 15:96
http://www.biomedcentral.com/1471-2164/15/96

thousands of reads, while low titer infections would
require tens of millions. In the current study we use
the latest sequencing technologies with their increased
throughput and lower cost to confirm these projections
as well as establish metrics for pathogen identification
from clinical samples.

Results

Limits of detection of Roche-454 pyrosequencing

Our previous study suggested that as few as 0.1% of the
total reads were sufficient to unambiguously identify a
viral pathogen present in a complex background [6].
However, our experimental model was reflective of a dis-
seminated infection and high viral load [6,10-12]. There-
fore, we wished to determine if the Roche-454 platform
was capable of detecting viruses at reduced titers.

To determine the limits of detection (LoD), mock
samples were created by spiking known amounts of
Dengue virus Type 1 (DENV-1) into 1 mL aliquots of
whole human blood. Total RNA was extracted from
each sample and used for construction of ¢cDNA librar-
ies. Sequencing of samples representing each titer was
conducted in replicate fashion on the Roche-454 plat-
form and DENV-1 was detected in a range of titers from
1X10° to 1X10° pfu/ml. Since no DENV-1 specific reads
were detected at the titer of 1X10% it was determined
that the effective LoD for 454 sequencing using this
protocol must lie between 1X10% and 1X10?, and so sev-
eral samples were prepared within this range (1X10%?,
1X10*°, and 1X10>7). Sequencing was initiated with the
1X10*® sample and progressed down to 1X10*?, from
which no reads were detected. Overall, the decrease in
the number of viral reads approximated the reduction in
titer, especially at lower titers. At the lowest titer detect-
able, 1X10>°, the breadth of coverage of the reference
genome was 31% with an average depth of coverage of
0.35X upon read mapping (Figure 1). In a parallel ap-
proach, de novo assembly of reads yielded a single contig
of 427 bp in length. By comparison, assemblies of sam-
ples at 1X10° pfu/mL and 1X10* pfu/mL yielded one
contig of 9445 bp and two contigs of 4640 and 3566 bp,
respectively. In both cases the largest contig in the
de novo assembly belonged to DENV-1. It is striking
that, in the case of the low titer samples, de novo assem-
bly of the reads provides less information than would a
taxonomic classification of all reads. In the case of the
1X10*® pfu/mL sample, although 11/604,130 resulting
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reads map to the reference, covering 31% of the viral
genome, de novo assembly of the reads produces a single
contig comprised of 2 reads that covers only 4% of the
viral genome (Table 1). This apparent difference between
fraction of the viral genome covered by the de novo as-
sembly and the reference mapping is due to insufficient
breadth of coverage for the reads to overlap and be used
in de novo assembly.

Comparison of Roche-454, lllumina MiSeq and lon Torrent
PGM for detecting viral pathogens
Next, we examined how the performance of benchtop
sequencers would compare with that of the Roche-454.
To that end, mock samples containing Influenza virus
HI1N1 were prepared in a similar fashion to the DENV-1
samples. For this experiment, the DENV-1 results were
used as a guide as to what range of titers to investigate.
The effective LoD for the 454 platform was found to be
1X10*°, which we estimate to correlate with an upper
limit of 31,600-53,720 genome copies/ml, based on work
by Houng et al. and Wang et al., who found one DENV
pfu to correspond to 100 and 170 genome copies by
qPCR, respectively [13,14]. Therefore, an initial titer of
1X10* - genome copies/mL was chosen for these experi-
ments. At 1X10* genome copies/mL the Roche-454 plat-
form was capable of detecting the Influenza virus in only
one out of two replicates, with only a single hit covering
3% of the flu genome (Table 2). At the same concentra-
tion, two biological replicates sequenced on the PGM
platform scored 11 and 21 hits, covering 7% and 12% of
the genome, respectively. By contrast, two biological rep-
licates sequenced on the MiSeq platform scored 308 and
811 hits, covering 79% and 95% of the genome, respect-
ively. Interestingly, even when the number of Influenza-
specific reads is expressed as reads per 100,000, the MiSeq
and PGM platforms both outperform the Roche-454, indi-
cating that there may be some platform-specific factors
that affect LoD in addition to total output per run.
Examination of the read mappings revealed that the
mapped reads were not evenly distributed along the viral
genome for any of the three sequencing platforms.
Figure 2A depicts representative read mappings by plat-
form for segment 5 of Influenza A HIN1. For the PGM,
the regions of highest coverage were found most often
toward the 5° end of segment 5. Specifically, 14/19
mapped reads aligned within the first quarter of the
genome segment. The single mapped read from the
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Figure 1 Read mapping against DENV-1 genome at 1X10%° pfu/ml. Reads resulting from 1 454 Titanium sequencing run of a cDNA library
made from blood spiked with DENV-1 at titer of 1X10>° pfu/ml were aligned to the reference genome NC_001477.1 using CLC Genomics

Workbench version 6.0.4 at default parameters.
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Table 1 Roche-454 read statistics for DENV-1 at multiple titrations

Dengue-1 pfu/mL Estimated max. Reads mapped Fraction of Average C; Contig(s) by Fraction of
genome copies/mL per 100,000 reference covered de novo assembly?  reference covered

