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Abstract

Background: The genetic determinism of blood lipid concentrations, the main risk factor for atherosclerosis, is
practically unknown in species other than human and mouse. Even in model organisms, little is known about how
the genetic determinants of lipid traits are modulated by age-specific factors. To gain new insights into this issue,
we have carried out a genome-wide association study (GWAS) for cholesterol (CHOL), triglyceride (TRIG) and low
(LDL) and high (HDL) density lipoprotein concentrations measured in Duroc pigs at two time points (45 and
190 days).

Results: Analysis of data with mixed-model methods (EMMAX, GEMMA, GenABEL) and PLINK showed a low positional
concordance between trait-associated regions (TARs) for serum lipids at 45 and 190 days. Besides, the proportion of
phenotypic variance explained by SNPs at these two time points was also substantially different. The four analyses
consistently detected two regions on SSC3 (124 Mb, CHOL and LDL at 190 days) and SSC6 (135 Mb, CHOL and TRIG at
190 days) with highly significant effects on the porcine blood lipid profile. Moreover, we have found that SNP variation
within SSC3, SSC6, SSC10, SSC13 and SSC16 TARs is associated with the expression of several genes mapping to other
chromosomes and related to lipid metabolism.

Conclusions: Our data demonstrate that the effects of genomic determinants influencing lipid concentrations in pigs,
as well as the amount of phenotypic variance they explain, are influenced by age-related factors.
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Background
Understanding the genetic architecture of blood lipids
from an evolutionary perspective will be only feasible
through the genetic analysis of multiple species. Compara-
tive studies performed in mouse for HDL concentrations
have highlighted that there are remarkable concordances
between human and murine QTL maps [1] as well as
between QTL (mouse) and GWAS (human) trait-
associated regions (TARs) [2]. These results suggest that
* Correspondence: Marcel.Amills@uab.cat
1Department of Animal Genetics, Center for Research in Agricultural
Genomics (CSIC-IRTA-UAB-UB), Universitat Autònoma de Barcelona, Bellaterra
08193, Spain
2Departament de Ciència Animal i dels Aliments, Universitat Autònoma de
Barcelona, Bellaterra 08193, Spain
Full list of author information is available at the end of the article

© 2014 Manunza et al.; licensee BioMed Centr
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
lipid homeostasis is regulated by a common set of genes
in both species.
Pigs are particularly relevant from a clinical point of

view because they develop atherosclerotic vascular le-
sions that are similar to those observed in humans [3].
There is substantial evidence that additive variance for
serum lipid levels exists in swine populations, with herit-
ability estimates that range between 0.2-0.4 [4]. Besides,
several porcine serum lipid QTL have been detected
with the aid of microsatellite markers [5-8] and, more
recently, it was reported the first GWAS for porcine
blood lipid traits in Duroc x Erhualian F2 and Sutai pigs
[9]. As in humans, GWAS approaches should be ex-
tended to a large number of pig populations in order to
achieve a comprehensive and reliable picture of genomic
variation affecting serum lipid concentrations.
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In the current work, we aimed to investigate the gen-
etic architecture of total cholesterol (CHOL), low
(LDL) and high (HDL) density lipoprotein and trigly-
ceride (TRIG) concentrations in serum samples ob-
tained from Duroc pigs at two different ages (45 and
190 days). Previous heritability data obtained in
humans [10] and pigs [11] suggested that the genetic
determinism of lipid concentrations varies with age, so
our main goal was to evaluate the positional concord-
ance of TARs determining porcine serum lipid concen-
trations at two different timepoints. We have used four
statistical packages to carry out GWAS analyses in
order to identify those TARs that are consistently de-
tected by all programs.

Methods
Phenotyping of a Duroc commercial population
The Duroc resource population employed in the current
experiment and phenotyping methods have been reported
by Gallardo et al. [5]. Briefly, a commercial Duroc line
(Lipgen population) consisting of 350 barrows distributed
in five half-sib families was generated by crossing 5 boars
with ~400 sows. After weaning, this pig population was
transferred to the experimental test station at the
Centre de Control Porcí (CCP) of the Institut de
Recerca i Tecnologia Agroalimentàries (IRTA). Serum
lipids were measured in 45 and 190 days-old pigs by
following the protocols reported by Gallardo et al. [5].
Data (CHOL45, CHOL190, LDL45, LDL190, HDL45,
HDL190, TRIG45 and TRIG190) were log-transformed
prior to GWAS analyses in order to ensure normality
[5]. The experimental procedures, traits recording and
blood sampling were approved by the IRTA Ethical
Committee.

Measurement of hepatic gene expression phenotypes
Global mRNA expression datasets were generated for
liver samples obtained from 97 Duroc pigs from the Lip-
gen population (our unpublished data). Total RNA was
isolated and hybridised to GeneChip Porcine arrays
(Affymetrix Inc., Santa Clara, CA) as previously reported
[12]. Microarray data were normalised with the gcRMA
algorithm, using the BRB-ArrayTools software version
3.7.1 [13] and deposited in the Gene Expression Omni-
bus (GEO) public repository (GSE19275, GSE26091 and
GSE48992 accession numbers). Probes corresponding to
16,949 genes were obtained with the most updated an-
notation file [14].

High throughput genotyping and data filtering
DNA samples were genotyped using the Illumina Infi-
nium HD Porcine SNP60 Beadchip (Illumina, San
Diego, CA) according to the manufacturer instructions
(http://www.illumina.com). Quality genotyping analyses
were performed with the GenomeStudio software
(Illumina). The GenCall score cut-off and the average call
rate were 0.15 and 97%, respectively. Single nucleotide
polymorphisms with a rate of missing genotypes > 5%, that
did not conform Hardy-Weinberg expectations (threshold
set at a P-value = 0.001) or that had a minor allele fre-
quency below 0.05 were eliminated from the dataset.
SNPs mapping to the X chromosome were also ex-
cluded from the analyses. After frequency and geno-
type pruning, the final dataset included a total of
37,960 SNPs and 320 individuals.

