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Background: Genomic prediction is becoming a daily tool for plant breeders. It makes use of genotypic information
to make predictions used for selection decisions. The accuracy of the predictions depends on the number of
genotypes used in the calibration; hence, there is a need of combining data across years. A proper phenotypic analysis
is a crucial prerequisite for accurate calibration of genomic prediction procedures. We compared stage-wise
approaches to analyse a real dataset of a multi-environment trial (MET) in rye, which was connected between years
only through one check, and used different spatial models to obtain better estimates, and thus, improved predictive
abilities for genomic prediction. The aims of this study were to assess the advantage of using spatial models for the
predictive abilities of genomic prediction, to identify suitable procedures to analyse a MET weakly connected across
years using different stage-wise approaches, and to explore genomic prediction as a tool for selection of models for

Results: Using complex spatial models did not significantly improve the predictive ability of genomic prediction, but
using row and column effects yielded the highest predictive abilities of all models. In the case of MET poorly
connected between years, analysing each year separately and fitting year as a fixed effect in the genomic prediction
stage yielded the most realistic predictive abilities. Predictive abilities can also be used to select models for
phenotypic data analysis. The trend of the predictive abilities was not the same as the traditionally used Akaike
information criterion, but favoured in the end the same models.

Conclusions: Making predictions using weakly linked datasets is of utmost interest for plant breeders. We provide an
example with suggestions on how to handle such cases. Rather than relying on checks we show how to use year
means across all entries for integrating data across years. It is further shown that fitting of row and column effects
captures most of the heterogeneity in the field trials analysed.

Keywords: Stage-wise analysis, Genomic prediction, Cross validation, Spatial models, Multi-environment trials (MET),

Background

Genomic prediction (GP) was first introduced in 2001 [1]
as a method that allows the prediction of genomic esti-
mated breeding values (GEBV) for plants and animals by
using information of genetic markers. In plant breeding,
GP has been adopted as another stage of the breeding
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scheme [2], not diminishing the importance of the pheno-
typic analysis usually carried out in several environments.
Merging the phenotype and the genotype analyses has
been addressed through the so-called stage-wise analysis
[3]. In the first stage environments are analysed separately
and genotype means are computed and then submitted
in the GP stage to predict GEBV based on dense genetic
markers such as single nucleotide polymorphisms (SNPs).

In plant breeding, assessing genotypic adaptability and
stability, and predicting breeding values of the genotypes
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in other environments and other years, makes use of
multi-environment trials (METSs), which aim to evaluate
as many genotypes as possible in as many as possible
locations [4-7]. These METs are typically laid out as gen-
eralised lattice designs testing a large number of different
genotypes per trial. The number of tested genotypes is
limited by factors such as seed production, production
cycle length and availability of physical resources, e.g. land
and budget [8].

Within years, genotypes are tested in series of trials,
which are connected by checks. Checks are lines grown in
every trial as controls because their performance is known
and/or they are already commercial material. Checks can
be also used to connect years. In the rye breeding pro-
gram considered in this paper, a completely different set
of genotypes is tested in each year, but these genotypes
are from the same breeding population. The accuracy of
a genomic prediction model depends on the number of
genotypes used for calibration. So there is definitely a need
to combine data across years. Low connectivity across
years is a challenge when trying to combine data across
years, and this is one main motivation for this paper. Fur-
thermore, the unbalancedness due to the design layout
and the different and large number of evaluated genotypes
increases the heterogeneity introducing high complex-
ity to the variance-covariance structure among adjusted
genotype means [3].

Analysis of METs could be done as single-stage analy-
sis, modelling the complete observed data at the level of
individual plots, or using a stage-wise approach, where
experiments are analysed first at the level of environments
(or trials), obtaining adjusted means per genotype, which
are then summarised across environments (or trials) in the
next stage [3]. A single-stage analysis accounts entirely for
the variance-covariance structure of the recorded obser-
vations [6], therefore it is regarded as the gold standard.
However, it has been shown that in a stage-wise analysis,
a loss of information occurring in the transition through
stages can be minimized by an appropriate weighting
scheme [9].

If feasible, a single-stage approach is preferable to a
stage-wise analysis [10]. Nevertheless, the latter is accept-
able for GP, since it is simple, computationally more effi-
cient and also allows to easily account for any specifics of
randomisation layout and error modelling for each envi-
ronment [3]. It should be stressed, however, that in a
stage-wise analysis the weights are chosen to approximate
the variance-covariance matrix of adjusted means from
previous stages. We used here a three-stage approach
and compared different spatial correlation structures in
the first stage to correct field heterogeneity at the trial
level.

Spatial error models may provide more accurate esti-
mates of genotype effects than models not accounting
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for spatial adjustment [11,12] but they are computation-
ally more demanding and convergence may be difficult
to reach. Any effort in terms of improving the genomic
predictions would include checking if these improved esti-
mates have an effect on the predictive ability when mark-
ers are added to the model. The performance of alternative
spatial models can be assessed by k-fold cross validation
(CV).

Similarly, the merits of different spatial models used
to compute adjusted means in the first stage can be
compared by the same CV procedure, if the same GP
procedure is used for each analysis. This suggests that
genomic prediction-cross validation (GP-CV) can be used
to identify the best-fitting mixed model in stage one. The
common method of model selection makes use of infor-
mation criteria based on the log likelihood, e.g. the Akaike
information criterion (AIC) or the Bayesian information
criterion (BIC) [13]. When the restricted maximum like-
lihood (REML) method is used, models can only be com-
pared by information criteria if they have the same fixed
effects; otherwise, the maximum likelihood (ML) method
should be used [13]. CV is, in this sense, not used to tune
parameters as in many penalization methods (e.g. adap-
tive Lasso, SCAD (Smoothly Clipped Absolute Deviation),
machine learning methods) but only as a tool to compare
models that use REML. REML is considered the best avail-
able method of variance parameter estimation, preferable
to ML [14]. Consequently, it is of interest to devise model
selection procedures that can use REML and also can
compare models with different fixed effects. GP-CV has
already been used to judge environments in order to opti-
mise the accuracy in GP [15]. We used this tool here as
model selection method in comparison to the traditional
use of AIC.

The aims of this work were: i) to assess the advantage for
the predictive ability when using a spatial model for phe-
notypic analysis, ii) to compare stage-wise approaches for
GP when the data are weakly connected across years, and
iii) to compare AIC and GP-CV as methods of selection of
models for phenotypic data analysis towards GP in rye.

Methods

Field layout and data set

A commercial rye breeding program by KWS-LOCHOW
established in Poland and Germany aims to develop supe-
rior hybrid varieties for the seed market. The implementa-
tion of GP within the breeding program makes use of the
measurements of hybrid performance of the first cycles of
phenotypic evaluation of the material (Cyclel). Selections
made in Cyclel are intensively evaluated in further cycles,
aiming to double-check the selection decisions. For our
purposes, these additional cycles do not add much useful
information. Hence, we used only the first cycles of the
program. The populations tested in each year consist of
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Sy genotypes, which display genetic relatedness and pop-
ulation stratification due to complex genealogical history
[16].

Besides the phenotypic data, a 16K Infinium iSelect HD
Custom BeadChip was used to characterise 1610 indi-
viduals from Cycle1-2009 and Cycle1-2010 and 6 checks.
Several traits were evaluated during this project: grain dry
matter yield, plant height and thousand kernel weight, as
well as ordinal scores of rust, mildew and lodging among
others. In this work we used grain dry matter yield mea-
surements of the phases of selection Cycle1-2009, Cyclel-
2010 and Cycle1-2012, and marker information for the
genotypes of 2009 and 2010. Although no marker infor-
mation of year 2012 was available, it makes sense to use
this dataset to observe the trend in one additional year and
in this way, support the results of the phenotypic analysis
of previous years.

