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Abstract

Background: The large amount of data produced by high-throughput sequencing poses new computational
challenges. In the last decade, several tools have been developed for the identification of transcription and splicing
factor binding sites.

Results: Here, we introduce the SeAMotE (Sequence Analysis of Motifs Enrichment) algorithm for discovery of
regulatory regions in nucleic acid sequences. SeAMotE provides (i) a robust analysis of high-throughput sequence
sets, (ii) a motif search based on pattern occurrences and (iii) an easy-to-use web-server interface. We applied our
method to recently published data including 351 chromatin immunoprecipitation (ChIP) and 13 crosslinking
immunoprecipitation (CLIP) experiments and compared our results with those of other well-established motif
discovery tools. SeAMotE shows an average accuracy of 80% in finding discriminative motifs and outperforms other
methods available in literature.

Conclusions: SeAMotE is a fast, accurate and flexible algorithm for the identification of sequence patterns involved
in protein-DNA and protein-RNA recognition. The server can be freely accessed at http://s.tartaglialab.com/
new_submission/seamote.
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Background
Transcriptional and post-transcriptional events involve
the interplay between protein effectors and nucleic acid
targets, whose physical interaction is guided by sequence
motifs and specific structural elements [1-3]. Motifs are
usually defined as short nucleotide sequence patterns of
length k (k-mers) and represented with matrices con-
taining the probabilities to find nucleotides in specific
positions (position weighted matrices PWMs). In the past
decade, the advancement of high-throughput technolo-
gies contributed to the generation of a large amount of
genomic data [4], promoting development of computa-
tional methods to detect regulatory elements such as
transcription and splicing factor binding sites [5]. One
fundamental requirement of methods for large-scale anal-
ysis is that relevant features (e.g., recognition motifs) are
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identified with good accuracy and in reasonable time [6,7].
Very importantly, algorithms should be as comprehensive
as possible to provide insights into the nature of regulatory
elements in their real genomic context, which requires
analysis of different biological sets [8].
As discussed by Ma et al. [9] and Weirauch et al. [10],

there are several algorithms for de novo motif discov-
ery, but only few are capable of performing a discrim-
inative analysis (i.e., comparison between two sets) on
high-throughput datasets:

• DREME [11] restricts the search for sequence motifs
to a simplified form of “regular expression” (RE)
words over the IUPAC alphabet, which consists of 11
wildcard characters in addition to the standard DNA
alphabet (ACGT). To save computation time,
DREME estimates the significance of RE candidates
by a heuristic search without scanning the whole
input sequences [11];

• CMF (Contrast Motif Finder) [12] is designed to
discriminate between two sets of DNA sequences
through non-discrete PWMs. The method takes into
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account false positive sites when updating PWMs and
related variables;

• DECOD (DECOnvolved Discriminative motif
discovery) [13] uses k -mer counts. To compensate
for errors introduced from ignoring the context of
the k -mer, DECOD uses a deconvolution method
that accounts for the higher rates of k -mers
containing subsets of the true motif;

• XXmotif (eXhaustive, weight matriX-based motif
discovery) [14] consists of i) a masking stage, where
repeat regions, compositionally biased segments and
homologous segment pairs are identified; ii) a pattern
stage, where p-value enrichments are calculated for
seed patterns using all 5-mers (with up to two
degenerate IUPAC characters); iii) and a PWM stage,
where thousands of candidate PWMs are merged.

Despite the variety of motif discrimination approaches,
knowledge of programming languages [8,15] and acquain-
tance with web-based bioinformatics platforms [7,16]
often limit their use among non-specialists.
In this article, we introduce SeAMotE, a web-server to

perform de novo discriminative motif discovery in nucleic
acid datasets. We present an approach that enables the
exhaustive search of distinctive patterns in large sets of
sequences, in a reasonable amount of computational time
and with an easy-to-use user interface.

Methods
SeAMotE is based on the generation of a pool of
nucleotide seeds followed by “zero or one occurrence
per sequence” (ZOOPs) model testing [17] coupled with
pattern extension and refinement [8]. SeAMotE includes
a number of unique features that make the algorithm
simple to run and very accurate. The user can i) set a
coverage threshold that is employed in the selection of
enrichedmotifs in the positive set (foreground), ii) choose
among multiple reference (background) set options and
iii) include a redundancy removal step to increase the
variability of discovered motifs. As shown in Figure 1,
SeAMotEworkflow comprises a series of steps that can be
summarized as follows:

