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Abstract

Background: Long non-coding RNAs (lncRNAs) regulate embryonic development and cell fate decision in various
ways, such as modulation of chromatin modification and post-transcription regulation of gene expression. However,
the profiles and roles of lncRNAs in early mammalian development have not yet been demonstrated. Here, we
reported a comprehensive analysis of mouse cleavage stage embryonic lncRNA profiles based on public single-cell
RNA-seq data.

Results: We reconstructed 50,006 high-confidence transcripts in 22,827 loci, and identified 5563 novel lncRNAs from
3492 loci expressed in mouse cleavage stage embryos. These lncRNAs share similar characteristics with previously
reported vertebrate lncRNAs, such as relatively short length, low exon number, low expression level and low
sequence conservation. Expression profile analysis revealed that the profiles of lncRNA vary considerably at different
stages of cleavage stage embryos, suggesting that many lncRNAs in cleavage stage embryos are stage-specifically
expressed. Co-expression network analysis suggested many lncRNAs in cleavage stage embryos are associated with
cell cycle regulation, transcription, translation and oxidative phosphorylation to regulate the process of cleavage
stage embryonic development.

Conclusions: This study provides the first catalog of lncRNAs expressed in mouse cleavage stage embryos and
gives a revealing insight into the molecular mechanism responsible for early embryonic development.
Background
The beginning of embryogenesis is cleavage stage. Dur-
ing this stage, a zygote undergoes several rapid rounds
of division, and produces a mass of cells within the zona
pellucida. Abnormally cleavage, such as multinucleation
[1] and asynchrony division [2], will lead to poor devel-
opmental competence. In most in vitro fertilization
(IVF) cases, the evaluation of implantation potential is
carried out at cleavage stage embryos, or oocytes, which
are based on morphological and/or genetic methods
[3,4]. However, the precision of these methods is far
from ideal: only one third of clinical IVF cases success-
fully result in a pregnancy [5,6]. Thus, understanding the
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molecular mechanism underlying cleavage stage devel-
opment is of paramount importance to the improvement
of preimplantation genetic diagnosis (PGD).
Recently, the efforts to characterize cleavage stage em-

bryos have revealed the global gene expression profiles
during preimplantation development of mouse embryo
[7-14]. A major goal in the study of cleavage stage em-
bryos is to illustrate intricate molecular regulatory net-
works and to identify key regulators during cleavage
stage embryonic development. However, although the
expression patterns of messenger RNAs and microRNAs
in cleavage stage embryos were discussed in previous
studies, the long non-coding RNAs (lncRNAs), which
were recently proved to be critical gene regulators of de-
velopment, are not yet clearly elucidated.
In the past decade, many lncRNAs in variety species were

identified via massive parallel sequencing of transcripts
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Figure 1 Overview of cleavage stage lncRNAs identification
pipeline.
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(RNA-seq) [15-18]. One limitation of regular RNA-seq is
the requirement of large amounts of material and a mini-
mum of 500 pg total RNA input is suggested [19]. Fortu-
nately, several researchers have developed single-cell
RNA-seq methods to elucidate gene expression profile in
a single cell, such as mouse oocytes and cells from mouse
preimplantation embryos [11], mouse bone marrow-
derived dendritic cells (BMDCs) [20], human white blood
cells [21]. These efforts may help to study new and low
abundance lncRNAs expressed in a very limited subset of
cell types and reveal the expression variability between in-
dividual cells.
Although the functions of most lncRNAs are still

unclear, several lncRNAs were found to be involved
in cleavage stage embryos development. For example,
the well-known X-link lncRNA Xist mediates the
X-inactivation since 4-cell stage [22,23], and Kcnq1ot1, a
paternally expressed non-coding RNA expressed since
2-cell stage, regulates the establishment of imprinting in
Kcnq1 domain during preimplantation development [24].
These studies suggest that lncRNAs may play an import-
ant role in preimplantation development.
Here we report the genome-wide characterization of

cleavage stage embryonic lncRNAs, and define a strin-
gent set of 3492 (5,563 transcripts) novel lncRNA genes
from single-cell RNA-seq data of mouse cleavage stage
embryos. We validated our data set by known genomic
features of lncRNAs, including transcript length, exon
number, evolutionary conservation and spatiotemporal
expression specificity. Weighted gene co-expression
network analysis revealed that lncRNAs express in a
strong developmental stage-specific manner, and many
of them are highly associated with development regula-
tory genes. Our genome-wide annotation of cleavage
stage embryonic lncRNAs may improve our under-
standing of molecular mechanism that underpin mouse
embryogenesis and provide a large number of candidate
targets for PGD.