A Cyclel experiment consists of subsets of 320 geno-
types from the Sy populations tested in several locations
within each of the two countries involving two testers
(Tables 1 and 2). We define a trial as the physical unit
within a location, where a subset of genotypes that were
testcrossed to the same tester is evaluated. Trials at a loca-
tion were laid out as a-designs with two replicates. Each
trial was randomized independently from the others using
the software CycDesign (VSN International; http://www.
vsni.co.uk/). (However, we are aware that some breed-
ers tend to use the same randomization layout in sev-
eral locations. Ideally, each trial should have a different
randomization). In our notation, trials of a Cyclel exper-
iment are labelled as S1, S2, ..., S24. Row and column

Table 1 General representation of the testers by locations
(Loc) by years classification of Cycle1 year 2009 and 2010
in Germany (G-L1, - - -, G-L8) and Poland (P-L1, - - -, P-L4)

Loc Cycle1-2009 Cycle1-2010
Tester1 Tester2 Tester3 Tester4
G-L1 ST S2 S3 S10 S11 S12

GL2 S1 S2 S3 SN S10
GL3 ST S2 S3
Gl4 ST S2 S3 ST S2 S3 S10 S11 S12° S10 S11 512

G-L5 S1 52 S3 S10 S11 512
G-L6 S1.52 S3 S10 S11 S12
G-L7 S1 .52 S3 S11 512
G-L8 S10 S11 S12

P-L1S7 S8 S9 S7 S8 S9 S13 S14 S15  S13 S14 S15
P-L2 57 S8 S9 S7 S8 S9 S13 514 S15 S13 S14 S15
P-L3 57 S8 S9 S7 S8 S9 S13 514 S15 S13 S14 S15
P-L4 57 S8 S9 S7 S8 S9 S13 S14 S15 S13 S14 S15

Series of trials are represented with the labels 51,52, - - - S15.
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Table 2 General representation of the testers by locations
(Loc) classification of Cycle1 year 2012 in Germany
(G-L4, - - -, G-L11) and Poland (P-L1, - - -, P-L6)

Loc Cycle1-2012
Tester5 Tester6

G-L4 S16 S17 S18

G-L5 S16 S17 S18
G-L6 S16 S17 S18
G-L7 S16 S17 S18
G-L8 S17 S18

G-L9 S16 S17 S18

G-L10  S16 S16 S17 S18
G-L11  S16 S17 S18

P-L1 S19 S20 S21 S22 S23 S24  S19 S21 S23

P-L2 S19 520 S21 S22 S23 S24
P-L3 S19 520 S21 S22 S23 S24

S19 520 S21 S22 S23 S24
S19 S20 S21 S22 S23 S24

P-L4 S20 S22 S24  S19 S20 S21 S22 S23 S24
P-L5 S31 S33 S35
P-L6 S20 S22 S24

Series of trials are represented with the labels $16,517, - - - S24.

coordinates of the plots to account for spatial variation are
available.

Normally throughout the program, only a single tester
was used per location and year, but in some locations,
some subsets of genotypes were testcrossed with the two
available testers. This is the case, for example, for location
G-L4 in Cyclel-2009, where the genotypes evaluated in
the trials S1, S2 and S3 were testcrossed with both Testerl
and Tester2, and it is also the case of locations P-L1, P-L2,
P-L3 and P-L4 evaluating genotypes of trials S7, S8 and S9
with both testers. In each year, four common checks were
testcrossed with the testers and grown twice in each trial.
Over the years 2009 and 2010 one check was in common
and none was shared with 2012 (Table 3).

The field layout of some trials was not perfectly rectan-
gular. Some trials at a given location and year had fewer
blocks but larger size, i.e., there were two different block
sizes within a few trials. Blocks were nested within rows
of the field layout.

In the genetic dataset, homozygous marker genotypes
were coded as -1 and 1, and the heterozygous type, miss-
ing values and technical failures were coded as 0. 58.7%
of the markers corresponded to homozygous alleles and
16.1% were heterozygous. Only a 0.03% of the mark-
ers were recorded as missing values or technical failures;
therefore, an imputation method would not have a strong
impact on the subsequent analyses. Monomorphic mark-
ers and markers with minor allele frequency (MAF) less
than 1% or missing information of more than 10% per
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Table 3 Year x Check classification in Germany (G) and marker were dropped. A total of 11285 markers passed the
Poland (P) quality test and were used for GP.
2009 2010 2012
G P G P G p  Models

In this section we present the models used in the first stage
of the analysis and the models of the approaches followed
Check2 v N to adjust the year effect either in the second or the third
stage. Figures 1 and 2 depict a general scheme that helps

Check1 X X

Check3
& g X * § visualizing the methodology.
Check4 X X
First stage
Check5 X X . .
In the first stage we computed adjusted genotype means
Checké x X by location and year. The factors used for the analysis were
Check? « « genotypes (G), testers (7, trials (S), replicates (R) nested
within trials and blocks (B) nested within replicates. We
Check8 X X . .
defined a baseline model as
Check9 X X
Yiijkw = (GT)py + Si + Rij + Bijk + epjks (1)
Check10 X X
Check where Yy, is the observed grain dry matter yield of
eckl X X the /-th genotype testcrossed with the v-th tester in the
Check12 X X k-th block within the j-th replicate of the i-th trial, (GT)y,
Checki3 " is the effect of the h-th genotype testcrossed with the

v-th tester, S; is the effect of the i-th trial [Si ~N (0, 052)],

Stage 1
Baseline
Y =G-T: S/R/B
¥
Stage 2
Approach 1a Approach 2
Year-wise Across years
MY —=GxLxT MO — (AJT) x G x L
Approach 1b
MO = pO _ o
GP
ar Year fixed GP

M®Y =1+ Zu+e M® = ul+Zu+e

M® =Xp+Zu+e

Figure 1 General representation of stage-wise approaches to compare year-effect adjustment. Factors were genotype (G), tester (), location
(L), year (A), trial (5), replicate (R) and block (B). Grain dry matter yield (V) is the response variable in the first stage, MM s the adjusted mean of
genotypes across locations used in the second stage, M('*) is the year effect-corrected genotype adjusted mean, /\_A,” represents the simple mean
of genotypes of the r-th year. In the genomic prediction (GP) stage, M@ is the n x 1 vector of adjusted means of genotypes by year for Approach 1a
and across years for Approach 2, M%) is the n x 1 vector of adjusted means of year effect-corrected genotypes in Approach 1b, X and B are
respectively the design matrix and parameter vector of fixed effects, Z is the n x p marker matrix, u is the p-dimensional vector of SNP effects and e
the error vector. Y = G- T : S/R/Bis the shorthand notation of the model eq. (1) in the text: Yy, = (GT)py + Si + Rj + Bjk + enjjkv, MDD =GxLxT
stands for the model eq. (2) in the text: M = Gh 4 Ls + Ty + (GL)ps 4+ (GTpy + (LT sy 4+ (GLT) sy + €psy, and MDD = (A/T) x G x L represents the

hsv
extended model eq. (4) in the text: M{12, = Gp + Ls + (AN + (GAYhr + (GAT)py + (GLps + (LAY s + (LAT) sy + (GLAYpys ++ (GLAT )y + €y The

final predictive abilities (p) are presented in the ellipses.
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Model 1

Model 9
Mix1
Mix2

v

Stage 2
Year-wise
MY =GxLxT

|

GP
Year fixed
M® =XgB+Zu+e

/N

CV-AC CV-WC
Across crosses Within crosses

Figure 2 General representation of model comparison through
all the stages of the analysis. Datasets generated from 9 spatial and
non-spatial models plus two mixed datasets generated from best
models given the Akaike information criterion (Mix1) and the
predictive abilities (Mix2). Factors in second stage were genotype (G),
location (L) and tester (T). M) represents the adjusted mean of
genotypes across locations and years. M) = G x L x T is the
shorthand notation for/\/lﬁl)v = Gh+Ls+T,+(GL)ps+(GT)py+ (LT s+
(GLT)psy + €nsy. In the genomic prediction (GP) stage M@ is the
adjusted mean of genotypes across locations, X and 8 are
respectively the design matrix and parameter vector of fixed effects, Z
is the n x p marker matrix, u is the p-dimensional vector of SNP
effects and e the error vector. Sampling methods in cross validation
(CV) were across crosses (AC) and within crosses (WC). The final

predictive abilities (p) are presented in the ellipses.