Genome-wide association analyses
The statistical models employed in the analysis of the
serum lipid data were as follows:

yi ¼ μþ batchþ farmþ βggi þ ei for records at

45 days of age;

yi ¼ μþ batchþ βcovcovi þ βggi þ ei for records
at 190 days
of age;

where yi is the phenotypic record (CHOL, LDL, HDL
and TRIG at 45 or 190 days of age) collected from the
ith individual; μ is the mean of the serum lipid trait in
the population; batch and farm are the systematic effects
i.e. batch of fattening (with 4 categories) and farm of ori-
gin (with 3 categories); covi is a covariate that depends
on the trait (live weight at slaughter for CHOL, HDL
and LDL; age at slaughter for TRIG); βcov and βg are the
partial regression coefficients of yi on covi and of yi on
gi, respectively; gi represents the SNP genotype and ei is
the error associated with the model. The statistical
relevance of the systematic environmental sources of
variation and the covariates were previously corrobo-
rated by Gallardo et al. [5] and Casellas et al. [11] on
the same dataset.
Gene expression data were exclusively analysed with

GEMMA. The statistical model took into consideration
the fixed effects “batch of fattening” (with four categor-
ies) and “laboratory” (with 2 levels, since microarray data
were generated in two different laboratories). Since this
type of study involves the performance of 8.59 million
tests (507 SNPs × 16,949 probes) we used the Bonferroni
correction to take into account multiple testing (thresh-
old of significance: 1.16 × 10e-7).

PLINK analysis of the data
We made a first analysis of the data with the PLINK
toolset [15]. This package has been mostly used in the
framework of case/control studies, but it also allows
the analysis of quantitative traits through standard lin-
ear regression. PLINK also offers a variety of methods
to take into account population stratification, but other

http://www.illumina.com
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Table 1 Fraction of the phenotypic variance explained by
the markers contained in the Porcine 60 K BeadChip
(column 2) compared with Bayesian estimates of
heritabilities (columns 3-4) obtained by Casellas et al. [11]

Traita h2SNP (GEMMA) Bayesian h2 estimate BFb

CHOL45 0.14 ± 0.10 0.38 (0.06-0.68) 3.1

LDL45 0.13 ± 0.07 0.27 (0.00-0.62) 1.3

HDL45 0.00 ± 0.08 0.47 (0.01-0.81) 2.2

TRIG45 0.43 ± 0.13 0.42 (0.07-0.70) 8.7

CHOL190 0.27 ± 0.10 0.37 (0.08-0.62) 47.9

LDL190 0.33 ± 0.11 0.36 (0.07-0.60) 16.3

HDL190 0.02 ± 0.04 0.45 (0.02-0.80) 2.1

TRIG190 0.19 ± 0.10 0.34 (0.05-0.58) 16.1
aTraits were measured at 45 and 190 days: cholesterol (CHOL), low (LDL) and
high (HDL) density lipoproteins and triglycerides (TRIG).
bBayes factor.
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sources of sample structure, such as hidden related-
ness, are more difficult to correct with these tools
[15,16]. Although PLINK supports family-based associ-
ation analysis based on transmission disequilibrium
testing (QFAM), which is particularly robust to the ef-
fects of sample structure, we decided not to use this
approach because only sire and offspring (1 per sow)
genotypes, but not the mother’s ones, were available in
the Lipgen population. Thus, we made a first analysis
without taking into account sample structure. We re-
trieved all the significant SNPs (P-value < 0.05 after
correction for multiple testing with a false discovery
rate approach) and they were used in a second round
of analysis where sires were considered as a fixed effect
(with 5 levels). In principle, this approach considers
family-specific genetic structure by taking into account
sire-related genetic effects. However, we did not expect
any bias produced by sows because the ~ 400 females
belonging to the Lipgen population were randomly
mated with the 5 parental boars.

Analysis of the data with mixed-model statistical packages
Three mixed-effects models were used in addition to
PLINK to estimate the robustness of the associations
found. A brief description of these programs follows.
The Efficient Mixed-Model Association eXpedited
(EMMAX) package [16] builds a pairwise relatedness
matrix on the basis of SNP genotypes and, subse-
quently, a variance component model is used to infer
the contribution of sample structure to phenotypes.
This is achieved by constructing a covariance matrix of
phenotypes that represents the effects of genetic re-
latedness on phenotypes [16]. Associations between
SNPs and traits are tested applying a correction for
sample structure (population stratification and hidden
relatedness) through the covariance matrix.
The Genome-wide Rapid Association using Mixed

Model and Regression (GRAMMAR) approach imple-
mented in GenABEL was also used to carry out GWAS
[17]. GRAMMAR infers pairwise kinship coefficients
amongst sampled individuals on the basis of genomic
marker data. Then, additive polygenic effects are es-
timated, adjusting for fixed (nuisance) effects, and the
residuals are used in a second step as phenotypes in
GWAS [17]. Finally, we also used the Genome-wide
Efficient Mixed-Model Association (GEMMA) approach
developed by Zhou and Stephens [18], that also uses a
standard linear mixed model to account for sample
structure but, in contrast with the two preceding ap-
proximate methods, provides an exact test for signifi-
cance. GEMMA was also employed to estimate the
proportion of phenotypic variance explained by SNP ge-
notypes (i.e. “chip heritability”), which can be summa-
rized as follows:
h2SNP ¼ σG
σ2
G þ σ2E

where σ2G , is the variance due to markers and σ2E is the
residual variance.

Correction for multiple testing was implemented with
the Bonferroni method as well as with the false discovery
rate approach [19].

Analysing the gene content of trait-associated regions
Genes mapping to TARs were retrieved from the Ensembl
database with the Biomart data mining tool [20] and
mapped (PLINK analysis) to the Reactome database [21].
Orthologous relationships between pig and human
TARs were inferred with the aid of the National Human
Genome Research Institute (NHGRI) GWAS Catalog
[22] database (http://www.genome.gov/gwastudies).