Results
Reconstruction of mouse cleavage blastomere
transcriptome
To identify lncRNAs involved in mouse cleavage stage
embryo development, we first assembled cleavage stage
embryonic transcriptome to reexamine the RNA-seq data
GSE22182 [11] which include 24 single cell RNA-seq data
from four mouse cleavage stages (Figure 1).
Briefly, all reads were aligned to mouse genome (mm9)

by using TopHat, a program specifically designed to align
RNA-seq reads and discover de novo splice junctions [25].
The mappable reads were then assembled into transcripts
with two different assemblers, Cufflinks [26] and Scripture
[27]. We identified 1,141,996 non-redundant transcripts
from 793,423 loci in four embryonic stages.
To eliminate erroneously assembled transcripts, we ap-
plied a stringent criteria [28,29] to identify probable tran-
scripts which should be detected by two assemblers in
same sample or identified in at least two individual sam-
ples by same assembler and defined a set of 235,283 cleav-
age stage transcripts. Next, we removed unreliable lowly
expressed transcripts by using a learned read coverage
threshold similar to previous study [28]. Unlike conven-
tional RNA-seq, the transcripts reconstructed from single-
cell RNA-seq are more fragmentary [21], so we applied an
integrity threshold of 0.75 to define well-constructed tran-
scripts, which means an annotated transcript will be ac-
cepted if 75% of its exon was covered by reads (Method).
Since our transcriptomes are reconstructed from a non
strand-specific RNA-seq dataset, we determined the direc-
tion of transcripts based on the splice junction sequences.
All single-exon and short transcripts (<200 nt) were ex-
cluded from our dataset. In the end, a set of 50,006 multi-
exonic transcripts from 22,827 loci were identified as
high-confidence transcripts (Additional file 1). Notably,
the vast majority of high-confidence transcripts were
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detected by both assemblers, suggest that our high-
confidence transcriptomes are reliable.

Identification of 5563 novel lncRNAs in mouse cleavage
blastomere
To define novel lncRNAs from our high-confidence tran-
scriptome, we developed a filtering pipeline to remove
known mRNAs, potential mRNAs and known ncRNAs
(Figure 1). Firstly, we removed all transcripts overlaping
exons of known genes recorded in NCBI RefSeq, UCSC
and Ensembl databases, resulting in a data set containing
7841 high-confidence transcripts. Then, we compared
the genomic coordinates of our predicted lncRNAs with
lncRNA database NONCODE (v3.0), and found 537
lncRNAs were collected in NONCODE (v3.0). Thus, the
remaining 7304 RNAs are novel RNA transcripts.
Because novel protein-coding transcripts mingle with

novel non-coding transcripts in the prediction process,
we applied Coding Potential Calculator (CPC) [30] to
evaluated protein-coding potential of novel transcripts
and remove putative protein-coding transcripts. CPC as-
sess coding potential by considering potential ORFs,the
quality and integrity of predicted ORFs, and the hom-
ology with known proteins. CPC also parse the output of
BLASTX search against known protein sequences by ex-
tract features such as number of hits, quality of hits, and
concentration of hits in a single ORF. CPC algorithm in-
corporates these features and returns a CPC score to
evaluate coding potential of transcripts. We define an
lncRNA with an empirical CPC score threshold (CPC
score < −0.5), and 6072 putative noncoding transcripts
were retained.
CPC uses only UniRef90 as reference database of pro-

tein similarity analysis, and it defines a coding transcript
with a relatively stringent parameter (Blastx E-value < 1 ×
10−10). These might result in loss of some mRNAs with
relatively weak similarity to known proteins and therefore
cause false positive results in lncRNA discovery. Based on
the hypothesis that translation products of mRNAs are
likely to have higher similarity to known proteins or pro-
tein families than non-coding transcripts, we translated
each transcript and estimated their similarity to known
proteins or protein families in order to identify mRNAs
which were not captured by CPC. By using blastp [31] and
HMMER-3 [32], transcripts with an E-value < 10−4 that es-
timated by any of the two algorithms were considered as
protein-coding transcripts. Finally, a set of 5563 tran-
scripts from 3492 loci passed all filters and were regarded
as novel mouse cleavage stage lncRNAs (Additional files 2
and 3). A quick view of read counts mapping to annota-
tion features such as mRNAs, known lncRNAs and new
predicted lncRNAs in this study suggested new lncRNAs
highly expressed in zygote genome activation in 2-cell
stage (Additional file 4).
Genomic features of mouse cleavage stage lncRNAs
Previous studies have shown that lncRNAs are shorter,
less conserved than protein coding transcripts [26,28,29].
Thus we estimated the length, structure, evolutionary con-
servation of our predicted novel lncRNAs to determine
whether mouse cleavage stage lncRNAs are characterized
by these features.
We found that the predicted lncRNAs in cleavage