Rjj is the effect of the j-th replicate nested within the i-th
trial [R; ~ N(O, 01%)], Bij is the effect of the k-th block
nested within the j-th replicate of the i-th trial [Bj ~
N(O, ag)] and ey, is the plot error associated with the
Ypijky observation [epr,, ~ N(O, 032)]. In model equation
(1) we assumed genotypes crossed with testers as a fixed
effect to be able to compute genotype adjusted means
per tester, whereas the other effects were considered as
random effects due to the nested design structure [17].
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Table 4 summarises the further models. Some SAS code
to fit the first stage models is provided in the supple-
mentary material (Additional file 1). The first model (M1)
will be referred to as the baseline model because it was
the simplest model and represented the randomisation
structure. In the second model (M2) we considered addi-
tionally the effects of the o-th row (Wjj,) and the g-th
column (Vjj;) both within the j-th replicate of the i-th
trial. Subsequently, we added a spatially correlated resid-
ual plot effect different from the baseline model, which
uses the independent model (ID) with homogeneous vari-
ances. We fitted one- and two-dimensional spatial models
with and without the so-called nugget, a geostatistical
term to designate an independent error effect. As one-
dimensional models we used the autoregressive AR(1)
variance-covariance nested within blocks without nugget
(M3) and with nugget (M7), and linear variance LV within
blocks with nugget (M4). In the AR(1) we accounted for
the correlation between plots in the same block assuming
an exponential decay of correlation with distance, whereas
by using LV, it is assumed that the covariance among
plots in the same block decays linearly with spatial dis-
tance [18,19]. The most common extension of the spatial
model in two dimensions is the direct product structure
AR(1) x AR(1), which assumes that an AR(1) model
holds both along rows and along columns [20]. The two-
dimensional models were fitted along rows and columns

Table 4 Spatial and non-spatial models used for the first
stage

Label

Model Variance-covariance

structure for error

M1 Yhikw = (G + Si + Rj + Bjk + enjry - 1D

M2 Yhikogy = (GDpy + S + Ry + Bjk ID
"rVV/’jo + V//q ~+ €hijkogv

M3 Yhijy = (GDh + Si+ Rij + Bijk + enjjkv
M4 Yhiy = (GDpy + Si+ Rij + Bijk + enjjkv

M5 Yhy’koqv = (GNpy + S+ RU + Br’jk
"rM//’jo + V//q ~+ €hijkogv

M6 Yhikw = (GDpy + Si + Ry + Bjk + enijky
M7 Yhike = (GDhy + Si + Rjj + Bijk + enijkv
M8 Yoy = (GDay + S+ Rij + Bjik + enijkv

M9 Yhikogy = (GDpy + S + Ry + Bjk
"rM//’jo + V//q ~+ €hijkogv

AR(1) within B
LV within B + nugget
AR(1) x AR(1) within R

AR(1) x AR(1) within R
Model 3 + nugget
Model 5 + nugget
Model 6 + nugget

Yhikv is the observed dry matter yield of the h-th genotype testcrossed with the
v-th tester in the k-th block within the j-th replicate of the j-th trial, (GT)p, is the
effect of the h-th genotype testcrossed with the v-th tester, S; is the effect of the
i-th trial [S; ~ N(O, asz)], Rj is the effect of the j-th replicate nested within the i-th
trial [R; ~ N(O, cf}%)], Bjjk is the effect of the k-th block nested within the j-th
replicate of the i-th trial [Bjx ~ N(O, 032)] and ey, is the plot error associated with
the Vi, observation [epji, ~ N(O, oez)]. In the models including row and column
effects, Wiy is the effect of the o-th row within the j-th replicate of the /-th trial
[Wijo ~ N(O, avzv)] and Vi is the effect of the g-th column within the j-th replicate
of the i-th trial [Vj; ~ N(O, JVZ)]. Spatial variance-covariance structure were
independent (ID), autoregressive in one direction [AR(1)], one-dimension linear
variance (LV) and two-dimension autoregressive [AR(1) x AR(1)].
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within replicates without nugget (M5), with nugget (M8),
adding rows and columns as effects without nugget (M6)
and with nugget (M9). The LV model can also be extended
in two dimensions [21]; however, for METs, where the
arrangement of the plots might not be perfectly rectangu-
lar, this LV x LV model was cumbersome to fit with the
software we used, thus we did not consider this model.

Note that we use (GT)y, as fixed effect, which is neces-
sary to obtain the genotype by tester means. The purpose
is also to recover the information of the entries that are
grown in the same locations but using different testers
(e.g. in Cyclel location G-L4 and the Polish locations P-L1
to P-L4), so that we captured the effect of the tester in the
shared locations.

Second stage
In the second stage we computed genotype means across
locations and testers. This was done either separately for
each year (Approach 1) or also averaging across years
(Approach 2). The years 2009 and 2010, where molecu-
lar marker data were available, were connected through
only one check. The resulting fundamental question is
then how to fit the year effect. Either the year effect is
estimated by the mean of all tested entries (Approach 1)
or we rely on the adjustment by the one single check
(Approach 2). We assume that genotypes tested in each
year can be regarded as a random sample from the same
parent population. Based on the structure of the breeding
program, this is a realistic assumption that motivates the
approaches described in the following.

Both approaches were compared using the MV result-
ing from the analysis of the baseline model in the first
stage.

Approach 1: Year-wise analysis

Each year was analysed in the second stage using a three-
way interaction model of genotypes (G), locations (L) and
testers (T) as factors to obtain adjusted genotypes means
of each year. The model was

MDY

hsv

= Gh + L+ T, + (GL)hs + (GT)hV

2)
+ LT)sy + (GLT)hsv =+ sy

where M;;R represents the adjusted mean of grain dry
matter yield of the /-th genotype, testcrossed with the v-
th tester in the s-th location, G, L; and T, are the main
effects of the /-th genotype, the s-th location and the v-
th tester, respectively, (GL)ys, (GT)p, and (LT)g, are the
two-way interaction effects, (GLT)y;, is the effect of the
three-way interaction and ey, is the residual error associ-

ated with M&i [ehsv ~N <0,02 )], with o2

. . the variance

of the hsv-th adjusted mean (M;;i) obtained in the first
stage.
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Location was considered as random effect [LS ~
N (0, OLZ)] and hence, all the interactions containing this
factor are random [17]. The crossed effect of genotypes
and testers [(GT)y,] could have been a fixed effect since
genotypes and testers are taken as fixed factors in this
stage. However, the crossed effects that include G were
taken as random here because the factor genotype was
used as random in the GP stage. But note that in the
first and the second stage we needed to take geno-
type main effects as fixed in order to compute adjusted
means [3]. Besides, since not every genotype was tested
with every tester (e.g. in Cyclel locations G-L1 to G-L3
and G-L5 to G-L8), we needed to take (GT)j, random
to be able to estimate genotype means across levels of
testers.