1. Generation of a pool of k -mers seed motifs using the
IUPAC alphabet;

2. Evaluation of the coverage of each pattern in the
positive and reference sets;

3. Determination of enriched (Fisher’s exact test) and
differentially represented (Youden’s index =
Sensitivity + Specificity - 1) motifs;

4. Extension of selected seeds by adding a IUPAC letter
in the k + 1 position;

5. Re-iteration of steps 2-4 until the enrichement of at
least one pattern remains above the coverage
threshold in the positive set;

6. Calculation of motif significance (Fisher’s exact test)
and redundancy removal (Hamming distance);

7. Generation of the positon weighted matrices and
logo for each motif.

Web-server usage
The SeAMotE server presents a submission page that
allows the upload of nucleic acid sequences and selec-
tion of parameters. Default parameters (e.g. reference
set, coverage threshold, etc.) are defined according to
best settings estimated using cross-validation (section
“Cross-validation of the CLIP-seq data” in Results
and discussion). However, most of the parameters can
be modified by the user, which adds flexibility to
the web-service. Detailed descriptions of the submis-
sion and output variables are provided in the on-line
tutorial (see http://service.tartaglialab.com/static_files/
shared/tutorial_seamote.html, tutorial sections “Submis-
sion form” and “Interpreting the output”, respectively).

1. At least one input set (FASTA format file) should be
provided for the analysis. Currently, the number of
sequences is limited to 104, with a maximal length of
15·103 nucleotides per sequence;

2. A reference set is required to estimate the
significance of the discovered motifs. This can be:

• Provided by the user (FASTA format file),
having the same size restrictions as the input set.

• Automatically generated as a shuffle set, where
the foreground set composition (i.e., individual
nucleotide alphabet frequencies) and
dimensions (i.e., number of sequences and
lengths) are kept constant;

• Automatically generated as a random set, where
the foreground set dimensions are preserved but
the internal composition is based on letter
frequencies obtained from the human
transcriptome/genome;

3. The coverage threshold (i.e. the percentage of
sequences matching the searched pattern) represents
a parameter that the algorithm uses internally to
select the most abundant motifs in the two datasets
(speed of calculation increases at low coverage
threshold).

Optionally, the user can assign a job name for each
submission and request for an e-mail notification upon
completion (not required to run the server).
The output summary contains detailed information

about the submission (e.g., job identifier, downloadable
datasets) as well as an interactive table (Figure 2). The
latter item displays discovered motifs (IUPAC and RE
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Figure 1 SeAMotE workflow. Illustration of the method pipeline: red boxes indicate the coverage calculation and seed extension loop; dashed
arrows and the blue box represent conditional steps that depend on the user-definable variables, such as providing or selecting a specific
background set or filtering out patterns that are closely related.

formats), logo representations and statistics used to esti-
mate their significance: motif coverage for positive and
reference sets, discrimination factor (Youden’s index) and
p-value (Fisher’s exact test) associated with each pattern.
In addition, it is possible to retrieve the list ofmotifs tested
(txt format), as well as their individual sequence logo (png
format) and positional weighted matrix (txt format) using
the links provided in the output page (Figure 2).

Implementation
SeAMotE operations are executed by C programs,
whereas significance estimation, pattern filtering and
sequence logo design are computed using R scripts and
the Biostrings, stringdist and seqLogo packages. The web-
server is implemented in Python, HTML and JavaScript,
which provides a convenient framework for the pipeline
control and the presentation of the output data. User-
provided data are validated by Python scripts and passed
to the Amazon Web Services (AWS), which manages the
queue system, performs the redistribution of the work on
our local machines and, once the job is completed success-
fully, forwards the user to the output page. Depending on
the size datasets and the server load, computations take
from between 2–3 and 30–40 minutes (Additional file 1:
Figure S1).

Datasets for motif finding
Nucleic acids sequences were collected from ChIP-seq
and CLIP-seq experiments available in the public domain

[18,19]. ChIP-seq data comprises 351 ENCODE datasets
obtained from three groups, Haib_Tfbs by HudsonAl-
pha (141 sets), Sydh_Tfbs by Yale and UCD (164 sets),
and Uw_Tfbs by University of Washington (46 sets).
This collection covers 90 unique transcription factors
(TFs) and more than 50 cell-types under different treat-
ments. Same number of low and high intensity peaks
(1000 sequences) was used to select negative and positive
datasets, respectively [20]. CLIP-seq dataset contains 13
doRINA [18] datasets of 10 RNA-binding proteins (RBPs)
[21-28]. Sequences with doRINA scores in the top 5 per-
centile were considered as positives (bound transcripts;
more details on the definition of peaks and the calcula-
tion of associated scores can be found in doRINA paper
[18]). For each positive set, we selected same amount of
sequences in the bottom 5 percentile of doRINA scores to
build the negative set (unbound transcripts).