Results
Phenotypic variance of porcine serum lipid traits
explained by the genotyped SNPs
We have estimated the proportion of phenotypic variance
(VP) explained by all the SNPs (h2SNP) at the whole-genome
level with GEMMA (Table 1). With regard to serum lipids
at 45 days, as much as 43% of TRIG45 VP could be attrib-
uted to the SNPs genotyped in the Lipgen population,
while for CHOL45 and LDL45 this percentage was lower
(~13-14%). The proportion of VP corresponding to
serum lipids at 190 days explained by the SNPs reached
values of 27%, 33% and 19% for CHOL190, LDL190 and
TRIG190, respectively. The two phenotypes with the
smaller amount of h2SNP were HDL45 (0%) and HDL190
(2%). We corroborated these estimates by using the
EMMAX and GenABEL softwares (Additional file 1:
Figure S1), which yielded similar results i.e. very low

http://www.genome.gov/gwastudies
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h2SNP for HDL traits and moderate values for the
remaining phenotypes.

Genomic regions significantly associated with serum lipid
concentrations in pigs
We have used GEMMA, EMMAX, GenABEL and
PLINK to identify genomic regions displaying significant
associations with serum lipids. In general, EMMAX,
GEMMA and GenABEL results were very consistent
(Table 2), while PLINK identified most of the regions
found with the three mixed-effects models plus many
others that, with these programs, appeared as non-
significant (Table 3 and Additional file 2: Table S1). With
GenABEL and GEMMA, we were able to detect two
genome-wide significant associations for CHOL190 at
SSC3 (124 Mb) and SSC6 (135 Mb). Besides, several
chromosome-wide significant associations emerged con-
sistently in the three mixed-model analyses (i) SSC3
(124 Mb) with CHOL190 (it attained genome-wide sig-
nificance with GenABEL and GEMMA), LDL45 and
LDL190; (ii) SSC6 (135 Mb) with CHOL190 (it attained
genome-wide significance with GenABEL and GEMMA)
and TRIG190; and (iii) SSC16 (17 Mb) with CHOL45
(Table 2). The Manhattan plots of the TARs identified
with GEMMA are shown at Additional file 1: Figure S2.
Importantly, there was not any positional concordance
between regions determining serum lipid concentrations
at 45 and 190 days.
Analysis of the gene content of TARs detected with

mixed-model methods (Additional file 3: Table S2,
Additional file 4: Table S3 and Additional file 5: Table S4)
allowed detecting loci related to a variety of lipid meta-
bolic pathways such as cholesterol transport and/or
uptake (ABCG1, APOB), lipoprotein clearance (SDC1)
and regulation of lipid metabolism and energy ex-
penditure (LEPR/LEPROT). With PLINK, we detected,
amongst others, TARs at SSC3 (124 Mb, CHOL190 and
LDL190) and SSC6 (135 Mb, CHOL190 and TRIG190),
thus providing an independent confirmation of the results
obtained with mixed-model approaches. The list of genes
mapping to TARs detected with PLINK (Additional file 6:
Table S5) was much larger than the ones obtained with
mixed-model methods allowing to perform pathway
analyses. In this way, genes were mapped to the Reac-
tome database [21] in order to define the metabolic
pathways they belong to. Interestingly, the most signifi-
cantly enriched pathway was “Metabolism of lipids and
lipoproteins” (Additional file 7: Table S6), with a 1.89-
fold enrichment and a nominal P-value of 0.002 (how-
ever, this pathway was not significantly enriched after
correction for multiple testing i.e. Bonferroni corrected
P-value = 0.14).
We also compared the GWAS data generated in the

current experiment with results produced in a QTL scan
in the same resource population with a panel of 109 in-
formative microsatellites [5]. As shown in Table 4, only
one region at SSC3 (124 Mb) with effects on CHOL190
and LDL190 showed a perfect positional concordance
across the four association analysis packages and the
QTL scan [5]. We can conclude that this association
is very robust and deserves to be further investigated.
We found some additional correspondences between a
QTL for LDL45 at SSC13 (104 cM) and a TAR detected
with GEMMA at 215 Mb, as well as between
CHOL190 and LDL190 QTL found at SSC13 (72-
74 cM) and TARs detected with PLINK at SSC13 180-
181 Mb and 207-210 Mb regions (Table 4).

Orthologous relationships between pig and human
genomic regions associated with serum lipids
We have examined the orthologous relationships be-
tween the TARs that displayed the most significant and
robust associations with serum lipids, and those previ-
ously identified in human GWAS [22,24,25]. It was obvi-
ous the existence of a tight positional concordance for
the APOB gene. In pigs, this locus maps to a SSC3 gen-
omic region associated with CHOL190, LDL45 and
LDL190 levels in the Lipgen population. In humans,
APOB variability has been also associated with CHOL
and LDL concentrations [24,25]. Another potential cor-
respondence was observed for a SSC6 region (~135 Mb)
associated with CHOL190, that lies close to the
angiopoietin-related protein 3 gene (ANGPTL3, 138 Mb
in SSC6) and the dedicator of cytokinesis protein 7
(DOCK7, unmapped in pigs, but in human it co-
localizes with ANGPTL3). In human, these two loci have
been consistently associated with CHOL, LDL and TRIG
levels [24,25]. We also detected a third correspondence
between the HDL45 TAR at SSC18 (20-22 Mb), exclu-
sively detected with GenABEL, and one region at human
7q32 that contains a microRNA-encoding gene (miR-
29A) strongly associated (1 × 10−15) with HDL levels
[24]. With regard to the most significant PLINK TARs
(Table 3), we found some additional orthologous rela-
tionships. Near the SSC1 (264-271 Mb) TAR, associated
with CHOL190, there is the ABCA1 gene, strongly asso-
ciated with HDL-cholesterol in humans [24,25]. Besides,
the MOSC1 gene, that in humans displays associations
with LDL levels [24,25] was located within the SSC10
(0.9-16 Mb) TAR for TRIG45 concentrations