stage embryos are fewer in exon number and shorter in
length (550 nt and 3.7 exons, on average) than RefSeq
protein coding transcripts (3162 nt and 11 exons, on
average) (Figure 2A and B). Interestingly, lncRNAs in
mouse cleavage stage embryos are shorter in length than
lncRNAs in human (~1 kb on average) and zebrafish
(1113 nt on average), but more in exon number than
lncRNAs in human (2.9 exon on average) [28] and zeb-
rafish (2.8 exons on average) [29].
Although lncRNAs in different species share some

conservative genomic features, sequence conservation
of lncRNAs is lower than protein-coding genes in dif-
ferent species [18]. Therefore it is difficult to estimate
sequence conservation by multiple sequence alignment.
Thus, we used two different methods, phyloP [33] and
phastCon [34], to estimate the evolutionary conserva-
tion of predicted lncRNAs across 30 vertebrate species
(Figure 2C and D). We found that our predicted novel
cleavage stage lncRNAs are less conserved than protein
coding transcripts, but have similar conservation to
pre-annotated lncRNAs. Thus, these features of our
predicted lncRNAs verified that they are bona fide
mouse cleavage stage embryonic lncRNAs which share
similar genomic features and evolutionary features with
other lncRNAs.

LncRNA genes and their neighbouring coding genes are
globally independent transcripted in mouse cleavage
stage embryos
Many lncRNAs are located closely to genes associated
with developmental regulatory functions [18,28,29]. A
subject about lncRNAs is whether lncRNAs transcripted
coordinately with neighbouring genes. Therefore we ana-
lyzed gene paires formed by lncRNAs and their neighbor-
ing genes and identified 4803 lncRNA:coding gene pairs.
In these coding genes near new predicted lncRNAs, a sig-
nificant enrichment (p < 0.05) of morphogenesis and tran-
scription regulation was observed (Additional file 5).
Then, we analyzed gene pairs formed by pre-annotated
lncRNAs in cleavage stage mouse embryos and their
neighbor cording genes and found 3719 RefSeq lncRNA:
coding gene pairs. We found that developmental regula-
tory functions also enriched for their neighbor coding
genes (Additional file 6). These results are similar with
previous studies in other vertebrates (human [28], cow
[35], zebrafish [29]).



Figure 2 Genomic features of new predicted lncRNAs. (A) Length distribution of 27242 coding transcripts and 5563 new predicted lncRNAs.
(B) Exon number distribution of 27242 coding transcripts and 5563 new predicted lncRNAs. (C) (D) Mean phastCons score (C) and mean phyloP
score (D) for 27242 coding transcripts, 35125 known lncRNAs and 5563 new predicted lncRNAs .
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Recent studies demonstrated that some lncRNAs can
regulate gene transcription in cis [36-39]. We analyzed
lncRNAs expressed in cleavage stage mouse embryos,
and observed a more correlate expression pattern of
lncRNAs and their neighbouring coding genes (mean
correlation: 0.268) compare to random coding gene
pairs(mean correlation: 0.076) (Additional file 7A; mean
p-value = 5.3 × 10−15, Kolomogorv-Smirnov Test). On the
other hand, coding gene and their coding neighbors (mean
correlation: 0.206) also exhibit a relative higher correlated
express pattern compare to random coding gene pairs
(mean p-value = 2.4 × 10−6, Kolomogorv-Smirnov Test).
However, lncRNAs:coding gene pairs exhibit a modestly
higher correlative expression pattern than coding gene
pair (mean correlation:0.268 of lncRNA:coding gene pairs
vs mean correlation: 0.206 of coding:coding gene pairs),
even there is a significantly different between them (p =
1.97 × 10−6, Kolomogorv-Smirnov Test). This observation
suggested that the correlation between lncRNAs and their
neighbor coding genes are higher than random gene pairs
but similar to coding genes pairs.
Previous studies have shown that many lncRNAs are