In this approach, the year effect was adjusted in two
ways, hereafter referred as to Approach 1a and Approach
1b. Approach la used years as fixed factors in the GP
stage and Approach 1b used a manual adjustment after
the second stage by simply calculating the mean of the

genotypes by year (1\7[51)) and subtracting it to each geno-

type adjusted mean of the corresponding year (Figure 1).
The rationale behind the latter approach is the assumption
that the correction for the year effect is better represented
by the simple mean of the complete sample of geno-
types per year than by just a few checks. The resulting

year effect-corrected genotype means (M;ij)) are for-

warded to the GP stage, and through CV are evaluated as
predictors.

As in the transition from the first to the second stage,
there is a loss of information in passing on from the
second to the third stage because the (GLT)y, effect is
confounded with the residual error term. This loss can
be minimized by weighting the adjusted means [3]. We
used the Smith et al. scheme [6], where adjusted means
are weighted by the diagonal elements of the inverse of
their variance-covariance matrix computed in the first
stage.

At this stage, we computed the heritability for each
year using the ad hoc method described in Piepho and
Mohring [22] as

2
=6 _ (3)
oc+v/2
where oé is the genetic variance and v is the mean vari-
ance of a difference of two adjusted genotype means, cor-
responding to the best linear unbiased estimators (BLUE).
Even though this is not the best method to estimate her-
itability [23], the square root of this heritability estimate

gives a rough idea of an upper limit for the predictive
abilities.
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Approach 2: Across years analysis
The model to account for the year effect in the second
stage through the shared check was

M3, = G Ls-+ Dy + (GDYppy + (GLyis + D)y

+ (GLD)hrsv + enrsvs

where Mlilr; , represents the adjusted mean of grain dry
matter yield of the 4-th genotype, testcrossed with the
v-th tester, in the s-th location and r-th year, Gy, is the
main effect of the /-th genotype, L, is the main effect
of the s-th location and D,, the main effect of the v-
th tester within the r-th year, which can be extended as
D,, = A, + (AT);y, with A, the effect of the year and T
denoting the tester [17]. (GD)y,,, (GL)ys and (LD),s, are
the two-way interaction effects, (GLD)y,, is the effect of
the three-way interaction and ey, is the residual error

associated to M;llrz Y [ehm ~N (O, aflhm] )], with 02 the

€[hrsv]
variance of the /rsv-th adjusted mean (M;llm> obtained in

the first stage. The effects containing D,, can be extended
as (GD)pry = (GA)py + (GAT)ppys (LD)ysy = (LA)ys +
(LAT) sy and (GLD) gy = (GLA) prs + (GLAT) pygy-

We considered genotypes and testers as fixed factors
and location and year as random factors [LS ~ N (0, O'LZ)
and A, ~ N (0, oj)]. All effects involving A, are random
except (AT),, because we do not want to recover inter-
year information since there are only two years and the
year by tester classification is very disconnected (years do
not share testers). Moreover, the (AT),, term is analogous
to a block factor in an incomplete block design because
it is free of Gj,; therefore, due to the unbalancedness and
the small number of years, we can use it as a fixed effect.
Furthermore, the main year effect (4,) can be dropped
considering that the adjustment of the genotype means is
the same for A, + (AT),, as for only (AT);,.

Including all the effects, the final model (4) is

M(l)

hrsv

= Gh +Ls + (AT)rv
+ (GA)hr + (GAT)hrv + (GL)hs + (LA)rs
+ (LAT) sy + (GLA) pys + (GLAT ) sy + €y

To minimise the loss of information in the transi-
tion to the GP stage, we weighted the adjusted means
using the inverse of the squared standard errors, which
is also appropriate since we are not fitting random block
effects [9].

Third stage: Genomic prediction

At the third stage, the dataset of p markers was merged
with the # grain dry matter yield adjusted means by
years of evaluated models. GP was performed using
ridge-regression best linear unbiased prediction (RR-
BLUP), where the genotypic values are predicted using
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the marker information by regressing each SNP on the
phenotype [24].
The model was

M? =XB+Zu+e (5)

where, M® is the # x 1 vector of phenotypic records,
here, containing the adjusted means calculated from the
second stage, X and B are, respectively, the design matrix
and parameter vector of fixed effects, Z is the n x p
marker matrix, whose elements zj,, represent the SNP
genotype of the m-th marker of the s-th genotype entry
and take the values —1, 0, or +1 for the aa, Aa, and
AA genotypes [24], u is the p-dimensional vector of SNP
effects and e is the error vector. The term Zu is inter-
preted as the genetic effect and its estimate Zu as the
GEBV. The GEBV of the k-th genotype corresponds to
GEBVy = Y | iumzpm, with m = 1,---,p the num-
ber of markers, 1, is the estimated effect of the m-th
marker and z,, the SNP genotype of the m-th marker for
the Z-th genotype entry. The assumptions of the model
are that the error is normally distributed with zero mean
and variance R [e ~ N(0,R)] and that u has a nor-
mal distribution with zero mean and variance I,02 [u ~
N(O, Ipa,f)]. R is a diagonal matrix with diagonal ele-
ments equal to the inverses of the diagonal elements of
the inverse of the original variance-covariance matrix of
the adjusted means of the second stage [6]. I, is the p-
dimensional identity matrix and o2 represents the propor-
tion of the genetic variance contributed by each individual
SNP.

Under the model equation (5) the variance of the
observed data is var(M®) = I’a,f +R,in whichT" = ZZT
and ZT denotes the transpose of Z [24]. To speed up the
computation, I' was rescaled by replacing Z with Z//p,
with p the number of markers [25].

In the year-wise analysis (Approach la), the genotype
adjusted means by year are merged in the M® vec-
tor, and vector B contains the intercept and the year
effect. In the across-years analysis (Approach 2), where
year effect was already accounted for, M@ contains the
genotype adjusted means and vector § contains only
the intercept. In the year-wise analysis correcting geno-
type adjusted means for year effects (Approach 1b), the
model used did not include a fixed year factor (since
we had already adjusted for it) but a common inter-
cept, thus the model was the same as for across-years
analysis.

To measure the influence of the relationship among the
genotypes on the predictions, we used the adjusted means
obtained in the second stage and the pedigree informa-
tion of the entries in a mixed model testing genotypes
and crosses as random effects, so that the variances of
both effects would give us an estimation of how much the
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variation is attributed to the pedigree, e.g. the crosses. The
model was
M3 =Gy + Ca+ean ©6)

a

where th) is the adjusted mean of the /-th genotype
obtained in the second stage, Gy, is the effect of the k-
th genotype, C, is the effect of the a-th grand parent
(gp) cross, e.g. (gpl x gp2) x (gp3 x gp4), and e,y the
associated error. Additionally, we plotted the relation-
ship heat-map of estimated coefficients of relatedness for
individuals based on marker data computed according to
Wimmer et al. [26].