Search of associations between SNPs within TARs and
liver gene expression phenotypes
With the aim of gaining additional insights into the
molecular basis of the associations found, we have in-
vestigated if 507 SNPs mapping to TARs identified
with GEMMA are also associated with gene expres-
sion phenotypes. The most significant associations are



Table 2 Significant genome-wide (*) and chromosome-wide associations for serum lipid traits detected with three
different mixed-model approaches1

EMMAX

Trait CHR N SNP Reg (Mb) P q Bonf. E A1 MAF

LDL45 SSC3 3 ASGA0016334 124.6-124.8 2.82x10e-05 0.02 0.05 0.04 A 0.32

LDL190 SSC3 2 ASGA0016334 124.8 6.42x10e-06 0.006 0.02 0.05 A 0.32

CHOL45 SSC16 2 DRGA0015896 17.7 2.64x10e-05 0.01 0.03 −0.05 T 0.12

CHOL190
SSC3 3 ASGA0016334 124.6-124.8 6.82x10e-06* 0.01 0.006 0.03 A 0.32

SSC6 5 ASGA0029689 135.0-135.4 1.32x10e-05* 0.01 0.03 −0.03 G 0.36

TRIG190 SSC6
4 ASGA0101719 10.2-10.7 6.9x10e-05 0.03 0.1 0.06 G 0.36

6 ASGA0089937 135.0-135.4 4.48x10e-06 0.006 0.01 0.06 A 0.34

GEMMA

LDL45

SSC3 3 ALGA0021216 124.6-124.8 1.51x10e-05 0.01 0.03 −0.05 A 0.33

SSC10
5 ASGA0097841 2.5-2.9 1.90x10e-04 0.03 0.25 0.04 G 0.47

5 MARC0064247 18.2-19.3 1.77x10e-05 0.01 0.02 0.06 A 0.34

SSC13 1 ALGA0074022 215.0 1.68x10e-05 0.05 0.05 0.09 G 0.07

LDL190 SSC3 2 ALGA0021216 124.8 4.03x10e-06 0.007 0.01 −0.05 A 0.33

CHOL45

SSC3 3 ALGA0021216 124.8-133.5 4.40x10e-05 0.03 0.08 −0.04 A 0.33

SSC10 2 MARC0064247 19.2 5.73x10e-05 0.04 0.07 0.04 A 0.34

SSC16 2 ASG A0072378 17.7 1.50x10e-05 0.01 0.02 0.05 G 0.12

CHOL190
SSC3 2 ALGA0021216 124.8 4.53x10e-06* 0.004 0.01 −0.04 A 0.33

SSC6 5 INRA0022506 135.0-135.4 6.82x10e-06* 0.01 0.02 0.03 A 0.36

TRIG190 SSC6

4 MARC0042729 10.2-10.7 8.68x10e-05 0.03 0.21 −0.07 A 0.36

1 ASGA0106002 68.1 1.79x10e-04 0.04 0.44 −0.07 A 0.43

6 ASGA0089937 135.0-135.4 3.95x10e-06 0.01 0.01 −0.07 A 0.35

GenABEL2

LDL45
SSC3 2 ASGA0016334 124.8 1.76x10e-05 0.01 0.03 −0.51 A 0.32

SSC13 1 ALGA0074022 215.0 1.28x10e-05 0.03 0.03 0.94 G 0.06

LDL190 SSC3 2 ASGA0016334 124.8 6.97x10e-06 0.006 0.01 −0.85 A 0.32

CHOL45 SSC16 2 DRGA0015896 17.7 4.06x10e-05 0.02 0.05 0.43 T 0.12

CHOL190
SSC3 2 ASGA0016334 124.8 7.39x10e-06* 0.007 0.01 −0.54 A 0.32

SSC6 5 ASGA0029689 135.0-135.4 1.26x10e-06* 0.001 0.003 0.58 G 0.36

TRIG45 SSC10 1 MARC0003307 38.0 3.12x10e-05 0.04 0.04 −0.95 A 0.32

TRIG190 SSC6 7 ASGA0089937 135.0-136.1 2.30x10e-06 0.003 0.005 −0.88 A 0.34

HLD45 SSC18
5 ALGA0096968 9.8-12.2 6.68x10e-05 0.03 0.06 −1.74 C 0.21

2 MARC0006153 20.8-22.6 6.15x10e-05 0.03 0.05 −1.32 A 0.46
1N: Number of significant SNPs, CHR: chromosome, SNP: most significant SNP, Reg (Mb): region containing significant SNPs according to Ensembl (S.scrofa 10.2),
P: nominal P-value, q: q-value with FDR ≤ 0.05, Bonf: Bonferroni-corrected P-value, E: allelic effect, A1: minority allele, MAF: frequency of the minority allele.
2In GenABEL, allele effects are corrected dividing by the GRAMMAR-gamma factor, thus, their magnitudes are greater than the effects estimated with GEMMA and
EMMAX [23].
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depicted at Table 5 and the full dataset can be found
at Additional file 8: Table S7. Only one association
(CHOL45 TAR SNPs at SSC16 vs MRFAP1 mRNA
levels) was significant after applying the Bonferroni
correction for multiple testing. Several of the genes
whose expression was suggestively associated with
TAR SNPs play a significant role in lipid metabolism.
Amongst these, we would like to mention the poly
(ADP-ribose) polymerase 2 (PARP2) locus, that maps
to SSC7 and whose expression levels are associated
with the SSC13 TAR. Other loci of interest were the
synaptonemal complex protein 3 (SYCP3) gene, the
CDGSH iron sulfur domain 2 (CISD2) gene, and the
dipeptidyl-peptidase 4 (DPP4) gene.