Documentation
The documentation/tutorial of the SeAMotE algorithm
is available online, and it can be accessed using the
links in the menu at the top of every server page.
It contains a brief description of the method, a tuto-
rial and information on the benchmark. Additionally,
the web interface in the output page provides help-
notes (accessible also through the “mouse-over” function)
for table variables and download buttons. Online doc-
umentation and “Frequently Asked Questions” (FAQs)
sections updates will be provided on a regular basis
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Figure 2 SeAMotE output summary. Example of output table showing the list of motifs (IUPAC and RegEx) that better discriminate the input sets
along with their logo representation and positional weighted matrix download button, positive and reference coverage (as percentage of
sequences containing at least one pattern occurrence), discrimination (Youden’s index) and p-value (Fisher’s exact test). By clicking on the logo, it is
possible to retrieve the image file (png format) of the associated motif.

according to method improvements and users’ inquiries,
respectively.

Results and discussion
Identification of TF annotatedmotifs
To assess the performance of our method for discrimi-
native motif discovery, we run SeAMotE on a collection
of 351 ChIP-seq datasets and compared our results with
those obtained using other discriminative motif finders.
Specifically, we restricted the comparison to methods
such as CMF, DECOD, DREME and XXmotif that can
be run in batch on large sets of sequences. All methods
were run on the same sets of foreground and background
sequences under default settings. For each algorithm, we
selected up to 5 top-scored motifs. To evaluate the ability
of the different methods to recognise sequence patterns
reported in literature, we collected TF motifs present in
Jaspar [29] and Jolma et al. [30]. We then compared the
PWMs generated by CMF, DECOD, DREME, SeAMotE
and XXmotif with the motifs available in the reference
databases. We considered successful the prediction in
which the annotated motif was reported as TOMTOM

[31] match. Figures 3A and 3B report the E-value (i.e., the
p-value multiplied by twice the number of target motifs)
and q-value (the minimal false discovery rate at which
the observed similarity would be considered significant)
obtained from the analyses with TOMTOM. As shown
in Figure 3C and Table 1, SeAMotE succeeded in find-
ing the consensus motifs in 282 (80.3%) cases out of the
351 ChIP datasets with annotated motifs for the TFs.
CMF found annotated motifs in 276 (78.6%), DECOD in
248 (70.6%), DREME in 277 (78.9%) and XXmotif in 243
(69.2%) cases (Figure 1C and Table 1). SeAMotE was able
to identify annotated motifs in 74.6% of the cases even
when considering only the top-ranked PWM (othermeth-
ods recognized <67% of experimental cases; Figure 1C and
Table 1).
In 69 out of 351 cases (i.e. 20% of the dataset), SeAMotE

identified motifs that are different from those reported
in Jaspar [29] and Jolma et al. [30] databases. CMF and
DREME identified different patterns in 74% and 67% of
such cases (i.e., 51 out of 69 and 46 out of 69, respec-
tively), which suggests that this group of TFs might display
diverse binding modes. Indeed, with respect to the 282



Agostini et al. BMC Genomics 2014, 15:925 Page 5 of 8
http://www.biomedcentral.com/1471-2164/15/925

Figure 3 Annotated motifs performance comparison.Using 351 ChIP-seq datasets from ENCODE [19], we compared CMF [12], DECOD [13],
DREME [11], XXmotif [14] and SeAMotE performances; A) E-values and B) q-values associated with the 5 top-ranked motifs for CMF, DECOD, DREME,
SeAMotE and XXmotif. C) Proportion of transcription factors for which annotated motifs were succesfully identified is plotted against the number of
top-ranked motifs employed for the TOMTOM search [31].

successful hits, these motifs are predicted with signifi-
cantly lower discrimination (p-value = 5.88e−5; Mann-
Whitney U test on discrimination). Thus, it is possible
that the discrepancy with literature data arises from lower
sequence specificity of the TFs, which makes the fore-
ground and background sets more similar and, therefore,
less informative. It should be also mentioned that the 69
misassigned cases correspond to 42 TFs, and for 28 of
them (66.7%) SeAMotE was able to correctly recognise
the annotated binding pattern in at least one cell-type
or specific treatment [19]. We also observe that some of
the unassigned patterns can be correctly attributed to lit-
erature motifs if other comparison tools are employed
instead of TOMTOM. In an additional calculation, we
used Matlign [32] to compare the similarity between lit-
erature patterns and the top-ranked motif identified by
SeAMotE. In 36 out of 69 cases, we found that SeAMotE
motifs have higher propensity to cluster with those of the
same TF family [29,30]. Intriguingly, we observe that in
54 out of the 69 cases (78.3%) the top-ranked motif is
associated with one PWM of an interacting TF, indicating
that TF binding could be mediated by other proteins.