Cross validation for model comparison

To evaluate model performance, k-fold CV was carried
out. In CV, the data is split into k subsets ¢ times. kK — 1
subsets are used as the training set (TS) and the one other
subset is the validation set (VS). The TS is used to esti-
mate the parameters that then are used to predict the
observations in the VS. The performance of the model was
assessed by the Pearson correlation coefficient between
the predicted GEBV and the corresponding observations
of the VS. This correlation is referred to as predictive abil-
ity [23]. As in the first stage, the predictive ability was not
adjusted by the square root of the heritability. Although
breeding programs are most of the time operating with
closely related genotypes, breeders are also interested in
knowing the results in a scenario with more distantly
related genotypes, for example, using genotypes that share
the same grandparents either in the TS or in the VS but
not in both. Hence, we wanted to check if accounting
for the effect of population structure in the randomisa-
tion of CV would make the spatial error models improve
the predictive abilities. We chose two scenarios given the
relatedness level of the entries and followed the suggested
sampling schemes from Albrecht et al. [27], which takes
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into consideration this fact in the CV procedure. In the
first sampling scheme, hereafter called “within crosses”
(WC), random sampling is done using all genotypes in
the dataset; in the second scheme, hereafter referred to as
“across crosses” (AC), genotypes were clustered by cross,
so that complete cross-groups were used randomly either
in the VS or the TS. There were 349 crosses of different
sizes, sharing none, one or two grand parents. The general
overview of the methodology is depicted in Figure 2.

Model selection
Two strategies for selecting the best phenotypic model
were used in the first stage. In strategy one the best model
for all locations is selected, that is, there is no model selec-
tion per location but across locations. In strategy two,
model selection is location-specific (Figure 3). For both
strategies we computed the AIC and performed genomic
prediction-cross validation (GP-CV), both per location-
year combination. To accomplish the GP-CV approach,
we used the adjusted means per location and year of all
spatial and non-spatial models. Then, means of genotypes
by year-location combination were joined with the molec-
ular marker data to perform GP-CV, in which genetic
values were regressed on markers and validation of the
model was done using k-fold CV. Predictions of unob-
served records and predictive abilities of each model were
obtained for each year-location combination. We assessed
the predictive ability of the models using the Pearson cor-
relation coefficient (p) between the predicted GEBV and
the observed phenotypic value. Hereafter we denote this
predictive ability as p-GP-CV. Predictive abilities were not
adjusted with the square root of the heritability, as sug-
gested by Dekkers [28], since this adds an extra error due
to heritability computation [15,23].

For strategy one (across locations model selection), the
number of locations with the best fits (either AIC or

AIC
Strategy 1 N Model 1
Across locations
selection -GP-CV ] Model 9
Stage 1
Y =GT:S/R/B
s AIC > Mix 1
Strategy 2
Location-specific
selection
p-GP-CV — Mix 2

Figure 3 General representation of strategies to compare model selection methods. Factors were genotype (G), tester (T), trial (5), replicate (R)
and block (B). Grain dry matter yield (Y) is the response variable in the first stage. Y = G - T : §/R/B is the shorthand notation for the model

Yhiky = (GT)py + Si + Rjj + Bjjk + enjiky- Datasets of 9 spatial and non spatial models plus one mixed dataset (Mix1) generated from best models
given the Akaike information criterion (AIC) and another mixed dataset (Mix2) generated from best models given the predictive abilities (p-GP-CV).
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p-GP-CV) was counted, so that the model with the best
fits in the majority of locations was identified as the best
model. For strategy two (location-specific model selec-
tion), two datasets were built: “Mix 1”7, containing the
adjusted means of the locations with the best fit accord-
ing to the AIC and “Mix 2”, containing the adjusted means
of the locations with the highest p-GP-CV. Thus, after
the first stage we had in total eleven data sets of adjusted
means, nine corresponding to each tested model from
strategy one, plus two more datasets from strategy two: A
mixed data set (Mix 1) with the best models per location-
year according to the AIC, and another mixed set (Mix
2) with best models per location-year according to the
p-GP-CV.

Softwares

All analyses were performed using SAS. Stage 1 and 3
used the MIXED procedure and Stage 2 used PROC
HPMIXED. Relationship matrix was calculated using the
Synbreed Package [29] for R 2.15.

Results

First stage - strategy 1: Model selection across locations

In the first stage - strategy 1, we did model selection across
locations using AIC and predictive abilities (p-GP-CV)
per location-year combination. According to the AIC, the
results favoured the two-dimensional models (Table 5).
To do a fair comparison between selection methods using
AIC and p-GP-CV, we first describe AIC for years 2009
and 2010, for which p-GP-CV were also available and
then, as additional information, for year 2012, for which
p-GP-CV was not available since the marker information
was missing.

For years 2009 and 2010, M9 and M8 had the majority
of best fits across locations. M9 (Baseline + row + col-
umn and AR(1) x AR(1) 4+ nugget) resulted in 12 out of
22 cases as the best model. M8 (Baseline and AR(1) x
AR(1) + nugget) was best in 7 out of 22 cases. The base-
line model 4+ row + column (M2) fitted the best 9% of the
times and M6 5% of the times.

A similar tendency was observed in 2012, where 43% of
the times (6 out of 14) M9 had the best fit and M8 was best
29% of the times. For this year 2012, models M7, M8 and
M9 could not be fitted in some locations. Another third
of the times (29%), M2 had best fits. Interestingly, M2 had
the best fits in the locations that had convergence prob-
lems for models M8 and M9. M1, M3, M4, M5 and M7
never had best fits in any of both groups of years.

The predictive abilities (p-GP-CV) per location-
year combination showed a rather different pattern
for best models within locations; however, the two-
dimensional models were also more frequently selected
than one-dimensional models (Table 6). M8 (Baseline and
AR(1) x AR(1) + nugget) showed in seven of 22 settings
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the highest p-GP-CV per location-year combination fol-
lowed by M9 (Baseline + row + column and AR(1) x
AR(1) + nugget) with six out of 22 times. The baseline
model + row + column (M2) was selected twice and
models M3, M4 and M6 had also one, three and three
selections out of 22, respectively. M1, M5 and M7 had no
best fits at all.

One location of 2009 (P-L3) produced a negative pre-
dictive ability for all models. We did not consider this
location in the counting of best fits, since a higher nega-
tive number is actually a worse fit in regard to predictions,
but low or high negative are both interpreted as zero pre-
diction. Despite the negative correlations, this location
was included in the mixed datasets produced from the
site-specific model selection. We used the adjusted means
produced from the baseline model. Another location (G-
L1 2009) showed way lower predictive abilities than the
rest of the locations. To understand these two situations,
we calculated the repeatability of the trait in each location
for the baseline model. The repeatability R is defined as
the ratio of the between-individual component to the total
phenotypic variance [30], which in our case, and following
the methodology described by Nakagawa and Schielzeth
[31], corresponds to

o2
R=— 2 Gg 2., 2 @)
ocr +og+op+og+o;

where GCZ;T is the between-groups variance and corre-
sponds to the variance of the effect (GT)y,, fitted as ran-
dom effect, and in the denominator, the total phenotypic
variance given by the sum of the between-groups variance
oéT and the within-groups variances, i.e. replicates within
trials (GS2 + 01%) and blocks within replicates (al%) plus the
residual variance (aez). The interpretation of this repeata-
bility strictly refers to the expected within-group corre-
lations among measurements, i.e. the agreement among
measurements; thus, the gist of the definition of repeata-
bility is related to the reproducibility of the absolute
values of measurements. A slightly higher repeatability in
Cyclel-2009 was observed for location G-L4 (Table 6),
which involved more trials, i.e. more genotypes, in com-
parison with other locations in Germany. The trend in
Cyclel-2010 was in favour of the Polish locations, which
overal | had more homogeneous and higher repeatabili-
ties. We discuss the relation between repeatabilities and
predictive abilities in the next section.