Discussion
Existence of missing heritability for porcine serum lipid traits
As shown in Table 1, the amount of phenotypic variance
explained by the genotyped SNPs was in general lower
than heritability values described by Casellas et al. [11]
in the same population. This phenomenon of “missing
heritability” has been frequently described in GWAS



Table 3 List of the most significant associations detected with PLINK for serum lipid traits1

Trait CHR N SNP Reg(Mb) P q Bonf E A1 MAF

LDL190

SSC3 13 ALGA0021216 124.8-138.9 1.46x10e-04 0.01 0.03 −0.04 A 0.33

SSC6 7 ALGA0036903 126.6-135.1 4.46x10e-04 0.01 0.10 0.04 A 0.35

SSC10 4 ALGA0103072 69.8-76.9 3.62x10e-04 0.01 0.08 0.04 G 0.31

CHOL190

SSC1 6 M1GA0001375 264.6-271.9 1.49x10e-04 0.0037 0.03 0.03 A 0.39

SSC3 5 ALGA0021216 124.8-138.6 2.84x10e-04 0.01 0.06 −0.03 A 0.33

SSC6

1 ALGA0110498 93.7 1.42x10e-04 0.0037 0.03 −0.04 A 0.12

7 ALGA0037119 135.0-136.2 4.86x10e-05 0.0035 0.01 0.03 A 0.36

14 ASGA0030240 145.9-153.4 9.02x10e-05 0.0034 0.02 0.03 A 0.32

SSC10 2 ALGA0103072 76.8-76.9 3.74x10e-04 0.01 0.09 0.03 G 0.31

TRIG45

SSC2 1 MARC0001645 87.1 5.97x10e-04 0.01 0.08 0.04 A 0.33

SSC7

1 MARC0058691 10.7 1.73x10e-04 0.01 0.02 0.06 G 0.20

9 H3GA0022580 95.6-99.9 5.61x10e-04 0.01 0.07 0.05 G 0.38

2 ALGA0043835 100.0-100.1 4.09x10e-04 0.01 0.05 0.05 A 0.38

SSC10
7 MARC0042485 0.9-16.1 7.04x10e-06 0.00092 0.00092 0.06 A 0.29

7 MARC0003307 38.0-39.0 1.11x10e-04 0.01 0.01 −0.05 A 0.33

SSC11 1 H3GA0031439 16.2 4.82x10e-04 0.01 0.06 −0.05 A 0.30

SSC14 33 ALGA0080030 101.1-114.0 2.05x10e-04 0.01 0.03 −0.07 A 0.14

SSC16 4 ASGA0072378 4.2-17.7 5.29x10e-04 0.01 0.07 0.06 G 0.12

TRIG190

SSC1 4 ALGA0108388 28.6-30.2 3.08x10e-04 0.0031 0.05 0.06 A 0.26

SSC6 16 ASGA0089937 120.2-136.0 1.01x10e-05 0.00097 0.0015 −0.07 A 0.35

SSC7 29 ALGA0041314 50.3-52.4 2.88x10e-04 0.0031 0.04 0.06 A 0.42

SSC10 1 SIRI0001003 68.0 8.99x10e-05 0.0027 0.01 −0.06 C 0.28
1N: Number of significant SNPs, CHR: chromosome, SNP: most significant SNP, Reg (Mb): region containing significant SNPs according to Ensembl (S.scrofa 10.2),
P: nominal P-value, q: q-value with FDR ≤ 0.05, Bonf: Bonferroni-corrected P-value, A1: minority allele, MAF: frequency of the minority allele, E: allelic effect.
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studies. In particular, GWAS are short on their ability
to identify rare variants with small effects over the
phenotype, which might be the case of many traits of
polygenic architecture. One additional limiting factor of
GWAS studies performed in livestock is that sample
sizes are usually much smaller than those employed in
humans. Although the size of our Duroc population is
comparable to those described in previous porcine
GWAS studies [26-28], the detection of loci with small
effects or rare variants with strong effects might be feas-
ible only with larger sample sizes. Despite this limitation,
Table 4 Positional concordance between QTL detected by Ga
study

SSC Trait QTL Peak GEMMA (Mb

3 CHOL190 72 cM (~122 Mb) 124.8

3 LDL190 68 cM (~122 Mb) 124.8

3 TRIG190 83 cM (~131 Mb) -

13 LDL45 104 cM (~206 Mb) 215

13 CHOL190 72 cM (~194 Mb) -

13 LDL190 74 cM (~194 Mb) -
much larger studies performed in humans (in the order of
60,000-100,000 individuals) are consistent with the data
outlined in our work. For instance, Asselbergs et al. [29]
carried out a meta-analysis of 32 GWAS encompassing
50,000 SNP markers and 66,240 European individuals and
found that the proportion of phenotypic variance attri-
butable to the genotyped SNP was 10.3% for CHOL, 9.9%
for HDL, 9.5% for LDL and 8.0% for TRIG. Similarly,
Teslovich et al. [24] demonstrated that around 25-30% of
the genetic variance of plasma lipids could be explained
by the variation of SNPs located at 95 loci. Failure to
llardo et al. [5] and GWAS data generated in the current

) EMMAX (Mb) GenABEL (Mb) PLINK (Mb)

124.6-124.8 124.8 124.8-138.6

124.8 124.8 124.8-138.9

- - 126.4-126.9

- - -

- - 180.8-181.9

208.3-210.2

- - 180.8-199.5

207.6-210.4



Table 5 List of the most significant associations between SNP variation at SSC3, SSC6, SSC10 and SSC13 trait-associated
regions and hepatic gene expression (the Bonferroni threshold of significance for multiple testing was 1.16 × 10e-7)1