Table 1 Comparison of discriminativemotif findermethods

Top-rankedmotifs

Method 1 2 3 4 5

CMF 235 (67%) 258 (74%) 266 (76%) 275 (78%) 276 (79%)

DECOD 179 (51%) 213 (61%) 227 (65%) 240 (68%) 248 (71%)

DREME 232 (66%) 250 (71%) 267 (76%) 273 (78%) 277 (79%)

SeAMotE 262 (75%) 274 (78%) 279 (79%) 281 (80%) 282 (80%)

XXmotif 150 (43%) 194 (55%) 215 (61%) 232 (66%) 243 (69%)

For each algorithm, performances using TOMTOM [31] and 1 to 5 top-ranked
motifs are reported as number of successes (cases where the annotated motif is
correctly identified) and as percentage over the complete ChIP-seq collection
(351 experimental datasets [19]).

Identification of RBP recognitionmotifs
To demonstrate the flexibility of our method for differ-
ent types of nucleic acids, we assessed SeAMotE ability to
identify significantly enriched motifs in transcripts stud-
ied by CLIP-seq technology [33]. In each case analysed,
we compared RNAs bound to a specific protein (fore-
ground set) with same amount of unbound transcripts
(background set). Since CMF does not allow the discrim-
inative motif discovery on specific nucleic acid strand,
we excluded the algorithm from the study and used the
other tools for comparison. In our analysis (Figure 3C)
we noticed that SeAMotE and DREME show best per-
formances in finding discriminative motifs, followed by
DECOD and XXmotif. This result was confirmed also in
the analysis of RBP targets (Figure 3C). Indeed, SeAMotE
and DREME outperform DECOD and XXmotif in find-
ing sequence patterns (Figure 4A). Compared to DREME,
SeAMotE achieves significantly higher discrimination
(p-value = 1.36e−14; Mann-Whitney U test), which is
reflected in the ability to better separate foreground from
background sets (Figure 4A), and significance, denoted
by lower p-values associated with each sequence pat-
tern identified (Figure 4B). In addition, SeAMoTe also
shows very high sensitivity (∼89%) and accuracy (∼81%)
(Table 2). Statistical measures of the performance are
also reported for DECOD and XXmotif (Additional file 2:
Table S1; p-value for SeAMotE - DECOD comparison:
3.95e−16; p-value for SeAMotE - XXmotif comparison:
1.09e−07; Mann-Whitney U test).

Cross-validation of the CLIP-seq data
Finally, we assessed SeAMotE performances using a 3-fold
cross-validation approach introduced by Patel and Stormo
[34]: CLIP-seq sets of positive and negative sequences
were randomly divided into three sets of similar sizes
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Figure 4 RNA-binding protein motifs performance comparison. Using 13 CLIP-seq experiments available in the public domain [18], we
compared DECOD [13], DREME [11], XXmotif [14] and SeAMotE performances. The ability to identify sequence elements that maximize the
separation between positive and reference sets is reported for each motif identified using A) discrimination (Youden’s index) and B) significance
(Fisher’s exact test). CMF [12] was excluded from the analysis because it does not allow motif discovery on a nucleic acid specific strand.

(P1, P2, P3) and (N1, N2, N3); two of the three were com-
bined to form a training set and the remaining one was
used as test set. By this means, three training (TR1, TR2
and TR3) and three test sets (TE1, TE2 and TE3) were
generated. We then compared the most significant motifs
found in the training with those present in the test set
using TOMTOM [31] (p-value <0.01). SeAMotE was able
to correctly reproduce the most enriched motifs using
training and testing sets, thus confirming the robustness
of our approach (Additional file 3: Table S2).