Second stage: fitting genotypes by year vs. across years

From a methodological point of view, fitting the year effect
in the GP stage was easier and more direct than account-
ing for the year effect in the second stage, in the sense that
the model for the latter approach became too complex and
the variance covariance matrix of adjusted means was not
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Table 5 Akaike information criterion (AIC) of models at first stage (M1, - - -, M9) by year and location (L) for grain dry
matter yield (Y)

Year L M1 M2 M3 M4 M5 Meé m7 ms M9
2009 G-L1 101.7 843 45.5 47.2 204 6.9 456 0 1.7
2009 G-L2 83.1 67.5 50.9 385 314 20.7 40.7 0.5
2009 G-L3 45.7 304 415 31.1 40.1 269 31.2 1.0
2009 G-L4 125.0 19.1 1251 1149 90.3 19.6 1155 65.0
2009 G-L5 29.1 8.0 18.1 245 153 1.2 - 123
2009 G-L6 516 476 37.7 29.5 4.7 354 294 0 12
2009 G-L7 81.5 56.1 553 62.8 36.5 11.0 555 5.1 0
2009 P-L1 1264 1156 1216 116.3 109.5 108.8 116.2 0 19
2009 p-L2 62.3 454 624 54.6 573 47.2 549 15 0
2009 P-L3 1209 65.9 116.1 105.5 99.7 49.6 105.5 173 0
2009 P-L4 1459 98.6 132.8 1264 1264 80.1 1264 04 0
2010 G-L1 355 49 356 315 12.3 0 320 12.3 1.8
2010 G-L2 250 7.2 270 217 29.7 1.9 19.7 0 -3.2
2010 G-L4 1414 74.2 128.7 1171 130.2 574 1184 5.0 0
2010 G-L5 216 0 234 229 219 33 229 22.1 28
2010 G-L6 80.9 60.0 72.8 59.8 554 415 61.1 0 0.6
2010 G-L7 69.5 223 56.2 47.8 372 236 48.1 26 0
2010 G-L8 40.8 24.7 321 226 277 19.6 23.1 0 14
2010 P-L1 388 57 388 388 394 94 40.8 39.1 0
2010 P-L2 40.0 0.7 416 36.1 39.8 4.1 369 43 0
2010 P-L3 66.4 0 684 67.2 69.5 37 704 715 57
2010 P-L4 95.0 804 90.5 79.1 87.0 66.7 794 0 32
Counts 0 2 0 0 0 1 0 7 12
0% 9% 0% 0% 0% 5% 0.00 32% 55%
2012 G4 353 0 353 36.2 26.0 0.6 353 24.2 -
2012 G-L5 66.3 26 67.0 66.3 42.1 59 - 215
2012 G-L6 1484 1314 93.8 93.7 18.7 18.7 89.9 0 0
2012 G-L7 383 45 40.3 383 363 0 423 - 1.9
2012 G-L8 453 39.8 37.7 335 356 37.3 339 19 0
2012 G-L9 402.3 3215 200.9 181.7 819 819 191.6 0
2012 G-L10 39.7 0 415 414 221 35 435 6.7 1.1
2012 G-L11 18.0 0 19.7 18.0 84 12 216 3.7 -
2012 P-L1 189.5 168.8 1589 1489 146.3 137.8 149.1 0 1.7
2012 p-L2 1274 493 129.1 1226 129.7 499 1239 59 0
2012 P-L3 107.8 553 103.1 95.0 101.0 493 96.1 79 0
2012 P-L4 2263 0.2 2263 2221 2263 0 2263 2263 2.0
2012 P-L5 132 0 132 132 1.9 15 132 139 35
2012 P-L6 790 54.8 704 66.9 65.8 379 67.0 0 1.7
Counts 0 4 0 0 0 2 0 4 6
0% 29% 0% 0% 0% 14% 0% 29% 43%

Table shows AAIC relative to the best model.
Boldfaced entries in the table indicate best model (fit) within location. Empty cells (-) correspond to locations where the model did not converge. In italics, we report
the models that converged but the Hessian matrix was not positive definite.
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Table 6 Predictive abilities of observed and predicted values of a 5-fold-CV by year-location combination of models at
first stage (M1, - - -, M9) for grain dry matter yield (Y), and repeatability (R) of the trait by location

Year Loc M1 M2 M3 M4 M5 M6 m7 M8 M9 R
2009 G-L1 0469 0473 0462 0481 0.448 0455 0474 0.481 0478 0.376
2009 G-L2 0.271 0.272 0.279 0.280 0.282 0.288 0.282 0.270 0.269 0.177
2009 G-L3 0.347 0.344 0.351 0.350 0.345 0.339 0.350 0.355% 0.355 0.264
2009 G-L4 0.595 0.593 0.597 0.602% 0.592 0.594 0.602 0.592 0.598 0.440
2009 G-L5 0.495 0514 0.506 0.505 0.519 0.527 - 0514 0.529 0.303
2009 G-L6 0.393 0.398 0.357 0.372 0.359 0.360 0.369 0372 0378 0.077
2009 G-L7 0.596 0.594 0.586 0.599 0.578 0.565 0.591 0.584 0.577 0.299
2009 P-L1 0.127 0.118 0.132 0.138 0.116 0.114 0.138 0.174 0.167 0.225
2009 P-L2 0.301 0.306 0.303 0310 0.307 0.309 0310 0.323 0.323% 0.338
2009 P-L3 -0.154 -0.165 -0.153 -0.154 -0.169 -0.172 -0.154 -0.158 -0.175 0.247
2009 P-L4 0.520 0518 0.527 0.525 0.520 0.522 0.525 0.558 0.555 0.362
2010 G-L1 0428 0471 0426 0432 0464 0.478 0431 0.466 0475 0.263
2010 G-L2 0.394 0.392 0.399 0.407 0.400 0.398 0.406 0401 0.400 0.248
2010 G-L4 0470 0472 0.477% 0476 0478 0477 0477 0404 0424 0.326
2010 G-L5 0.469 0.485 0471 0.469 0476 0.486 0.469 0479 0.487 0407
2010 G-L6 0.576 0.583 0.601 0612 0.601 0.608 0611 0.619 0618 0.310
2010 G-L7 0.520 0.552 0.557 0.564 0.541 0.556 0.565 0.579 0.574 0.298
2010 G-L8 0.589 0.600 0.599 0.597 0.605 0.605 0.598 0.603 0.607 0.540
2010 P-L1 0.327 0.334 0.327 0.327 0.326 0.333 0.327 0327 0.337 0439
2010 P-L2 0.277 0.310 0.275 0.266 0.275 0.309 0.268 0.311 0.307 0436
2010 P-L3 0461 0.466 0461 0.462 0459 0.467 0461 0459 0.467 0416
2010 P-L4 0314 0.322 0317 0.316 0315 0317 0317 0317 0315 0.360

Counts 0 2 1 3 0 3 0 7 6
0% 9% 5% 14% 0% 14% 0% 32% 27%

Boldfaced entries in the table indicate best model (fit) within location. Empty cells correspond to locations where the model did not converge. In italics, we report the

models that converged but the Hessian matrix was not positive definite.
§ Better than second best model at forth decimal place

possible to be produced using the procedure HPMIXED of
SAS given the high computer power required. Instead, we
computed the adjusted means with corresponding stan-
dard errors, which were then used to do the weighting to
pass on from the second to the third stage.