1X10° 1X10" - 1.7X10* 0 0 NA N 0

1X10%? 2X10% - 34X10* 0 0 27.65 N 0

1X10%° 3.2X10* - 5.4x10" 034 0.05 ND N 0

1X10%° 3.2X10% - 54x10* 182 031 27.03 Y 0.04
1X10° 1X10° - 1.7X10° 34 04 25.66 Y 0.20
1X10° 1X10° - 1.7X10° 47 072 ND ND ND
1x10* 1X10° - 1.7X10° 342 092 21.79 Y 0.76
1X10° 1X107 = 1.7X10 1909 0.99 18.05 0.99
1X10° 1X10°% - 1.7X10° 2271 0.99 14,56 Y 0.99

Roche-454 was 448 bases in length. By contrast, the lon-
gest mapped read for the PGM was 179 bases. As ex-
pected, the mapped reads from the MiSeq platform were
all 150 bases in length. Since the PGM offers scalability
in throughput, we sought to compare the sensitivity of
the PGM using a 314 chip as well. The throughput
of the 314 chip is similar to that of one-half of a 454
picotitre plate. Although not shown in Table 2, two in-
dependent experiments using a 314 chip yielded a single,
84 base read mapped to Segment 5 (Additional file 1:
Figure S1). This single read mapped within the first
quarter of Segment 5. These data strongly suggest that
increased throughput is required for detection of patho-
gens present at low levels.

A closer examination of the read mappings for both
the PGM and MiSeq platforms indicated that some
mapped reads were spurious. In order to eliminate these
matches, stringency of read mapping parameters was in-
creased. At the medium stringency setting, whereby the
length of the read required to match was increased from
50% to 70%, the number of mapped reads dropped by
roughly half for the PGM and by roughly 10% for the
MiSeq. Furthermore, the number of MiSeq reads that
mapped in pairs was roughly 25% (66 out of 269;
Table 2). This is most likely due to polymorphisms in
the sequenced strain that are not present in the NCBI
reference genome. As expected, no reads mapped at the

highest level of stringency tested, as the requirement for
100% identity would preclude any matches.

For Influenza virus segment 8, the MiSeq yielded 14
mapped reads versus the single mapped read from the
PGM. It is noteworthy that although the MiSeq reads
covered more of the segment overall than the single
PGM read did, both platforms produced a single read in
an area of high G/C content. Given that the MiSeq
consistently produced the highest depth of coverage, we
next examined whether the increased coverage of the
MiSeq was sufficient to determine the presence of a
single nucleotide polymorphism (SNP) that conveys re-
sistance to a widely used antiviral drug, oseltamavir
(Ose). Previous studies have established that Influenza A
strains from the 2009 epidemic had mutated to an Ose-
resistant phenotype [15]. Thus, we examined the reads
resulting from MiSeq sequencing of a 2009 epidemic
strain for the presence of the mutation H275Y, and in
neither of two biological replicates were any of the
known SNPs detected. In fact, there was zero coverage
of that specific region of the genome. Given that our ex-
perimental model, human blood, represents a relatively
low-complexity sample (as compared to clinical samples
from other body sites such as oropharyngeal swabs or
fecal samples), spiked with Influenza A genomes at titers
higher than would be expected to be encountered in
a clinical sample, these data suggest that pathogen

Table 2 Cross-platform comparison of read mapping to Influenza A H1N1

Platform #/Replicates Reads mapped (low) Reads mapped Reads mapped (med) Reads mapped Fraction of reference
per 100,000% in pairs® covered?

PGM 1 3 11/20/ND 61/80/ND 5/16/ND NA 07/.15/ND

PGM 2 3 21/19/18 87/1.3/.86 14/11/10 NA 12/.09/.14

Roche 2 1/0 17/0 0/0 NA 03/-

MiSeq 1 3 308/322/323 .82/.90/1.0 269/311/318 66/72/82 .79/.95/.80

MiSeq 2 3 811/942/912 2.2/24/22 741/934/914 296/216/248 95/.95/.97

a: Reads mapped at low stringency.
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Figure 2 Read mapping against representative segments of Influenza genome. In A), reads resulting from a representative run of 454
Titanium sequencing, lon Torrent PGM sequencing, and lllumina MiSeq sequencing were mapped to the reference Influenza A HINI segment 5
[NC_002019.1], using CLC Genomics Workbench version 6.0.4 at default parameters, whereas in B), they were mapped against segment 8
[NC_002020.1]. In B), no Roche-454 reads mapped to the reference. In both A) and B), coordinates of reference genome segment are displayed

enrichment may be a necessary step for determination
of drug resistance by metagenome sequencing.

de novo assembly and BLASTn analysis of Influenza A
reads

In many cases the identity of a pathogen may not be
known or the pathogen’s genome may be very divergent
at the nucleic acid level from that of known family
members, necessitating analysis by means other than
mapping reads to a reference genome. Therefore, de
novo assemblies of the Influenza A metagenomes from
the PGM and MiSeq data were performed, followed by
BLASTn analysis. Assembly of the PGM reads using
MIRA produced an average of 28,000 contigs, yet not
a single contig was classified as Influenza A (Table 3).
In fact, no contig was classified as a viral taxon. This
result is surprising given the observed sequence depth
in several regions of the Influenza A genome (see
Figure 2A). We also attempted assembly of the PGM
reads using Velvet with similar assembly parameters.
Again, none of the resultant contigs were able to be
assigned to Influenza A. Upon closer inspection, it
was observed that the identified reads were either

Table 3 De novo assembly and BLASTn statistics of
Influenza A sequence reads

Platform Assembler # total contigs # specific contigs
PGM 1 MIRA 26,171 0
PGM 2 MIRA 30,719 0
MiSeq 1 Velvet 841,384 18
MiSeq 2 Velvet 768,912 1

substrings of each other and therefore absorbed dur-
ing the merge step of assembly, or they had a stretch
of mismatches long enough (> 10 bases) to cause
the assembly algorithm to mark these reads as not
overlapping.