TAR CHR N SNP Reg (Mb) Gene name Gene location P E MAF

SSC3
CHOL190
LDL45
LDL190

3

1 H3GA0010701 125.8 SLC26A11 SSC12(2.1 Mb) 8.50 x 10e-07 -0.32 0.13

1 MARC0072051 129.7 NSD1 SSC2(82.1 Mb) 1.64 x10e-06 -0.46 0.10

1 ASGA0016612 132.6 FLNB SSC13(43.8 Mb) 1.95 x 10e-06 -0.73 0.13

2 ALGA0021353 129.2 EXT1 SSC4(22.0 Mb) 3.51 x 10e-06 -1.59 0.34

1 DIAS0001347 126.2 ME1 SSC1(93.2 Mb) 6.7E x 10e-06 0.26 0.38

2 MARC0020268 132.7-132.8 WDR91 SSC18(14.8 Mb) 6.43 x 10e-06 -0.33 0.20

SSC6
CHOL190
TRIG190

6

3 INRA0022506 135.0-135.1 SYCP3 SSC5(86.4 Mb) 3.29 x 10e-06 -1.10 0.38

4 ASGA0083694 10.2-10.5 DCTPP1 SSC3(18.3 Mb) 2.55 x 10e-06 0.10 0.29

1 ALGA0116014 10.6 CNN1 SSC2(70.5 Mb) 4.62 x 10e-06 -1.35 0.12

SSC10
LDL45
CHOL45

10

1 ALGA0104304 2.8 SUPT7L SSC3(118.4 Mb) 3.20 x 10e-07 -1.78 0.06

10 ASGA0046816 18.0-19.2 NUP210 SSC13(78.6 Mb) 4.05 x 10e-06 -0.44 0.14

2 ALGA0056299 2.7-3.1 EMC3 SSC13(73.2 Mb) 1.39 x 10e-06 3.57 0.08

1 ASGA0094765 19.2

DPP4 SSC15(76.1 Mb) 1.73 x 10e-06 -0.28 0.04

UBQLN1 SSC10(35.3 Mb) 3.18 x 10e-06 -0.27 0.04

IFT46 SSC9(50.8 Mb) 3.33 x 10e-06 -4.5 0.04

1 MARC0098797 18.8 CISD2 SSC8(127.1 Mb) 5.42 x 10e-06 -3.2 0.08

SSC13
LDL45

13 1 ALGA0074022 215.0
PARP2 SSC7(83.5 Mb) 1.50 x 10e-07 -2.7 0.08

ZNF280C SSCX(122.5 Mb) 2.50 x 10e-07 -2.3 0.08

SSC16
CHOL45

16 1 ASGA0072378 17.7
MRFAP1 SSC8(3.1 Mb) 8.00 x 10e-08 -0.19 0.12

QSOX1 SSC9(133.5 Mb) 5.60 x 10e-006 -0.41 0.12
1TAR: trait-associated region, CHR: chromosome, N:number of significant SNPs, Reg (Mb): region containing significant SNPs according to Ensembl (S.scrofa 10.2),
P: Nominal P-value, E: allelic effect, MAF: frequency of the minority allele.
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detect additional sources of genetic variance can have
multiple causes. For instance, commercial genotyping ar-
rays might contain neither all common nor all rare vari-
ants with moderate to large effects on the trait under
analysis, so these alleles will be systematically missed in
GWAS studies (unless they are in linkage disequilibrium
with one or several markers of the array). This can be es-
pecially problematic if there is ascertainment bias i.e. pop-
ulations used to build the array are distantly related to the
one being studied. Imprecise phenotyping, improper stat-
istical analyses and ignoring other sources of genetic vari-
ability (e.g. structural variation) can also mask part of VG.
The amount of VP explained by the SNPs for HDL45

(0%) and HDL190 (2%) was very low. This observation is
coherent with the small Bayes factors (BF) obtained by
Casellas et al. [11], in the same Duroc population, when
comparing two models with and without additive poly-
genic effects i.e. BF = 2.2. and 2.1 for HDL45 and
HDL190, respectively. Such results, according to the
scale of Jeffreys [30], are barely worth mentioning. In
strong contrast, Bayes factors for CHOL190, LDL190,
TRIG45 and TRIG190 ranged between 8.7-47.9 (sub-
stantial to very strong evidence favoring the model with
polygenic effects). These results imply that the genetic
determinism of HDL45 and HDL190 in the Lipgen
population is much weaker than that of other serum
lipid traits, or that the genetic architecture of these two
traits relies on a large amount of loci with very small ef-
fects that cannot be captured efficiently with the experi-
mental design and methods used in the current work.

Genetic determinants of porcine serum lipids are
modulated by age-specific factors
Identifying TARs for blood lipid concentrations is par-
ticularly difficult because their genetic architecture con-
sists of hundreds of genetic determinants with small
effect sizes [24,25]. The discovery of these TARs, in
humans, requires population sizes of tens or even hun-
dreds of thousands of individuals that are unavailable in
non-model organisms as pigs. Pigs are particularly inter-
esting because of their physiological similarity with
humans and the relative easiness with which tissue sam-
ples can be retrieved to analyse gene expression in dif-
ferent experimental conditions. The main trend that
emerges from the inspection of data presented at Table 2
is the complete lack of concordance between genotype-
phenotype associations detected in 45- and 190-days-old
Duroc pigs (Tables 2 and 3 and Additional file 2: Table
S1). Moreover, we have observed important differences
in h2SNP estimates obtained in 45 days and 190 days-old
pigs (in general, older pigs have higher values), as shown
at Table 1 and Additional file 1: Figure S1. This result
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may indicate that the genetic architecture of porcine
serum lipids traits is modulated by age-specific factors.
Classical studies performed in humans support this

latter conclusion. In a longitudinal study [10], it was
shown that heritability estimates were relatively constant
across generations, but the expression patterns of genes
affecting CHOL, LDL, HDL and TRIG were different in
adolescent and middle-aged people e.g. only 46% (TRIG)
to 80% (CHOL) of the genetic variance was shared by
both age groups. Indeed, heritability estimates of age-
related variations in LDL (h2 = 0.25-0.36) and HDL (h2 =
0.23-0.58) concentrations are moderate [31], meaning
that the relative contributions of their genetic determi-
nants change over time. Even more, a comparison of
GWAS data obtained in young and adult people revealed
that no single association was significant in both groups
[32], implying that age is an important modifier in the
genetic determinism of circulating lipids.