originated within a 4-kb region surrounding the tran-
scription start sites (TSSs) of protein-coding genes and
tend to be coordinated with neighbouring protein coding
genes [40-42]. We analyzed the distance between TSSs
of lncRNAs expressed in mouse cleavage stage embryos
(include 5563 new predicted and 4609 annotated lncRNAs)
and their neighbouring protein-coding genes. We found
that 30.7% (3124/10172) of lncRNAs in cleavage stage
embryos were originated within 10 kb from one or more
TSSs of protein-coding genes and formed 5148 lncRNA:
coding gene pairs. We observed no significant different
between lncRNA:coding gene pairs (mean correlation:
0.252) and neighbouring coding pairs (mean correlation:
0.226) (p-value = 0.52, Kolomogorv-Smirnov Test) but
both lncRNAs:coding gene pairs and neighbouring
coding pairs are more correlated than random coding
gene pairs (lncRNA pairs to random pairs, p-value =
1.02 × 10−9; neighbouring coding pairs to random pairs,
p-value = 3.76 × 10−8; both Kolomogorv-Smirnov Test)
(Additional file 7B). Further analysis illustrated that the
5' ends of lncRNAs are enriched in a 4 kb region sur-
rounding the TSSs of their neighbouring coding genes
(Additional file 7C), which are in agree with previous
studies [42].
Divergent transcription at promoters of active protein

coding genes was considered as an important source of
lncRNAs [40-42]. Corresponding to these observations,
we observed a higher fraction of bi-directional pro-
moters in lncRNA:coding gene pairs than neighbouring
coding gene pairs (Figure 3A). TSSs distance analysis of
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Figure 3 Bi-directional promoter analysis. (A) Proportion of different direction in each category of gene pairs. (B) Distribution of distance from
one TSS to another, in unidirection of lncRNA:coding gene pairs (blue), bidirection lncRNA:coding gene pair (lightblue), unidirection coding gene
pairs (red), bidirection neighbor coding gene pairs (lightred). (C) (D) Distribution of correlation of TSS adjacent neighbor (distance < 10 kb) in
lncRNAs:coding gene pairs (C) or neighbouring coding gene pairs (D).
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lncRNA:coding gene pairs revealed that both sense and
antisense lncRNAs mainly originate within TSS regions
of coding genes (Figure 3B). This distribution is reminis-
cent of the TSS associated- RNAs (TSSa-RNAs) [40,41]
which peak between -100 nt to -300 nt of antisense TSS.
Analysis of all head-to-head genes (include all lncRNAs
in this study and all mRNAs in RefSeq database)
suggested a common feature of head-to-head genes that
the distance of two TSS is range from 0 to −400 nt
(Additional file 8), which corrected a previous study
[43]. Nevertheless, analysis of neighbor gene expression
patterns showed limited differences between lncRNAs:
coding gene pairs and neighbouring coding gene pairs
in both directions (Figure 3C and D).
Taken together, these analyses revealed that lncRNAs

in cleavage stage embryos mainly originated within TSSs
region of neighbouring protein coding genes and have
coordinated transcription with their neighbors in a simi-
lar level of protein coding gene pairs.

Expression specificity of mouse lncRNAs
Previous studies showed that lncRNAs are expressed in
a cell-type specific manner and their expression level
were significantly lower than that of protein coding
transcripts [28,29]. We calculated the Spearman’s rank
correlation coefficients between samples based on lncRNA
and protein coding RNA expression data, respectively, and
found that the correlation coefficients derived from
lncRNA profile data are significantly lower than those de-
rived from mRNA profile data (p-value < 2.2 × 10−16, Stu-
dent T-Test; Figure 4A and Additional file 9) which
indicated that lncRNAs are more variable than protein-
coding transcripts in early embryonic development. To
quantitatively estimate temporal specificity of each tran-
script during cleavage stage, we applied a Jensen-Shannon
distance-based algorithm [28] to calculate temporal ex-
pression specificity score of each transcript in 24 single
cells from cleavage stage embryos and 33 mouse tissues
from ENCODE (GSE39524) (Methods). As expected, our
newly identified lncRNAs showed an increased specific ex-
pression pattern as compared to protein-coding genes,
which is correspond to previous reports [27-29] (Figure 4B).
Notably, the specificity of known lncRNAs is modestly
higher than protein coding transcripts but lower than
lncRNAs identified in this paper. Since most of known
lncRNAs were identified from somatic cell lines [27,44], it
is not surprising that known lncRNAs are expressed
widely in a variety of somatic organs. In contrast with that,
our newly identified lncRNAs are expressed principally in
cleavage stage.
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Figure 4 Temporal specific expression of lncRNAs. (A) Violinplot indicating distribution of Spearman’s rank correlations between each embryonic
sample pairs derived from lncRNAs and mRNAs, respectively. (B) Distribution of JSD-based specificity of transcripts in various categories. (C) Distribution
of maximal expression level of lncRNAs and mRNAs across 24 mouse embryonic RNA-seq data and 33 mouse somatic tissue RNA-seq data.
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We next examine the expression level of lncRNAs and
found expression levels of lncRNAs are lower than those
of protein coding transcripts (Figure 4C), which agree
with the expression patterns of lncRNAs in human and
zebrafish [28,29].
Together, these observations suggested lncRNAs in