By comparison, assembly of the MiSeq reads for two
biological replicates using Velvet generated well over
750,000 contigs for both replicates, with 18 and 11 flu-
specific contigs, respectively. Taxonomic classification of
the contigs by MEGAN properly assigned the correct
strain (Influenza A virus (A/swine/lowa/15/1930(H1N1))
in 5 out of 18 and 0 out of 11 contigs. Importantly, only
the strain level classifications were mis-assigned. In each
case, the correct genus and species calls were made.
Therefore, each of the contigs identified by MEGAN as
Influenza but not correctly identified at strain level was
individually subjected to BLASTn analysis and manual
curation of results. This inspection revealed that the
proper strain was indeed present in the hit tables (6 and
7 contigs, respectively), but that for each of these con-
tigs, there were several strains hit with the identical
E-value, including A/swine/lowa/15/1930(H1N1), and
therefore, a definitive strain call could not be made
in those cases. Thus, for one of two replicates, a majority
of the influenza-specific contigs resulting from de novo
assembly of the MiSeq reads were either properly classi-
fied to the strain level, or conserved amongst a subset of
strains including A/swine/Iowa/15/1930(H1IN1). It was
interesting to note that, in each case, contigs corre-
sponding to Segments 4 (HA) and 6 (NA) were not
assigned to the proper strain. These results demonstrate
that the increased throughput of the MiSeq enables
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species level identification of reads present in propor-
tions as low as .0008% of the total.

Comparison of Influenza A sequencing replicates on the
PGM and MiSeq

We were interested in further examining the observed
differences in the number of mapped reads between
biological replicates and between genome segments. In
addition, we wished to determine the reproducibility of
our results. The biological replicates (derived from inde-
pendent spikings and library preparations) sequenced on
the MiSeq platform exhibited considerable variability
(Table 2), and we were interested in determining at what
stage this variability would arise- at library construction or
sequencing. Thus, we performed replicate sequencing runs
for each of the PGM and MiSeq libraries. The total num-
ber of mapped reads for each technical replicate was quite
consistent (Table 2). This observation held true for both
platforms. Moreover, each individual library yielded a
number of mapped reads that was less than one standard
deviation from the average. Thus, the inter-run variability
seems to be limited and results of sequencing a given li-
brary preparation are highly reproducible.

However, we did note several tendencies regarding
the number of mapped reads per segment (Additional
file 2: Table S1 and Additional file 3: Table S2). Firstly,
segment 5 tended to be overrepresented in each PGM
replicate. Specifically, for comparison, we expressed the
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proportion of mapped reads for a given genome segment
as a function of that particular segment’s length, as
follows:

y = (# mapped reads per given segment/ # total reads mapped)
/ segment length x 1000

This value for segment 5 is more than twice that for
any other segment by PGM sequencing (Additional file
3: Table S2). This is an interesting observation given
that segment 5, at 1565 bases in length, is the fifth lar-
gest segment in the genome. In every case for the
PGM, segment 5 yielded the most mapped reads. This
observation is consistent with our previous result with
the 314 chip in which the only segment mapped was
segment 5 (Additional file 1: Figure S1). Secondly, seg-
ment 3 tended to be underrepresented, in both the
PGM and MiSeq data. This trend was especially
marked in the PGM libraries as compared to the MiSeq
libraries (.03 and .05 respectively). These findings sug-
gest that some sequences are inherently favored for se-
quencing by the PGM as well as the MiSeq. Thirdly,
regardless of the number of reads mapped, the coordi-
nates of the mapped reads in relation to the genome
were widely variable (Figure 3). This effect was more
pronounced in the PGM libraries. This suggests that
the library diversity is greater than that sampled by a
single sequencing run.

200 400

600 800 1,000 1,200 1,400

PGM replicate 1

PGM replicate 2

PGM replicate 3

MiSeq replicate 1

Influenza A H1IN1 Segment §  aadmadiv ot Ahen Ada it thomh s A A A s b0 Dn et A o oy

MiSeq replicate 2

MiSeq replicate 3

the top and G/C content is graphed below reference in pink.

Figure 3 Read mapping against segment 5 of Influenza A of replicate sequencing runs. Reads resulting from a replicate run of lon Torrent
PGM sequencing (top) and Illumina MiSeq sequencing (bottom) were mapped to the reference Influenza a HINI segment 5, [NCBI accession:
NC_002019 ] using CLC Genomics Workbench version 6.0 at default parameters. Coordinates of reference genome segment are displayed along
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Comparison of Roche-454, lllumina MiSeq and lon Torrent
PGM for detecting bacterial pathogens

Although there have been performance comparisons of
the benchtop platforms for sequencing bacterial isolates
[16,17] to our knowledge, there has been no published
report of comparisons of sensitivity and specificity in
terms of speciation. Therefore, we aimed to establish a
LoD for each sequencer using samples spiked with a
known biothreat agent, Bacillus anthracis. Using the
Sterne strain as a surrogate of anthrax infection, the
quantity of bacterial cells present in a dilution series
was established. Using three complementary quantitative
techniques, mock samples with B. anthracis Sterne
present at roughly 30,000 cells/mL of human blood were
prepared.