Three genomic regions in SSC3, SSC6 and SSC16 display
consistent associations with porcine serum lipid
concentrations
There are three regions at SSC3 (~124 Mb, associated
with LDL45, CHOL190 and LDL190), SSC6 (~135 Mb,
CHOL190, TRIG190) and SSC16 (~17 Mb, CHOL45)
that were consistently detected with GEMMA, EMMAX
and GenABEL, while several others were method-
specific (Table 2). This substantial concordance was, to a
certain extent, unexpected because Zhou and Stephens
[15] showed that, in the presence of a marked sample
structure, approximate methods tend to underestimate
P-values (i.e. they are less significant) and involve a sub-
stantial loss of power. Although in general nominal and
corrected P-values obtained with GEMMA were more
significant than those retrieved with EMMAX and Gen-
ABEL (Table 2), we did not see neither important P-
value departures among methods nor a poorer perform-
ance of GenABEL (in generating deflated P-values) when
compared with EMMAX. It is also true, however, that
GEMMA was the method that yielded more method-
specific associations (CHOL 45 at SSC3 and SSC10,
LDL45 at SSC10 and SSC13, TRIG 190 at two SSC6 re-
gions), something that might be explained by an increase
in statistical power associated with the performance of
exact instead of approximate significance tests.
Genome-wide association analyses carried out with

PLINK [15] identified four of the most significant TARs
also found with mixed-model methods, plus a large list
of additional TARs. We believe these differences are
explained by the fact that PLINK assumes a completely
different approach to handle population structure [15].
Instead of capturing infinitesimal polygenic effects, PLINK
relies on standard linear models where family-related ef-
fects (i.e. sire-mean-adjusted) must be accounted for by
appropriate regression coefficients. Alternatively, some
specific tests are available for case-control studies when
population stratification has been previously identified,
although they can not be generalized to quantitative
traits [33]. Given that our analyses focused on non-
discrete traits, potential population structure was par-
tially accounted for by including sire-specific effects
into the linear model (without considering dam-related
contributions). This was mainly due to the limitations
of the PLINK program to take into account infinitesimal
additive genetic effects under non-homogeneous covari-
ance structures, and the fact that sow-related contribu-
tions could not be addressed when a single offspring
was retained from each litter. Although the inclusion of
sire-specific effects in the model must be viewed as a rea-
sonable way to account for hidden population structure in
the Lipgen population, results must be taken with caution
given the risk of false positives linked to partially un-
detected sample structure [34].
Analysis of the gene content of genomic 1 Mb-win-

dows around each one of the most significant SNPs
within each one of the TARs detected with mixed-model
methods revealed the presence of several loci involved in
lipid metabolism. As previously said, one of the most
promising candidate genes is apolipoprotein B (APOB,
located at SSC3 125.2 Mb), which has been identified in
our study as well as in the GWAS performed by Chen
et al. [9]. Apolipoprotein B is essential for the correct as-
sembly of chylomicrons and the synthesis of very low
density lipoproteins (VLDL), that transport TRIG from
the intestine to other body tissues [35]. Meanwhile,
VLDL become progressively lipolyzed into LDL. Since
APOB mediates the binding and endocytosis of LDL by
their receptors, the knockout of this gene translates into
hypercholesterolemia [35]. Close to APOB, there is also
the syndecan 1 gene (SDC1, located at SSC3 125.9 Mb)
that encodes a membrane proteoglycan that mediates
the clearance of TRIG-rich lipoproteins [36].
The SSC6 region (peak SNP at ~135 Mb) associated

with CHOL190 contains the leptin receptor (LEPR) and
the leptin receptor overlapping transcript (LEPROT)
genes, both mapping to 135.3 Mb. Leptin plays key roles
in (i) the regulation of food intake and energy expend-
iture, (ii) the modulation of APOB levels and triglyceri-
demia and (iii) the intestinal absorption of cholesterol
[37,38]. Finally, it is worth to mention the ATP-binding
cassette sub-family G (WHITE), member 1 (ABCG1),
that maps to SSC13 (215.8 Mb) and controls tissue lipid
levels and the efflux of cellular cholesterol to HDL.
The list of genes within TARs detected with PLINK

was very large (Additional file 6: Table S5), so we
mapped them to the Reactome database [21] to achieve
a global view of their biological functions. Loci mapping
to TARs identified with PLINK and comprised within
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the “Metabolism of lipids and lipoproteins” Reactome
category encompassed genes related with a variety of
processes such as lipid transport (APOA1, APOA4,
APOB, APOC3, ABCB11, SCP2) and clearance (SDC1),
cholesterol synthesis (DHCR24, CH25H), fatty acid β-
oxidation (ACOX1, ACADM) and phospholipid synthesis
(AGPAT5).

Positional concordance for GWAS and QTL data
generated in the Lipgen population
We have compared our GWAS data with QTL previously
reported by Gallardo et al. [5] in the same population.
Regarding mixed-model methods, the most prominent co-
incidence was a SSC3 region containing chromosome-
wide QTL for CHOL190, LDL190 and TRIG190 [5]. The
QTL peak at marker SW2408 (approximately 122 Mb)
matched TARs for CHOL190, LDL45 and LDL190 (SSC3,
~124 Mb, confirmed with the three programs). Remark-
ably, Chen et al. [9] identified the same TAR as signifi-
cantly associated with CHOL and LDL concentrations in
F2 Erhualian x Duroc pigs. This specific region contains
the APOB gene that in GWAS studies performed in
humans has been consistently associated with CHOL and
LDL plasma levels. Apolipoprotein B is the main struc-
tural component of chylomicrons and very-low density li-
poproteins (VLDL, the precursor of LDL) and plays an
essential role in TRIG homeostasis [39]. Interestingly,
Pena et al. [40] genotyped a polymorphic 230 bp-intronic
insertion at the pig APOB gene in the Lipgen population
and reported associations with CHOL190, HDL190 and
LDL190 concentrations. Taken together, these results sug-
gest that APOB genotype might be a major determinant of
CHOL and lipoprotein levels both in humans and pigs.
We also observed some concordance between a QTL

for LDL45 at SSC13 (104 cM) and a TAR detected with
GEMMA at 215 Mb, as well as between CHOL190 and
LDL190 QTL found at SSC13 (72-74 cM) and TARs de-
tected with PLINK at the 180-181 Mb and 207-210 Mb
regions (Table 4). The existence of a genetic determinant
for serum lipids on SSC13 is supported by results from
previous genome scans, where QTL for CHOL (SSC13,
212 Mb approx.) and LDL (SSC13, 194 Mb) were detected
by Yoo et al. [8] and Uddin et al. [7], respectively.
The limited concordance of QTL scan [5] and