The adjusted means obtained from the across-years
analysis (Approach 2) were plotted against the year effect-
corrected genotype adjusted means (from Approach 1b) to
compare the difference of adjustments, in the former case
based on one single check against the adjustment given
the simple mean of the genotypes in each year (Figure 4).
Below the two principal lines, an observation correspond-
ing to the shared check across years stood out from the
others, reflecting the year adjustment. At first glance, it
is clear that the check was the only observation pulled
down implying that the year adjustment of this check was
not strong enough to pull down the observations of the
whole year. Both approaches were examined later using
the predictive abilities obtained in the GP stage.

Third stage: genomic prediction

The predictive abilities of the GP stage were taken as the
definitive decision criterion for identifying the best strat-
egy for model selection, the best model, and the most
reliable approach to account for year effects, and to iden-
tify the consequences of population stratification in GP.
We start by presenting results of the comparison of the
approaches used for fitting the year effect, since with these
we only used the baseline model. Then we present the dif-
ferences between sampling methods for CV together with
the comparison of the models and the model selection
strategies.

Comparison of approaches to account for year effect in GP

The GP-CV for the approach using the year as a fixed
term in the third stage (Approach la) yielded a predic-
tive ability of 0.70 (Table 7), whereas predictive ability for
the approach accounting for a fixed year effect in the sec-
ond stage (Approach 2) was 0.74. The predictive ability
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Figure 4 Comparison of approaches for year adjustment. In the x-axis, the genotype adjusted means across-year analysis are plotted. In the
y-axis, the year-effect-corrected adjusted means from the year-wise analysis are depicted.

reached 0.68, using the year-effect-corrected adjusted in 2009 is contributing in about 40% and in the next year
means in the GP-CV (Approach 1b). The scatter plots more than 60% to the total variation explained by the data.
of GEBV (Zu) against the observed phenotypic values The marker-based relationship heat-map (Figure 6)
(adjusted means) in the three cases are depicted in  shows some clusters among genotypes of the same cross
Figure 5. In Approach 1a, we plotted the GEBV against  indicating genetic relatedness. The predictive abilities
the corrected observed phenotypic values, calculated as  using five times 5-fold CV of datasets resulting from first
M® — X, where M@ is the vector of genotype adjusted  stage analysis of all spatial and non-spatial models plus
means obtained in the second stage and X the predicted  the mixed datasets were in general very similar within
year effect (Figure 5A). For Approach 2, the observed phe-  sampling strategies (Table 7). For the across-crosses (AC)
notypic values M® against Zi are shown (Figure 5B). For ~ sampling scheme, the predictive abilities were lower than
Approach 1b, M3 against Za are plotted, with M®*  the ones obtained with the within-crosses (WC) sampling
the year-effect-corrected adjusted means of genotypes scheme. In the AC sampling, we fixed the initial seed of

(Figure 5C). the random number generator used for randomization in
the CV procedure at the same value for all models to be

Comparison of model selection strategies using different able to compare the models when the same crosses were

sampling methods in cross validation used in the training set.

Fitting model (6) to measure the influence of the rela- We compared the models and the sampling methods

tionship among genotypes on predictions yielded variance  using a paired t-test (o = 5%) by resembling a randomized
components for genotypes, crosses and error for year 2009  complete block design, where the predictive ability of each
of 4.03, 3.67 and 1.66, respectively, and for year 2010 of  repetition of the CV was taken as a block, thus accounting
4.72, 10.70 and 1.32, respectively. Thus, the cross effect  for the dependence among observations from the same

Table 7 Predictive abilities between observed and predicted values for 9 spatial and non-spatial models (M1, - - ., M9)
and mixed datasets using the best locations given the AIC (Mix1) and the p-GP-CV per location-year combination (Mix2)

M1 M2 M3 M4 M5 M6 m7 M8 M9 Mix1 Mix 2

WC 0.700 0.694 0.691 0.679 0.692 0.692 0.691 0.694 0.689 0.689 0.690
a ab ab C ab ab ab ab abc bc abc

AC 0.395 0.398 0.390 0.395 0.391 0.389 0.389 0.395 0.391 0.391 0.390
b a cd de C e de b c C cd

Same letters within rows indicate no significant differences (¢ = 5%) according to a paired t-test. Sampling strategies were: Within crosses (WC) and across crosses (AC).
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(Approach 1b). pgp represents the predictive ability.

Figure 5 Comparison between approaches to fit the year effect. The y-axis represents the genotype adjusted means [M@® — X4 in (A), M@ in
(B) and M@® in (€)] and the x-axis represents the GEBV (Za). (A) Year-wise analysis (Approach 1a), fitting year as fixed effect in the GP stage, (B)
Across-years analysis (Approach 2), using year in the second stage and (C) year-wise analysis using the year effect-corrected genotype means

samples (Table 7). For the first sampling method (WC),
three groups were identified with some overlaps, but
showing not much of a difference among models. From
the across-crosses sampling strategy (AC), five groups
were distinguished with some overlaps: M2 had the high-
est predictive ability and models M4, M6 and M7 had the
worst predictive abilities.

Potential bias of GP is another important element that
could be used to compare models. We computed the bias

as suggested by [32,33]. The comparison of the biases of
all models followed a rather similar trend as the predictive
abilities showed in Table 7. We present the analysis of bias
as supplementary material (Additional file 2).

The heritability (square root of heritability) for the base-
line model was estimated as 0.68 (0.82) for year 2009,
0.73 (0.85) for year 2010 and 0.69 (0.83) for 2012 using
the equation (3). In principle, the ad hoc method may
approximate the true value of heritability but making the
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years 2009 and 2010. Higher values represent a stronger relationship.

Figure 6 Marker-based relationship heat-map. Visualised are pairwise relationship coefficients estimated from the maker data for genotypes of

unrealistic assumption of uncorrelated genotypes [23]. We
computed the heritability to have a rough idea of how
much could we expect from the predictive abilities. The
predictive ability divided by square root of heritability is
an estimate of the accuracy of GP [23], and the square root
of the heritability provides the upper bound for the predic-
tive ability [30], thus one expects that the predictive abili-
ties are not very far from the square root of heritability. In
this case, the square roots of the heritabilities are some-
what larger than the corresponding predictive abilities,
indicating that the predictions are not sufficiently accurate
due to limited data size, thus not exhausting completely
the genetic variance. To explore in which extend could
have our models explained the variance not captured by
the markers, we fitted an additional component account-
ing for the polygenic effect in the GP stage [24]. The
baseline model (M1) yielded a genotypic variance of 2.99;
when we incorporated the polygenic effect, the genotypic
variance was 2.72 and polygenic variance was 0.36, indi-
cating that about 88% of the total genetic variance was
captured by the RR-BLUP model.

Discussion

Selecting the models at the first stage produced different
results than assessing them in the third stage. AIC had
better scores for the models that used row and column
effects, e.g. Models M9, M6 and M2 (Table 5) or M8 that
had a 2-dimensional variance-covariance error structure.
p-GP-CV also picked M8 and M9 (Table 6) but the choices
were more spread over the models covering even the base-
line model. In general, in the first stage, both AIC and
p-GP-CV produced better scores for the two-dimensional
models, whereas in the third stage the baseline and one-
dimensional models seemed to be better than the more
complex models (Table 7). The explanation of this pattern
may be related to the second stage, where the interaction
genotype x location played a role. The two-dimensional

models performed very well in modelling heterogeneity
within field, but when the means were integrated across
the whole experiment, including all locations and years,
the two-dimensional spatial error models seemed to over-
adjust the means, yielding a poorer predictive ability in the
GP stage. The one-dimensional spatial error models and
the two-dimensional model without spatial error struc-
ture were sufficient to estimate appropriately adjusted
means. This corroborates Piepho and Williams [21] who
concluded that for small portions of a field, a particu-
lar spatial model may hold well but if fitted all across
the field it may fail. In a wheat experiment, Lado et al.
[34] found that using moving averages as covariable sig-
nificantly improved the predictive abilities of GP. They
recognised strong heterogeneous patterns of irrigation in
the field, that were not controlled with a single blocking
system.