All three platforms delivered sequence reads matching
the chromosome of B. anthracis Sterne by reference
mapping (Table 4). As expected, given the increased
throughput, both PGM and MiSeq yielded significantly
higher numbers of reads as well as genome coverage.
However, at low stringency, large numbers of reads were
falsely counted as mapped. This trend was especially
prominent in the PGM data. Most of the spurious
reads were short (average: 40 bases) and low-complexity
(i.e. rich in nucleotide repeats). This tendency was con-
firmed in the replicate samples. The same pattern was
observed in the Roche-454 sequence reads as well. In
general, the 454 reads were clustered near the 5’-end of
the linear reference sequence, while the PGM and MiSeq
reads spanned a much larger breadth. However, the 454
reads were uniformly longer and more information-rich.
The MiSeq replicates demonstrated a similar tendency
as that of the PGM; in general, the lower stringency
mapping contained matched reads of short length
(avg. 66 bases). For comparison, in replicate two for both
platforms, 80.77% of mapped MiSeq reads mapped
as non-perfect matches versus 98.83% of mapped
PGM reads. The average read length of a non-perfectly
matched MiSeq read was 53.22 bases, as compared to
39.99 bases for the PGM. Interestingly, the mean num-
ber of mismatches per read tended to be higher in the
MiSeq data than that of the PGM (mean of 26 for MiSeq
vs. 15 mismatches for PGM). Due to the slightly longer
length of mapped MiSeq reads, there could conceivably
be more opportunity for mismatched bases per read.
Therefore, we compared the mismatches within MiSeq

Table 4 Cross-platform Comparison of Read Mapping to B.
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reads and PGM reads by expressing mean number of
mismatches per read as a proportion of mean read
length of non-perfectly matched reads. When expressed
in this manner, the proportion of mismatches per length
of non-perfectly matched reads is 0.5 for the MiSeq
versus 0.4 for the PGM. Additionally, the number of
indel related mismatches was found to be proportionally
higher in the MiSeq reads than in the PGM reads.
Conversely, the PGM reads had a higher number of
A — T and G — C transversions than the MiSeq data.
This is inconsistent with the known error models for
both of these platforms.

Although de novo assemblies and taxonomic classifica-
tion were attempted for both PGM and 454 reads, no
dataset produced a single contig that matched Bacillus
spp. This is most likely due to the lack of coverage of
the bacterial genome, resulting in a lack of sufficient
overlap between reads necessary to form a contig. By
comparison, de novo assembly of one MiSeq run yielded
6,140,965 total contigs. Taxonomic classification of the
assembled sequence reads rendered 1200 contigs that
were assigned to the Bacillus cereus superfamily. More
importantly, 70 contigs were properly classified as
Bacillus anthracis Sterne. These results echo those of
the viral samples in that assembled sequence reads from
the MiSeq were able to identify the spiked-in micro-
organism, in this case to the strain level.

Detection of genetic engineering

We were interested in whether sequencing reads near
the LoD could detect an instance of genetic engineering.
Therefore, the strain of B. anthracis spiked into human
blood for these experiments was a 34F2 strain of
B. anthracis containing a stably integrated genomic copy
of red fluorescent protein (RFP). Metagenomic sequence
data was compared with a computer simulation of the
likelihood of detecting this genetic manipulation. For
this purpose, we developed a Perl-based algorithm to
generate a distribution of the number of sequence reads
necessary to detect a gene of 1000 bps inserted at five
locations into a prokaryotic genome of 5 Mb in size. At
1000 organism-specific reads, the probability of detect-
ing the inserted gene is roughly one-third (Figure 4). In
fact, the minimum number of organism-specific hits
necessary to ensure detection of the inserted gene is
10,000. Given that 5 of the 6 metagenomes sequenced

anthracis Sterne

Platform #Replicates Reads mapped Reads mapped (med) Reads mapped (high) Fraction of reference  Detected by qPCR?
(low) covered?

PGM 2 29,534/15,676 7,689/4,286 247/178 12/.09 Y

Roche-454 2 384/376 249/240 65/56 01/.01 Y

MiSeq 2 10415/41,242 3,024/9,985 1,633/7,930 07/.19 Y

a: Fraction of reference covered using high stringency mapping parameters as defined in Methods.
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Expected Number of Gene Hits

1,000 2,000 3,000 4,000 5,000 8,000 10,000 15,000
Number of Organism-Specific Reads

Figure 4 Mathematical modeling of the likelihood of detecting a genetic modification in B. anthracis. The expected number of hits to an
inserted gene of size 1 kb, at 5 copies, was simulated as a function of the number of organism-specific reads collected from the metagenomic

sample. The relative size of each rectangle indicates the proportion of samplings for which a specific number of hits is expected.

here contained far fewer than 1000 bacillus-specific
reads (Table 4), one would expect few, if any, sequence
reads to match the RFP reference sequence. Indeed, read
mapping to the available NCBI reference (EF606900.1)
yielded zero matches to the RFP gene present in the
34F2 chromosome. These data suggest that increased
titres, targeted enrichment, or both will be necessary for
detection of gene-insertion events.

Discussion

Historically, identification of causal agents of disease has
relied heavily on one’s ability to culture the organism in
the laboratory and/or the use of organism-specific
antibodies or sequence-based probes. However, these
methods can be very limiting. For instance, some micro-
organisms are refractory to laboratory culture. In some
cases, even microbiological assays for diseases that are
manifested by cultivable organisms, such as endocarditis
caused by staphylococci and streptococci, have a high
false negative rate [18]. Serological assays are typically
limited to identifying known or closely related organisms
and antigenic drift and shift can result in false negatives.
Even highly sensitive PCR-based assays must be continu-
ally updated due to signature degradation [19]. Addition-
ally, for divergent viruses such as HIV-1, many PCR
assays are unable to discriminate between closely related

strains. This necessitates design of multiple probe sets,
which is often a laborious task [20]. Additionally, the
sensitivity of these assays is often low due to high num-
bers of false negatives [21]. Thus, there is a need for as-
says that are more robust and less pathogen specific.