cleavage stage embryos are expressed in a more temporal-
specific manner than protein coding transcripts and
lncRNAs identified in somatic tissues. Meanwhile, new
identified lncRNAs are expressed in a relatively low level.

Functions of lncRNAs in mouse cleavage stage embryos
To investigate the potential roles of lncRNAs in mouse
cleavage stages, we performed weighted gene co-expression
network analysis (WGCNA) to associated lncRNAs with
mRNAs and predicted their functions based on "guilty-
by-association" analysis. By clustering correlated genes
together, 24 co-expression gene modules were identified
(Additional files 10, 11 and 12). Notably, 6 of 24 modules
were highly correlated (correlation > 0.7, p-value <10−4)
with specific developmental stages or entire process
(Figure 5A, Additional file 13).
The functional annotations enriched in each modules

indicated that they are clearly functionally related to
specific developmental stages (Figure 5B and Additional
file 14). In each development stage, especially in 2-cell
stage and 4-cell stage, we observed a large number of
lncRNAs (Figure 5B), suggesting lncRNA might involved
in biological processes which regulate the development
of cleavage embryos. Genes in blue module, which is
highly relate to 2-cell stage and contains a large fraction of
lncRNAs, were enriched in Pyruvate metabolism (KEGG
pathway, p-value = 1.8 × 10−4), while genes in turquoise
module, which is related to development process and con-
tains a relative small fraction of lncRNAs, are enriched in
Oxidative phosphorylation (KEGG pathway, p-value =
7.1 × 10−22). These results suggest that the lncRNAs in
these two modules regulate the switch of predominant nu-
trient source, which correspond to the previous finding
that the predominant nutrient source of cleavage stage
embryos is pyruvate in the beginning and switch to glu-
cose around compaction [45].
Notably, black module and pink module are both re-

lated to oocyte but differently expressed in wild type and
dicer−/− oocytes. The black module, which contains 999
transcripts (572 mRNAs and 427 lncRNAs), is hightly
expressed in dicer−/− oocytes, while the pink module,
which contains 1910 transcripts (1088 mRNAs and 882
lncRNAs), is highly expressed in WT oocytes and two-cell
stage embryos. Dicer is essential for oocyte maturation
since the deficient of dicer could lead to misregulation of
spindle structure in oocyte [46]. Interestingly, we observed
centrosome (p-value = 3.32 × 10−5) but not spindle related
terms in pink module (normal oocytes). In contrast with
this observation, spindle organization (p-value = 5.88 ×
10−3) was enriched in black module, suggesting the
meiotic spindle defects of dicer−/− oocyte may caused
by misregulation of post-transcription of spindle related



Figure 5 (See legend on next page.)
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Figure 5 Function prediction of cleavage stage lncRNAs. (A) Stage specific co-expression gene modules and their correlation to development
stage. Numbers of each square represent correlation of module and development stage, and p-value of each correlation value. Color of each square is
correspond to correlation: Positive correlation (Red); Negative correlation (Green); No correlation (White). The column “Time” in the right represents the
correlation of each module and entire development process of cleavage stage. Modules with high correlation to time mean overall upregulated during
cleavage stage. (B) Heatmap in the upper panel is the expression pattern of all genes in this module across all 24 samples. The barplot in the middle
panel shows the corresponding module eigengene expression vaule versus each sample. The piechart in the lower panel is the ratio of mRNAs and
lncRNAs in module. Number beside the pie chart is the exact number of mRNAs and lncRNAs in this module. (C) Function enriched in stage associated
modules. Length of bars indicate the significance (−log10 transferred Benjamini-Hochberg adjusted p-value).
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genes. In consideration of the key role of dicer in the
metabolism of lncRNAs, we believe that lncRNAs may
regulate oocyte maturation and meiosis
Hub genes in modules could reflect the core functions

of the modules, so we performed a hub-gene network
analysis of each stage-specific modules and found many
hub lncRNAs (Additional file 15). The functions of these
lncRNAs can be predicted based on their co-expression
with hub genes that have known biological functions.
For example, in black module, the lncRNAs that co-
expressed with Cep78, which is a centrosomal protein,
may play roles in regulation of meiosis. In pink module,
the lncRNAs that co-expressed with the Rhpn2, which is
involved in the organization of the actin cytoskeleton,
may play roles in the regulation of spindle organization.
Likewise, the lncRNAs in hub gene networks of brown,
blue, turquoise, and purple modules may relate to cell
cycle, glucose metabolic process, RNA process and pro-
tein synthesis. All these networks contain lncRNAs, indi-
cating the key roles of lncRNAs in cleavage stage
embryonic development.