GWAS data obtained from the Lipgen population may
be explained by differences in marker density, type of
polymorphisms and statistical methods to carry out
genome-wide analyses. For instance, the analysis of a
Chinese Erhualian × White Duroc three generation
population yielded QTL [6] and TAR [9] maps that
were remarkably different i.e in the GWAS the main
associations mapped to SSC1 (63 Mb, LDL) and SSC3
(124 Mb, CHOL and LDL); whilst in the QTL scan
SSC2 (67-73 cM, CHOL, LDL and TRIG), SSC5
(70 cM, TRIG), SSC7 (134 cM, HDL) and SSC8
(87 cM, LDL) encompassed the most significant as-
sociations. Similarly, Ramayo-Caldas et al. [26] re-
ported that only 53% of the TARs detected in their
GWAS study coincided with previously reported por-
cine QTL.

Evidences of positional concordance between trait-
associated regions in humans and pigs
Gallardo et al. [5] reported that there is a remarkable
level of correspondence between lipid QTL found in hu-
man and pigs. However, the resolution of this study was
severely limited by the fact that QTL intervals were
defined on the basis of 109 microsatellites spaced appro-
ximately every 20 cM. Comparison of orthologous rela-
tionships between TARs generated in our study and
those published in the NHGRI GWAS Catalog [22] re-
vealed few concordances. The most obvious one affected
the APOB gene, that maps to SSC3 (125 Mb) and Hsa2
(21 Mb) in pigs and humans, respectively. In the study
of Teslovich et al. [24], this locus showed pleiotropic
effects on the lipid profile, being highly associated (4 ×
10−114) with cholesterol and LDL levels. Another po-
tential correspondence was detected for ANGPTL3
[24] and DOCK7 [25]. Loss-of-function mutations in
the ANGPTL3 gene are known to be associated with
decreased levels of LDL, HDL and TRIG [41]. The as-
sociations observed for the DOCK7 locus, which is
involved in neurogenesis, myelination and axon forma-
tion [42] but not in lipid metabolism, probably reflect
the co-localization of this gene with ANGPTL3. The
ABCA1 gene also lies close to the SSC1 (264-271 Mb)
TAR for CHOL190 (only detected with PLINK), a
result that makes sense from a biological point of view
because this gene has a major role in cholesterol
homeostasis [43].
There are several considerations that need to be

taken into account to explain the limited concordance
between human and porcine TARs. First, our Duroc
commercial line is by no means representative of the
whole porcine diversity, so it is quite possible that the
analysis of further swine populations might uncover
additional orthologous associations with human. Be-
sides, complex traits are known to have a considerable
degree of genetic heterogeneity. A recent review
highlighted that the level of correspondence between
TARs observed in East Asians and Europeans, two
populations that diverged 23 kya ago, ranged between
32-100% with a mean of 65% [44]. Moreover, a signifi-
cant part of these shared European-East Asian associa-
tions was explained by different SNP. Since human and
pigs diverged around 94 MYR ago [45] it is reasonable
to infer that the level of concordance of GWAS signals
between species must be necessarily much lower.
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Variation within several TARs is associated with the
hepatic expression of lipid metabolism genes
We have discussed the genomic distribution and gene
content of blood lipid TARs detected in a Duroc com-
mercial line. Moreover, we have analysed the positional
concordance of these TARs with previous data reported
in pigs and in humans. In order to gain additional in-
sights into the mechanisms that may explain the associa-
tions found, we have examined if SNPs mapping to
TARs are also associated with hepatic gene expression
levels. Indeed, in a recent study Nicolae et al. [46] con-
cluded that TARs are mostly explained by the segrega-
tion of expression QTL (eQTL), thus suggesting that
causal mutations exert their effects mainly through the
regulation of gene expression. This approach allowed us
identifying several genes related to lipid metabolism, that
deserve to be further explored (Table 5). For instance,
SNPs within the SSC13 TAR for LDL45 were also asso-
ciated with PARP2 mRNA expression (nominal P-value =
1.50 × 10e-07). Interestingly, the deletion of this gene
leads to an increase in the accumulation of cholesterol in
the liver by enhancing SREBP1 expression [47]. Other
genes of interest were SLC19A1, that in humans is associ-
ated with HDL levels [48]; SYCP3, whose knockdown af-
fects the expression of genes related to lipid metabolism
[49]; CISD2, that inhibits muscle fat infiltration [50]; and
DPP4, a gene that is overexpressed in the visceral fat of se-
verely obese individuals [51]. All of these associations in-
volved trans-effects, where SNPs within TARs affect the
expression of loci mapping to distant locations. According
to Cheung et al. [52], trans-eQTL are more abundant than
those with cis-effects and they often involve interactions
mediated by molecules other than transcription factors.

Conclusions
The approach we have employed, based on the com-
bined use of distinct statistical packages, has been suc-
cessful at identifying several regions of the pig genome
(SSC3, SSC6 and SSC16) with robust and significant ef-
fects on serum lipid concentrations. Importantly, we
have demonstrated that TARs identified at 45 and
190 days do not show positional concordance, a feature
that suggests that the effects of causal mutations regulat-
ing porcine serum lipid concentrations are modulated by
age-specific factors. Several SNPs within TARs are asso-
ciated with the expression of lipid metabolism genes,
suggesting that causal effects may have a regulatory
basis. Exploring the genetic diversity of serum lipids in
pigs and other non-model species may pave the way to
the discovery of novel genes and functions regulating
the susceptibility to cardiovascular diseases in humans.
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