Prior to the widespread adoption of high-throughput
sequencing (HTS), high-density oligonucleotide microar-
rays were used to determine the presence of microor-
ganisms. Syndrome-specific panels showed success in
diagnosis of infectious disease [22]. However, sequence
features sufficiently different from the array probe will
not hybridize, resulting in false negatives. By compari-
son, HTS represents a relatively unbiased approach to
detection of causal agents of infectious disease. However,
for metagenomic sequencing to be utilized in a routine
clinical context would require some basic questions an-
swered in terms of sensitivity and reproducibility. In this
study, we compared three HTS platforms for their ability
to detect pathogens in human blood. As compared to
the traditional Roche-454 sequencer, the benchtop se-
quencers IonTorrent PGM and MiSeq were better able
to detect a pathogen in human blood, in part by virtue
of their increased throughput.

Our reported LoD for viral samples on the Roche-454
of 1X10*° pfu/mL is similar to but slightly lower than a
previously reported value of 1X10® pfu/mL [5]. This may
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be a reflection of an increased number of reads in our
study, differences in sequence library preparation or im-
provements in sequencing chemistry. Notably, this value
is near the LoD for a validated qPCR assay [23]. Our re-
ported LoD of 1X10*® pfu/mL corresponds to an upper
limit of 31,600 — 53,720 genome copies/mL. Indeed,
at that titer, the sequence reads were of sufficient num-
ber and length to unequivocally discriminate between
Dengue virus subtypes. However, a strain-level designa-
tion was not possible. The inability to make a strain-level
call could conceivably have potential clinical conse-
quences. For instance, a recent phylogenetic study of cir-
culating strains of Dengue Virus 2 indicated that a single
substitution on the prMs9 was responsible for fatal cases
of Dengue Hemorrhagic Fever [24].

Using a different virus at a comparable titer, the
Roche-454 platform was able to definitively identify the
pathogen in only one of two replicates. Both the PGM
and MiSeq surpassed the Roche-454 in terms of number
of mapped reads as well as reproducibility. However, al-
though the Roche-454 sequence data produced only a
single hit, the length and quality of the hit were ad-
equate to make a correct strain call (data not shown).

The apparent difference in the ability of each platform
to detect a given pathogen is a function of the total out-
put per platform. When the values are expressed in a
normalized manner (pathogen reads per 100,000), it be-
comes apparent that the analytical sensitivity of the two
benchtop platforms is roughly the same and surpasses
that of Roche-454 (Table 2). Neither technology seems
to have a significant advantage regarding detection or
characterization of a pathogen if the number of reads is
held constant. When cost per sequencing run or per
megabase is factored in, the benchtop sequencers are a
more economical option.

In this study, we also examined metagenomic sequen-
cing for its ability to detect a genetically modified patho-
gen in a clinical sample. A BSL-2 strain of B. anthracis
containing an inserted RFP gene was used as a surrogate
for a genetically modified organism (GMO), and spiked
into human blood at relatively high concentration. In
this case, although reads were identified as likely ori-
ginating from B. anthracis, in none of the samples
was evidence of the inserted gene detected. This
likely means that, for the time being, even with their
substantial output, the benchtop sequencers are not
suitable for detection of GMO from complex samples
or characterization of threat agents from complex
samples. Our results indicate, however, that although
characterization of a given pathogen from a clinical
sample by metagenome sequencing on a benchtop se-
quencer may not be possible without some pathogen-
specific enrichment, identification of species and even
strains is possible.
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The results of this study suggest that the benchtop se-
quencers perform well at the task of identifying a puta-
tive pathogen present at low titers. Each of the three
platforms tested provided a number of reads that was
sufficient to unambiguously identify the pathogen to
species level in the case of virus and to the genus level
in the case of bacteria. The data from each platform was
very reproducible for technical replicates within library
preparations. Indeed, the data from each platform was
remarkably consistent in terms of quantity and quality
(Table 2; Additional file 2: Table S1). Additionally, there
was little variation in the number of reads mapped or in
taxonomic classification of contigs. These results suggest
that library protocols and sequencing chemistries are ro-
bust and uniform enough to make a dependable identifi-
cation of a given pathogen. Our results are in agreement
with a recently published study in which gDNA from
Bacillus anthracis was serially titrated into background
DNA collected from air filters and soil. The results of
this study demonstrated that, even with whole genome
amplification prior to sequencing, it is difficult to assign
a proper species classification to sequence reads from
B. anthracis [25].

We did note several platform-specific variations in our
data. For instance, in the case of the Influenza data from
the PGM platform, segment 5 routinely exhibited cover-
age bias as compared to larger segments. There could be
several possible explanations for this observation. The
G/C-content of the Influenza A genome displays wide
intra-segment and inter-segment variations (Additional
file 4: Figure S2). A closer examination of the mapped
reads seems to show a slight correlation with areas of
low G/C-content, but follow on experiments would be
required to conclusively elucidate the impact of G/C-
content in this context. A number of studies have noted
that NGS data have distinct biases in areas of high G/C-
content [17,26,27]. Additionally, template amplification
via emulsion PCR is a potential source of reduced library
diversity [28]. Moreover, inefficiencies during reverse
transcription due to RNA secondary structure may be
responsible for the observed coverage bias. Given that
the initial step in PGM library construction involves ran-
dom fragmentation with RNase III at 37°C, it is possible
that some RNA strands did not completely unfold. This
may be especially true for those segments with higher
AG, such as segments 1, 2 and 5 (Additional file 4:
Figure S2). Although the MiSeq replicates also showed a
slight skew towards segment 5, the preference was not
as extreme as that for the PGM. This may be due in part
to the method for RNA library construction on the
MiSeq platform. The initial step involves a chemical
fragmentation step at high temperature. Thus, the diver-
sity of the libraries may be different from the start. On
the other hand, the PGM replicates demonstrated some
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variation in mapped reads (Figure 3) suggesting that in-
creased throughput might produce greater diversity.