Discussion
The roles of lncRNAs in early embryonic development are
intriguing issues with respect to development biology.
However, it is difficult to profile mRNA and lncRNA tran-
scriptome in early embryos because of the technical obsta-
cles, such as the analysis of lncRNAs expressed at lower
levels and in small amount of cell. Here we, for the first
time, illustrated the lncRNA profiles of mouse cleavage
stage embryos based on single-cell RNA-seq data. We
have identified 5563 novel transcripts from 3492 loci with
poor coding potential, which largely expanded the reper-
toire of lncRNAs. Moreover, we constructed a weighted
gene co-expression network and predicted the functions
of lncRNAs based on their association with known protein
coding genes.
Our newly identified lncRNAs in mouse cleavage-stage

embryos shared many characteristics with those in other
mammalian species. They are shorter, lower in exon
number, lower in expression level and less conserved
than protein coding transcripts. Analysis of the co-
expression of lncRNAs and their coding neighbors re-
vealed that, globally, the lncRNAs are coordinated to
their neighbouring genes in a similar level as the neigh-
bouring coding gene pairs.
Investigation of expression pattern of lncRNAs in

cleavage stage embryos elucidated that lncRNAs tend to
be expressed in a developmental stage-specific manner.
Notably, many lncRNAs are expressed in a very narrow
developmental time window and some lncRNAs are re-
strictedly expressed in an individual cell. These observa-
tions suggested that the slight transcriptional changes
which may be masked in previously bulk cell analysis
can be revealed by single cell transcriptome analysis.
Thus, single-cell RNA-seq is a very promising method
with high resolution for probe of rare cell types, discov-
ery of low abundant molecules, capture of flash events
and detection of weak associations masked in bulk ex-
periments [20,47].
The highly specific expression patterns of lncRNAs in

cleavage stage embryos suggested diverse functions of
lncRNAs in early embryonic development. WGCNA
based prediction of lncRNA functions associated lncRNAs
to different modules with function-known genes, and clas-
sified them into different functional groups. Several mod-
ules that significantly associated with development stages
were investigated and characterized by their functions. For
example, lncRNAs in brown module which is highly re-
lated to oocyte may function in oocyte meiosis and matur-
ation. In addition, cleavage stage lncRNAs, in modules of
brown, blue, purple and turquoise, may regulate cell-cycle
based on their module functions. This hypothesis is sup-
ported by a recent study which revealed a set of lncRNAs
transcribed within cell-cycle promoter of human [48].
The rapid change of lncRNAs during cleavage stage

embryonic development also suggests that the stability
of lncRNAs is highly regulated. In the procedure of oo-
cyte maturation and oocyte-to-zygote transition, the
highly selective degradation of maternal mRNAs is re-
quired [49,50]. An intrinsic question is whether the sta-
bility of lncRNAs is regulated by identical or comparable
mechanism that regulates stability of mRNAs in cleavage
stage development. Study of decapping of lncRNAs in
yeast [51] have shown that decapping, as a crucial mech-
anism in regulating stability of mRNAs and some
lncRNAs, is critical for rapid and robust induction of
genes which associated with galactose utilization. Thus,
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the regulatory mechanism of lncRNAs stability may play
an essential role in gene expression network in cleavage
stage development.

Conclusions
We provided the first lncRNA profiles of mouse cleavage
stage embryos based on single-cell RNA-seq data, and
identified 5563 novel lncRNA transcripts from 3492 loci
expressed in mouse cleavage stage embryos. These
lncRNAs tend to be expressed in a developmental stage-
specific manner, many are expressed in a very narrow
developmental time window and some are restrictedly
expressed in an individual cell. Co-expression network
analysis suggested many lncRNAs in cleavage stage em-
bryos are associated with cell cycle regulation, transcrip-
tion, translation and oxidative phosphorylation to regulate
the process of cleavage stage embryonic development. Our
results provides the first catalog of lncRNAs expressed in
mouse cleavage stage embryos and gives a revealing
insight into the molecular mechanism responsible for
early embryonic development.