Models M1, M3 and M7 were never selected as having
the best fits either by AIC or p-GP-CV. These models had
in common that none of them used rows and columns
as additional factors, strengthening the conclusion that
row-column designs may have the potential to correctly
control field heterogeneity and thus enhance predictive
ability of genomic prediction.

Fitting a location-specific error model did not have an
advantage over fitting a common model across locations.
Neither did the dataset composed of means computed
using models have best AIC fits (Mix 1) nor the sec-
ond dataset containing the means computed using models
with highest p-GP-CV (Mix 2) produce better predictive
abilities in the GP stage.

The models with nugget had better fits than the
corresponding baseline model without the nugget. The
drawback was that fitting those models was not straight-
forward, since almost every location required a sepa-
rate coding specifying initial values and lower bound-
ary constraints on the covariance parameters. Good
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statistical and biological reasons have been presented of
why including a nugget to analysis of field experiment is
beneficial [35].

If we ignore the two-dimensional spatial models (M5,
M6, M8 and M9), the AIC privileges M2 and p-GP-CV
yields more diverse results with the majority of choices
for M2 and M4. In fact, when the spatial component
of a resolvable row-column design based on linear vari-
ance (LV) does not lead to an improved fit, returning
to classical row-column design provides randomisation
protection [36].

Williams and Luckett [37] performed studies aiming
to find the optimal plot size, the optimal plot arrange-
ments and the best spatial model (the so-called uniformity
trials) and showed that in cotton and barley row and col-
umn designs are well suited for variety testing in plant
breeding trials. Moreover, recent simulation studies from
Mohring et al. [38] showed that designs including rows
and columns outperformed one-dimensional blocking. In
the same work, the authors mention that blocking in the
direction of plots with common long sides is preferable,
which is common in cereal breeding [39].

We cannot affirm that p-GP-CV was better than AIC
for model selection or vice versa, nor that the results
showed the same trend; but if we would have used either
of these two strategies to select the best model, we would
have selected the M9 with AIC or M8 with p-GP-CV.
The GP predictive ability obtained by M2 (Table 7) was
slightly better than M8 and M9 (specifically AC sampling
method); however, this model (M2) was not highlighted
by either of the two selection criteria (AIC or p-GP-CV).

In practice, the fact that there were no large statisti-
cal differences is good news for the breeders because the
baseline model (M1), or even better, the simplest model
with row-column adjustment (M2), are appropriate for
phenotypic analysis towards GP.

As a model selection method, GP-CV is of interest
because it may allow to compare models with different
fixed effects, even when REML is used for estimating
the variance parameters. No simple recommendation has
been reported concerning the best model selection cri-
terion in the case of spatial models [13,40]. Predictive
abilities have been used between environments as simi-
larity measure and then to join similar environments into
clusters [15]. Thus, in a sense p-GP-CV allows giving
an interpretation to the environment under scrutiny and
the displayed trend do not depart far from the classical
AIC. The repeatabilities (R) presented in parallel to the
p-GP-CV (Table 6) show a low correlation (o = 0.36,
p-value = 0.0965) with the predictive abilities from the
baseline model. In fact, we expected that for location P-
L3 of 2009, which had a negative predictability, the R was
very low almost zero, but this was not the case; hence we
could not conclude that the low predictive ability is mainly
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due to environmental effects. Riedelsheimer et al. [41]
also reported negative predictive accuracies when test-
ing unrelated crosses in the CV procedure and observed
that using unrelated crosses could have provided a neg-
ative prediction signal due to opposite linkage phases
with important QTL displayed in the TS, suggesting that
the negative predictive accuracies are associated with the
marker pattern.

In this study we explored three ways to adjust the year
effect given the weak connectivity across years. Using the
single check (Approach 2) to make the year adjustment
was not a better choice than adjusting by the simple year
mean (Approach 1b) or accounting for the year effect
in the GP stage (Approach Ia), even though the esti-
mated predictive ability was the highest. The “year clouds”
produced using Approach 2 (Figure 5B) did not overlap
perfectly, from which we concluded that the correction
was not appropriate and generated an over-fitting of the
markers in the GP-CV procedure due to the fact that
markers also predicted the year effect and not the SNP-
effects alone. Using the year-mean correction for adjusted
means in the second stage (Approach 1b) produced a
lower p-GP-CV, that, given the overlay of the clouds of
predicted vs. observed values, seems to be more realistic.
However, fitting the year effect manually, i.e. using ordi-
nary least squares estimation (OLSE) vs. fitting it as a fixed
effect in the GP stage, i.e. using generalised least squares
estimation (GLSE) can definitively yield a more precise
estimate. Indeed, the residual variance in Approach 1b
using year effect-corrected adjusted means was around
3.9 (in average for the five replicates) and in Approach la
using the year fixed effect in the GP stage yielded resid-
ual variance of 3.0 (in average for the five replicates). In
Approach la, where we fitted the year in the GP stage,
we removed the year effect from the observed adjusted
means derived from the second stage M@ —Xﬁ) to
avoid bias of the predictive abilities; however, there would
still be some bias because the subtracted year effect
was not the true effect but an estimate of the year
effect.

Models were eventually assessed and compared using
the p-GP-CV in the third stage. The two sampling scenar-
ios to perform the CV procedure aimed to recreate the
cases where the material was genetically close, with some
individuals coming from the same parental cross, and
more distantly related to avoid individuals from the same
parental cross in the randomisation procedure of CV. This
more distantly related material shows some identical-by-
state (IBS) similarity, therefore it was not unrelated in the
theoretical sense of population genetics. This more dis-
tantly related scenario may be seen also as a case where
one tries to predict a scenario whose linking informa-
tion is weak or lacking, e.g. different genotypes and/or
locations in the TS and VS [42-44].
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The predictive abilities obtained for GP using WC sam-
pling were located in the middle-high range and using AC
sampling, predictive abilities were placed in the middle
range. The predictive ability of the AC sampling was sig-
nificantly lower than WC, as expected for GP of a dataset
showing population structure. Riedelsheimer et al. [41]
drew similar conclusions using unrelated biparental maize
families. They concluded that predictive accuracy could
be increased by adding crosses (families) sharing both
parents to the TS. In this respect, the use of pedigree
and marker information to borrow information from both
sources is suggested [44].

Conclusions

The main conclusions of this study are: (i) Fitting a tra-
ditional model including row and column factors across
all locations was good enough to account for field het-
erogeneity in the first stage under GP frame. This also
suggests that row-column designs may be preferable
to designs with a single blocking factor; (ii) AIC and
p-GP-CV did not have the same trend in selecting across
models, but both favoured in the end models M8 and
MO9; however, none of the methods picked the model with
highest predictive ability. Fitting a location-specific error
model did not produce an advantage over fitting a com-
mon model across locations; (iii) the baseline model (M1)
and the simplest row-column adjustment (M2) had in
overall the best results, which is very good news since
in routine analysis complex models may require much
programming expertise and powerful computers; (iv) in
a dataset weakly connected across years, a more reason-
able model-wise structure is to account for the year factor
in the genomic prediction stage rather than in a previous
stage, to ensure that the effect is not confounded with the
markers adjustment, and (v) datasets of distantly related
genotypes may have a poor performance for GP purposes;
however, increasing the size of the crosses may be an
opportunity to enhance predictive ability in these cases of
disconnected datasets on related sets of genotypes.
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