Another platform-specific characteristic observed in
this study was the proportion of mismatches within a
non-perfectly mapped read. This statistic was slightly
higher for the MiSeq platform than for the PGM plat-
form. Ideally, given the correct reference sequence, for a
given platform this statistic would approach zero as se-
quencing error decreased. However, as in this case, this
statistic may also be affected by nucleotide differences
between the sequenced strain and the closest reference
sequence available from NCBI, precluding us from mak-
ing any conclusions as to sequencing error rates from
these data. It is possible that, to some extent, the longer
length of MiSeq reads allows for more opportunity for
mapping of non-perfect matches, and this may contrib-
ute to a decreased LoD for MiSeq when mapping to a
closely related but not identical reference sequence.
However, the extent to which error rate versus strain
level differences and read length affect this statistic as
well as the LoD cannot be ascertained in the absence of
a true reference sequence for the strain in question.

A number of recent reports have attempted to define
the limitations of metagenomic sequencing data. One
study made use of simulated data sets to compare as-
semblies from three sequencing technologies (Sanger,
pyrosequencing and Illumina). Unsurprisingly, the study
concluded that assembly quality decreased rapidly with
increasing sample complexity. For low complexity sam-
ples (10 genomes) the assemblies were comparable in
quality and inclusiveness, while Illumina data produced
superior assemblies in a higher complexity sample (100
genomes) [29]. These results mirror those presented
here in that no one sequencing chemistry clearly sur-
passed another in terms of identification of a micro-
organism present in a low-complexity sample. It should
be noted that the Illumina data in the study by Mende
et al. were from the HiSeq platform and were extensively
trimmed to provide high quality reads as input [28]. A
separate report estimated that genome coverage of 20X
was required for proper taxonomic classification of spe-
cies present in a given metagenomic community [30].
This study is in agreement with our inability to make a cor-
rect species-level determination from our Bacillus anthra-
cis samples. Additionally, our results complement an
important conclusion from the previous report - that the
efficiency of gene detection is most likely overestimated.

There has been much effort to understand and im-
prove metagenomic data from complex samples com-
prised mostly of bacterial species. There are fewer
published studies examining the effects of different
sequence technologies on viral metagenomics. A recent
research paper attempted a comparison of Roche-454
and Illumina data for estimation of diversity in viral
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quasispecies, in this case HIV. The authors of that study
noted that the increased throughout and lower error rate
of the Illumina platform enabled improved reconstruc-
tion of viral haplotypes. However, due to the longer read
lengths, the Roche-454 was superior when long range re-
construction was necessary [31].

Our results indicate that library diversity and overall
throughput are the two key metrics in determining how
a researcher or clinician may use metagenomic data
from benchtop sequencers. For instance, a recent survey
of Human papillomavirus DNA present in human skin
tumors demonstrated that the increased throughput of
the PGM enabled identification of seven additional viral
subtypes as compared to data from Roche-454 sequen-
cing of the same samples [32]. This result is similar to
our observation that PGM data provided steady, repro-
ducible identification of Influenza A virus in comparison
to sequence data produced by the Roche-454. Overall,
the MiSeq proved superior to both the Ion Torrent
PGM and Roche-454 for both detection as well as classi-
fication of the pathogen present in our mock samples.

Although there is no published report of this, it re-
mains formally possible to identify a previously unknown
agent from a single novel microbial read present in a
complex metagenomic sample. Indeed, identification of
novel agents has been reported with as few as 14 reads
out of over 100,000 [33]. Whereas identification of an
agent may require detection of only one or more reads,
characterization, the crucial next step, is absolutely
dependent on complete (100%) or nearly complete rep-
resentation of the agent’s entire genome at adequate
depth of coverage, especially in the case of RNA viruses
or other microorganisms likely to exhibit functionally
relevant minority populations or quasispecies, or genet-
ically modified organisms. In this case, it is necessary for
follow-on experiments to more fully characterize the
genome of the microorganism, such as Sanger sequen-
cing using primers based on the novel fragment(s). It
would be optimal if some of the original sample were
available for such experiments. However, in many cases,
the original sample may be precious or limited in terms
of volume. This challenge can be more pronounced
when identifying viral agents as opposed to bacterial
agents. Viral genomes are orders of magnitude smaller
(~1X10%*-1X10° bps) than those of an average bacterial
agent (~3-5X10° bp). Thus, the overall amount of viral
nucleic acid may be in the picogram range, increasing
the likelihood of two technical obstacles: 1) viral nucleic
acid is outcompeted during amplification by other nu-
cleic acids in the matrix, such as host ribosomal RNA if
the matrix is tissue or, 2) if the overall amount of nucleic
acids in the metagenome sample itself is low, then
library preparation of the sample may fail as successive
losses of genetic material occur in each step. Targeted
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amplification of organism-specific regions prior to se-
quencing has shown some promise. For instance, an
assay in which multiplex PCR preceded sequencing was
able to fully differentiate Bacillus anthracis, Yersinia
pestis and Francisella tularensis [34].