Methods
Public data used in this study
Embryonic dataset (GSE22182) was download from Gene
Expression Omnibus (GEO) which include four oocyte
samples, eight 2-cell stage samples, six 4-cell stage sam-
ples, and six 8-cell stage samples. To get somatic dataset,
we download 33 somatic tissue data generated by ABI
SOLiD platform (GSE39524) from mouse ENCODE pro-
ject. See Additional file 16 for detail.

Reads mapping
Reads were aligned to mouse genome (mm9) by the
spliced read aligner Tophat (vision 1.4.1) as described in
[28]. Briefly, each sample was first aligned to find junctions
in each sample (default parameters and ‘max-multihits =
10’, ‘min-anchor-length = 5’). The detected junctions in
each sample were pooled as raw junctions for the second
round of alignment (default parameters and ‘–no-novel-
juncs’). Read counts of new lncRNAs, known lncRNAs and
mRNAs in each sample were summarized in Additional
file 4, which was performed by HTSeq [52].

Transcripts assembly
Two different assemblers: Cufflinks (vision 2.0.2) and
Scripture (VPaperR3) were hired to assemble transcrip-
tome. The assembly results of these two assemblers were
compared by Cuffcompare to identify transcripts de-
tected by both assemblers. Cufflinks-only transcripts
were pooled across all samples to identified transcripts
occurred in 2 or more samples. Scripture-only tran-
scripts processed ditto. Transcripts < 200 bp or single
exonic were excluded.
Minimal read coverage threshold
To remove bad reconstructed transcripts, alignment arti-
facts and background expression, transcripts with a max-
imum coverage below 3.77881 reads per base were
eliminated from our transcriptome. To calculate this min-
imal read coverage threshold, we applied the method de-
scribed in [28]. The only modification is that we regarded
transcripts that recovered 75% of annotation as good re-
constructed transcripts. Then we used AUC (area under
the curve) to select the optimal threshold of coding and
non-coding RNA in Refseq. The final threshold was the
average of thresholds for coding and non-coding RNAs.

Filter of known annotations
We used Cuffcompare to compare our transcripts with
those annotations in ① Refseq, ② UCSC gene and ③ En-
semble gene. Transcripts with class code “=” (Complete
match of intron chain), “c” (Contained), “j” (at least one
splice junction is shared with a reference transcript), “e”
(Single exon transfrag overlapping a reference exon), “o”
(exonic overlap with a reference transcript), “p” (polymer-
ase run-on fragment), “s” (an intron of the transfrag over-
laps a reference intron on the opposite strand) will be
removed. The rest of them were considered as novel tran-
scripts. Public annotations used in this study were listed in
Additional file 17.

Analysis of coding potential by CPC
CPC (coding potential calculator) is a SVM-based classi-
fier by comprehensively scoring the characteristics of a
transcript including the presence and integrity of pre-
dicted ORF, similarity to known protein sequences and
conservation of a single frame. We used UniRef90 as
known protein reference for CPC analysis. An empiric-
ally cutoff (CPC score < −0.5) was used to distinguish
mRNA from lncRNA.

Conservation analysis
The whole genome phyloP score and phastCon score
were downloaded from UCSC Genome Browser [53].
Basically, the phyloP/phastCon score of a transcript was
defined as the average phyloP/phastCon score of each
nucleotide of its exons. Nucleotides which have no phy-
loP/phastCon score were ignored.

Neighbouring gene correlation analysis
For genebody neighbouring gene analysis, we defined
two genes as neighbours by the minimal distance of gen-
ebodies < 10 kb and ignore the direction of two genes.
Pearson correlation of two neighbours was calculated
with log2-normalization (after addition of 0.05) of raw
expression level (FPKM). For TSS distance analysis, the
distance of two TSS was calculated. In lncRNA:coding
gene pairs, we defined the coordinate (upstream or
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downstream) of lncRNA TSS by considering the direc-
tion of coding gene transcription. In coding:coding gene
pairs, the reference TSS was randomly chose.

Temporal specificity score
The temporal specificity score is defined as 1-(JSdist(p,q))
where p is the density of expression (probability vector of
log10(FPKM+ 1)) of a given gene across all conditions,
and q is the unit vector for that condition (ie. perfect ex-
pression in that particular condition), while JSdist is a
function that used to calculate pairwise Jensen-Shannon
distances between columns in R package “cummeRbund”.
JS specific score = 1 means a transcript is expressed exclu-
sively in that condition. We use max JS score of a tran-
script to represent the expression specificity of it.