Conclusions
Algorithms for discriminative motif discovery are use-
ful to identify regulatory elements in DNA and RNA

sequences. Comparisons between different sets provide
relevant information to rationalize sequence determinants
of physical interactions and can be exploited for future
experimental design. In this work, we introduced the
SeAMotE algorithm for analysis of large-scale nucleic acid
datasets. Through an easy-to-use interface, the SeAMotE
web-server offers key features such as fast discrimina-
tion based on pattern occurrence, choice of multiple
reference backgrounds (shuffle, random or custom) and
identification of significant motifs in the whole span of
tested pattern widths, which provides a range of prac-
tical solutions for analysis of experimental data. Indeed,
as reported in recent studies, inter-positional sequence
patterns and variable binding sites information are key

Table 2 Comparison of DREME [11] and SeAMotE

SeAMotE DREME

Protein TPR SPC PPV FDR ACC TPR SPC PPV FDR ACC

ELAVL1 (Hafner) 85.3 77.7 79.3 20.7 81.5 83.0 73.2 75.6 24.4 78.1

ELAVL1 (Lebedeva) 80.3 74.9 76.2 23.8 77.6 75.6 74.5 73.3 26.7 75.0

ELAVL1 (Mnase) 86.6 77.8 77.9 22.1 82.2 86.3 71.6 75.2 24.8 79.0

ELAVL1 (Mukharjee) 92.2 82.8 84.3 15.7 87.5 89.5 81.7 83.1 16.9 85.6

FUS 93.2 68.3 74.6 25.4 80.8 92.2 45.3 62.8 37.2 68.8

IGF2BP1-3 92.5 27.5 56.0 44.0 60.0 92.5 27.5 56.0 44.0 60.0

PUM2 91.8 87.5 88.0 12.0 89.6 84.9 92.4 91.8 8.2 88.7

QKI 91.8 87.5 88.0 12.0 89.6 88.4 84.9 85.4 14.6 86.6

SFSR1 86.5 79.6 80.7 19.3 83.0 86.5 79.6 80.7 19.3 83.0

TAF15 95.4 68.4 75.1 24.9 81.9 91.0 54.9 66.9 33.1 73.0

TARDBP (iCLIP) 88.9 89.4 89.3 10.7 89.1 87.9 93.8 93.5 6.5 90.9

TIA1 (iCLIP) 86.7 62.3 70.4 29.6 74.5 86.7 62.3 70.4 29.6 74.5

TIAL1 (iCLIP) 85.5 66.4 72.0 28.0 75.9 84.4 66.2 71.7 28.3 75.3

TOTAL 88.6 73.3 78.0 22.0 80.9 86.8 69.8 75.9 24.1 78.3

Sensitivity (True Positive Rate, TPR), specificity (SPC), precision (Positive Predictive Value, PPV), false discovery rate (FDR) and accuracy (ACC) achieved by the two
methods on the CLIP-seq experimental datasets [18].
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features to identify regulatory motifs and will be used
in future computational developments [35]. We demon-
strated the powerfulness of SeAMotE for a large number
of TF targets, correctly reproducing the results avail-
able in literature and showing better performances than
other available tools. We also proved the flexibility and
robustness of the algorithm by assessing its ability to
identify enriched sequence patterns in CLIP experiments
and using a three-fold cross-validation.We anticipate that
the use of SeAMotE and its integration into DNA/RNA-
protein interaction predictors, such as catRAPID [36,37],
would greatly enhance the ability to recognise physical
associations.

Availability and requirements
• Project name: SeAMotE
• Project home page: http://s.tartaglialab.com/new_

submission/seamote
• Operating system(s): Platform independent
• Programming language: C and R scripts
• Other requirements:Web browser (e.g. Safari,

Firefox, Explorer or Chrome)
• Restrictions:No login requirement; users behind a

proxy might experience slow-down issues

Additional files

Additional file 1: Figure S1.Motif discovery time performance. Motif
discovery runtimes of CMF [12], DECOD [13], DREME [11], XXmotif [14] and
SeAMotE algorithms are plotted for each ChIP-seq data set [19]. The
cumulative distribution function represents the percentage of annotated
TF motifs that are recovered using the corresponding method.

Additional file 2: Table S1. DECOD [13] and XXmotifs [14] statistical
measures. Sensitivity (True Positive Rate, TPR), specificity (SPC), precision
(Positive Predictive Value, PPV), false discovery rate (FDR) and accuracy
(ACC) achieved by the two methods on the CLIP-seq experimental
datasets. Cases in which XXmotif was not able to find any motif in the
range of 3-7-mers are indicate with NA.

Additional file 3: Table S2. Cross-validation on RBPs. The table shows the
3-fold cross-validation performance of the SeAMotE approach on the CLIP
data sets [18]. Training sets (TR1, TR2, TR3) are composed by two positive
and two negative subsets, while the training sets (TE1, TE2, TE3) are
represented by the positive and negative subsets that have not been used
in the training. Datasets size, motifs identified along with their matches and
coverage in the positive sets are reported for both training and testing
analyses. The P-value associated with each training-testing pair of motifs,
as calculated with TOMTOM [31], is shown in the last column.
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