Conclusions

In this study, we sought to determine empirical limits of
detection for metagenomic sequencing of clinical sam-
ples using three different sequencing platforms. We
found that the analytical sensitivity of all three platforms
approaches that of standard qPCR assays. Although all
platforms were able to detect pathogens at the levels
tested, there were several noteworthy differences. The
Roche-454 Titanium platform produced consistently
longer reads, even when compared with the latest chem-
istry updates for the PGM platform. The MiSeq platform
produced consistently greater depth and breadth of
coverage, while the Ion Torrent was unequaled for speed
of sequencing. None of the platforms were able to verify
a single nucleotide polymorphism responsible for anti-
viral resistance in an Influenza A strain isolated from
the 2009 HIN1 pandemic. Additionally none of the plat-
forms tested was able to detect evidence of genetic en-
gineering in a bacterial biowarfare agent that was spiked
into a clinical-type sample. Overall, the benchtop plat-
forms perform well for identification of pathogens from
a representative clinical sample. However, our results
indicate that, unlike identification, characterization of
pathogens is likely to require higher titers, multiples
libraries and/or multiple sequencing runs.

Methods

Cells and viruses

Bacillus anthracis [34F2 (NCBI taxon ID #526966)] used
in this study was routinely cultured in Brain Heart
Infusion (BHI) broth (KD Medical; Columbia, MD). Cell
counts were performed using the track dilution method
[35] on BHI agar plates. One mL aliquots of plaque-
purified Dengue virus Type 1 and Type 2 were main-
tained at -80° until spiking blood. Influenza A virus
stocks were purchased from ATCC (Manassas, VA):
VR-1683(NCBI taxon ID # 380342) and VR-1736 (NCBI
taxon ID # 710659).

Sample preparation

(i) Viral samples

Frozen aliquots of plaque-purified Dengue virus Type 1,
Dengue virus Type 2, or Swine Influenza A were ten-
fold serially diluted in sterile, 1X PBS. One mL aliquots
of sodium citrate-treated whole human blood (BioRecla-
mation, Liverpool, NY) were spiked with 100 pL of
diluted virus at various titers. After thorough mixing
with a micropipette, Trizol LS (Life Technologies, Grand
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Island, NY) was added to the sample at a ratio of 3:1.
Samples were processed for total RNA according to
manufacturers’ protocol.

(i) Bacterial samples

Log-phase cultures of B. anthracis strain 34F2"RFP were
ten-fold serially diluted in 1X sterile PBS. Two mL of
sodium citrate-treated whole blood were spiked with
200 pL of diluted culture at various titers. After
thorough mixing with a micropipette, genomic DNA
(gDNA) was extracted with a BioStic® Bacteremia DNA
Isolation kit (Mobio; Carlsbad, CA) according to manu-
facturers’ protocol.

Nucleic acid quality checks

RNA integrity and purity were assayed using an RNA
6000 Pico chip on the Agilent Bioanalyzer™. RNA mass
was determined by fluorescent detection using Qubit”
Broad Range RNA kit (Life Technologies). All RNA sam-
ples were stored at —80°C until use. DNA integrity and
purity were assessed by agarose gel electrophoresis on
0.8% E-Gels® (Life Technologies). DNA mass was deter-
mined using Qubit” Broad Range DNA kit (Life Technolo-
gies). All DNA samples were stored at —20°C until use.

High-throughput sequencing

(i) Roche-454 pyrosequencing

For RNA samples, libraries were constructed by following
the cDNA Rapid protocol (Roche Diagnostics, Mannheim
Germany) using an input of 200 ng of total RNA. For
DNA samples, libraries were constructed following the
Rapid DNA protocol (Roche) using an input of 500 ng
of gDNA. All emPCR reactions were performed using
GS FLX Titanium Lib-L-LV kits. Template-to-bead ratios
were optimized via titration. All sequencing runs were
performed using a two-region gasket for each pico-titre
plate. Each run was 200 cycles.

(i) lon Torrent PGM® sequencing

For RNA samples, libraries were constructed by follow-
ing the Whole Transcriptome Library protocol using an
input of 500 ng total RNA. For DNA samples, libraries
were constructed using the IonXpress™ Plus gDNA Frag-
ment Library protocol using an input of 500 ng gDNA.
Quality control of all libraries was performed on the
Agilent Bioanalyzer using a High Sensitivity chip. Library
templates were clonally amplified using the Ion One
Touch 2", following the manufacturers’ protocol. Tem-
plate dilutions were calculated by extrapolation from a
qPCR standard curve using the Ion Library Quantitation
Kit (Life Technologies). Recovered template-positive Ion
sphere particles (ISPs) were subjected to enrichment ac-
cording to template corresponding protocol. Ion Sphere
quality control was performed on enriched and un-
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enriched template ISPs using the Ion Sphere™ Quality
Control Kit (Life Technologies). Samples containing an
optimum number of template ISPs and satisfactory en-
richment were subjected to the standard Ion PGM™ 200
Sequencing v2 protocol.

(ii) llumina MiSeq sequencing

[llumina TruSeq cDNA libraries were prepared from
400 ng total RNA, omitting the polyA selection step.
Each library was subjected to a full MiSeq run using a
300 cycle kit, paired end sequencing. A quality control
tool for high throughput sequence, FASTQC, a java
stand-alone program, was downloaded from Babraham
Bioinformatics Institute: http://www.bioinformatics.bab-
raham.ac.uk/projects/fastqc/ and each fastq file was
checked for quality.