Weighted gene co-expression network construction and
gene module detection
R package "WGCNA" was used to construct the weighted
gene co-expression network [54,55]. All transcripts passed
coverage filter were included in this network. First, a
matrix of signed Pearson correlation between all gene
pairs was computed. Second, this correlation matrix was
raised to power β = 6 to calculate a adjacency matrix. The
power of 6 is the soft-threshold of correlation matrix and
makes the adjacency network exhibit approximate scale-
free topology (R-squared = 0.9). To minimize the noise
and spurious associations, the adjacency matrix was trans-
formed to topological overlap matrix (TOM). The matrix
1-TOM was used as the input of average linkage hierarch-
ical cluster. Genes with similar expression pattern were
clustered together. We applied the Dynamic Tree Cut algo-
rithm [56] with default parameters to cut the hierarchical
tree since modules were defined as branches of the tree.
The expression profile of a given module was represented
by its first principal component (module eigengene) which
can explain the most variation of the module expression
levels. Modules with highly correlated module eigengenes
(correlation > 0.75) were merged together. The module
membership (also known as module eigengene based con-
nectivity, kME) of each genes was calculated by correlating
the gene expression profile with module eigengenes, and
represents the extent of a gene close to a given module.

Function enrichment analysis
All function enrichment analyses were performed in
DAVID (Database for Annotation, Visualization and
Integrated Discovery) [57].
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Additional file 1: Transcripts predicted by Cufflinks and Scripture,
respectively, in each step of lncRNA identification processes.
(A) Unstrigent transcripts; (B) Strigent transcripts; (C) High-confidence
transcripts; (D) Cleavage stage expressed multi-exon and long transcripts.
Transcripts predicted only by Cufflinks were shown in green, transcripts
predicted only by Scripture were shown in yellow, transcripts predicted
by both were shown in purple.

Additional file 2: Mouse cleavage embryonic lncRNAs. BED format
annotation of mouse cleavage embryonic lncRNAs.

Additional file 3: Mouse cleavage embryonic lncRNAs. A Microsoft
Excel file contains location and sequence of each transcript.

Additional file 4: Read counts in various annotation features of each
sample. The barplot in the upper panel indicate fraction of reads mapped to
new lncRNAs (red), known lncRNAs (blue) and coding mRNAs (yellow). The
table underneath barplot shows reads mapped in different type of genes.

Additional file 5: Neighbor gene functions of new lncRNAs.
Functional terms enriched in 3126 neighbour coding genes which
located in 10 kb round of new predicted lncRNAs.

Additional file 6: Neighbor gene functions of pre-annotated
lncRNAs. Functional terms enriched in 3028 neighbour genes which
located in 10 kb round of pre-annotated lncRNAs.

Additional file 7: Neighbouring gene analysis. (A) Distribution of
correlation of neighbouring (genebody distance <10 kb) lncRNA:coding
gene pairs (blue), coding gene pairs(red), random gene pairs(100 random
permutation; green). (B) Distribution of correlation of neighbor genes TSS
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neighbour gene pairs. (A) TSS of lncRNAs which transcribed in identical
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Additional file 9: Spearman correlation matrix derived from
lncRNAs and mRNAs, respectively. (A) Spearman correlation matrix
based on lncRNA expression profile. (B) Spearman correlation matrix
based on coding gene expression profile.

Additional file 10: WGCNA analysis of expression profile from 24
cleavage stage cells. Weighted gene co-expression network of 10171
lncRNAs and 10997 mRNAs expressed in cleavage embryos. Dendrogram:
hierachical clustering of all transcripts; Upper color panel: module
membership of genes; Bottom color panel: scaled gene expression level
in 24 cleavage stage cells, (Red) High expression level; (Green) Low
expression level; (Black) Median expression level.

Additional file 11: Genes and their memberships to each module.
MM is stand for module membership, which is the correlation between a
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Additional file 12: Module-development stage correlation.
Correlation between development stages and 24 co-expression gene
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line corresponds to module names.

Additional file 14: GO and KEGG analysis of stage specific modules.
GO and KEGG terms enriched in 6 development stage specific modules.
P-values are Benjamani-Hochberg adjusted.

Additional file 15: Hub gene network of stage specific modules. Hub
gene network of stage specific modules, lncRNAs were highlighted in red.
Top 100 strength edges and the corresponding nodes (genes) are displayed.

Additional file 16: RNA-seq data used in this study. Sample
information of RNA-seq data used in this study.
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annotations used in this study.
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