Quantitative PCR

(i) RNA samples

Detection and quantification of Dengue virus and Influ-
enza A virus in samples was performed with SYBR®
Green-based real time RT-PCR. Equal masses of total
RNA from each sample were analyzed in duplicate using
Express One SYBR® GreenER™ (Life Technologies) fol-
lowing manufacturer’s instructions. Specificity of primer
pairs (Additional file 5: Table S3) for each virus was
checked using NCBI Primer BLAST against the nr data-
base. Standard curves for Dengue virus were constructed
using ten-fold serial dilutions of viral RNA extracted from
a stock aliquot and are expressed in pfu/mL. Standard
curves for Influenza A virus were constructed using a 250
base RNA oligo (Bio-Synthesis Inc., Lewisville, TX) repre-
senting the region of the gene to be amplified. Influenza A
values are expressed in genome copies/mL.

(ij) DNA samples

Detection and quantification of Bacillus anthracis in
samples was performed using SYBR® Green-based real
time PCR. Equal masses of gDNA were analyzed in
duplicate using Power SYBR® Green (Applied Biosys-
tems, Grand Island, NY). Specificity of primer pairs
(Additional file 5: Table S3) for each gene was checked
using NCBI Primer BLAST against the nr database.
Standard curves for each gene were constructed using
ten-fold serial dilutions of a plasmid construct contain-
ing the complete coding sequence of each gene. Values
are expressed in copies/mL.

Bioinformatics

(i) Reference mapping

Sequence data mapping was performed using CLC Gen-
omics Workbench v6.0.4 (CLC Inc, Aarhus, Denmark).
CLC Reference Mapper was run with default settings
(Insertion cost = 3, Deletion cost = 3, Mismatch cost = 2,
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Length fraction = 0.5 and similarity fraction =0.8). CLC
default settings were arbitrarily assigned as low strin-
gency settings. Medium stringency settings were arbi-
trarily defined as Insertion cost=3, Deletion cost=3,
Mismatch cost =2, Length fraction =0.7 and similarity
fraction = 0.8. High stringency settings were defined as
Insertion cost =3, Deletion cost =3, Mismatch cost =3,
Length fraction=1.0 and similarity fraction=1.0. GS
Reference Mapper software (v2.0.01.14; Roche/454) was
used to produce reference-guided assemblies of each of
the Roche datasets with respect to the DENV-1 genome
(GenBank; DVU88536).

(ii) de novo assembly and BLASTn analysis of contigs
MIRA V3.4.0.1 production version was used for the as-
sembly of PGM data. The SFF file was converted to fastq
using the sff_extract.py utility. The job parameter was
modified with the keywords “denovo,genome,accurate,
iontor” to indicate a de novo assembly for the corre-
sponding platform. In addition, the modifier “-GE:not”
was set to 12 processors for parallel computing. The
assembly parameters for MIRA for the PGM data
were, minimum overlap =17 bps, minimum contig
size =150 bps, minimum neighbor quality needed for
tagging = 20, minimum read length =80. For the Velvet
assembly the k-mer size was 33.

The assembly of the MiSeq data was conducted using
velvet version 1.2.1. The velvet assembly was conducted
using a k-mer of size 31 and “short” modifier. For
the downstream analysis, BLASTN and annotation,
only those contigs with size greater than 150 bps were
considered.

BLASTN was conducted with the NCBI-BLAST++
version 2.2.28 against the NT BLAST database from 04/
22/2013. The taxonomical annotation was obtained with
an in-house script and the results were visualized using
MEGAN version 4.70.4.

(iii) Mathematical modeling

Given a particular genome (G) of size (N), we were in-
terested in a particular gene (H) of size (M) within G. If
a sequencing experiment is conducted and a particular
read from the experiment matches the sequence of H,
this is labeled a hit. In order to examine the range of
read counts that will result in a range from one hit with
low probability to one hit with near certainty, we de-
cided to recreate the parameters of a sequencing experi-
ment in silico. The simulation was written in PERL,
where N was set to 5.23 Mbps, M was set to 1000 bps,
and five copies of H were used in the simulation. The
simulation assumes that all parts of G are equally likely
to be sequenced. A thousand iterations of the simulation
produced the expected number of hits for read counts of
1k 2k 3k 4k 5k, 8k, 10 k and 15 k.
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Additional files

Additional file 1: Figure S1. Read mapping against segment 5 of
Influenza genome. Reads resulting from lon Torrent 314 chip were
mapped to the reference Influenza a HINI segment 5 [NCBI accession:
NC_002019], using CLC Genomics Workbench version 6.0 at default
parameters. Coordinates of reference genome segment are displayed
along the top and G/C content is graphed below reference in pink.

Additional file 2: Table S1. Mapped reads by Influenza A segment for
MiSeq and PGM replicates®. a: Statistics for one of two independent
libraries at low stringency parameters.

Additional file 3: Table S2. Proportion of mapped reads as a function
of Influenza A genome segment size for MiSeq and PGM replicates®. a:
Statistics for one of two independent libraries at low stringency
parameters.

Additional file 4: Figure S2. Predicted free energy of individual
Influenza genome segments. Using CLC Genomics Workbench version
6.0, Gibb's free energy was predicted for each genome segment of the
NCBI reference strain Influenza A virus (A/Puerto Rico/8/34(H1N1)).

Additional file 5: Table S3. Sequences of primers used in this study.
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