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Abstract

Background: The lllumina HumanMethylation450 BeadChip (HM450K) measures the DNA methylation of 485,512
CpGs in the human genome. The technology relies on hybridization of genomic fragments to probes on the chip.
However, certain genomic factors may compromise the ability to measure methylation using the array such as
single nucleotide polymorphisms (SNPs), small insertions and deletions (INDELs), repetitive DNA, and regions with
reduced genomic complexity. Currently, there is no clear method or pipeline for determining which of the probes
on the HM450K bead array should be retained for subsequent analysis in light of these issues.

Results: We comprehensively assessed the effects of SNPs, INDELs, repeats and bisulfite induced reduced genomic

complexity by comparing HM450K bead array results with whole genome bisulfite sequencing. We determined
which CpG probes provided accurate or noisy signals. From this, we derived a set of high-quality probes that
provide unadulterated measurements of DNA methylation.

Conclusions: Our method significantly reduces the risk of false discoveries when using the HM450K bead array,
while maximising the power of the array to detect methylation status genome-wide. Additionally, we demonstrate
the utility of our method through extraction of biologically relevant epigenetic changes in prostate cancer.

Keywords: HumanMethylation450K BeadChip, SNPs, INDELS, Repetitive regions of DNA, SNP arrays, HM450K bead
array, Epigenome-wide association studies, EWAS, Cancer, Epigenetics

Background

In humans, methylation occurs mainly in the context of
cytosines followed by guanines (CpGs) [1]. Over 70% of
CpG sites throughout the genome are methylated, how-
ever, CpG-rich regions (known as CpG-islands), found
in approximately 60% of gene promoter regions, are usu-
ally unmethylated [2,3]. DNA methylation is an import-
ant epigenetic mechanism used by cells to regulate gene
expression and is essential for normal cell development
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[4,5]. Aberrant DNA methylation patterns have been ob-
served in various human diseases [6,7], including cancer
where hypermethylation of CpG-islands with resultant
transcriptional silencing of tumour suppressor genes is
recognized as a common mechanism for gene regulation
[8,9]. As such, the determination of genome-wide DNA
methylation status plays a crucial role in improving our
understanding of mechanisms of disease formation.
Several methods have been developed to detect the
DNA methylation of cytosines distributed over the hu-
man genome. These include methylated DNA immuno-
precipation sequencing (MeDIP-seq [10]), reduced
representation bisulfite sequencing (RRBS [11]), meth-
ylated DNA captured by affinity purification (Methyl-
Cap-seq [12]), whole-genome bisulfite sequencing (WGBS)
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and the lower-resolution assays such as Infinium
HumanMethylation27 (HM27K) array [13,14] and Infinium
HumanMethylation450 BeadChip (HM450K bead array;
Ilumina, Inc, CA, USA) [15]. Each of these methods
has advantages and short comings when detecting dif-
ferentially methylated regions in disease studies (see
[13,14,16-19] for reviews). Choosing which technology
to use is usually determined by cost, with array tech-
nologies providing a cheaper option, albeit at lower
resolution. However, a recent study profiling regions of
differential methylation across a range of human sam-
ples demonstrated that only a small fraction of CpGs
across the genome vary in methylation status [15]. This
means that whole-genome sequencing approaches may
not be necessary to undertake comprehensive methyla-
tion profiling, suggesting great promise for continued
use of array based approaches such as the HM27K and
HM450K assays.

The HM450K array is a cost and time efficient tech-
nology that makes it possible to assess the methylation
status of over 450,000 CpGs in the genome for large
sample cohorts [15]. The array includes coverage of 96%
of CpG Islands and CpG shores, 99% of RefSeq genes,
94% of loci present on HM27K bead array, and add-
itional CpGs identified as variable from various WGBS
methylation investigations [15].

To detect the methylation status at individual CpG
loci, the Ilumina Infinium assay relies on hybridization
of bisulfite-converted DNA fragments to bead-bound
probes [15]. Two probe types exist on the array, Infi-
nium I and Infinjium II. Infinium I type probes interro-
gate the methylation status of a CpG using the ratio
between two probes that hybridize either the methylated
or unmethylated DNA template flanking the CpG of
interest. Infinium II type probes use a single probe with
a single fluorescent tagged base ligation that is specific
for the methylated or unmethylated states of the CpG of
interest. The different chemistries of Infinium I and infi-
nium II probes and the fact they interrogate different
sets of CpG populations, means that the probe groups
have different distributions of DNA methylation mea-
surements on the HM450K bead array [20]. As such,
several R packages with a range of normalization
methods for the HM450K bead array have been devel-
oped to account for this difference [13,21-25].

While recent reports have illustrated the accuracy and
reproducibility of this platform [15,26-28], many studies
have also reported that probes on the array may produce
erroneous results due to genomic factors other than
methylation that affect hybridization or base ligation.
For example, a number of studies have shown that a
probe’s ability to measure accurate DNA methylation
can be affected by SNPs at the interrogated CpG (20,879
probes in [29], 40,484 probes in [30], and 66,877 probes
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in [31]). It has also been suggested that SNPs within
10 bp of the interrogated CpG can affect probes (36,535
n [29]). Given that previous studies on gene expression
arrays, which also rely on hybridization, have shown that
single nucleotide polymorphisms (SNPs) and short inser-
tions and deletions (INDELSs) overlapping probe regions
affect hybridization [32-34], SNPs are likely to impact
our ability to measure methylation using the HM450K
array. In addition to variants affecting methylation
calling, a significant number of probes have been
shown to map to multiple locations in the genome.
Cross-reactivity of these regions can compromise true
signal detection by the array and many studies have
suggested removal of these probes from analysis
(29,233 X chromosome probes [31] and 40,590 auto-
somal probes [29]). This effect is confounded, since bi-
sulfite treatment of DNA converts unmethylated C to T,
rendering the “bisulfite genome” with reduced complexity,
which facilitating more multiply mapped probes. It has
also been suggested that probes which span regions in the
genome containing repeats yield erroneous methylation
calls [13,35] and should be filtered. Probe filtering has
even occurred in regions of copy-number change [36], in
spite of a study that analyzed the effect of copy number
on observed methylation at CpG sites using the HM27K
array, and concluded that there was no systematic copy
number effect on methylation status [37].

In many of these previous studies, the effects of factors
causing noise in methylation measurement was not de-
termined directly but inferred through observed trends
such as increased standard deviation in probes affected
by SNPs at the CpG across multiple samples from the
same tissue [29]. Usually, in absence of more informa-
tion, a conservative approach has been taken, aggres-
sively filtering any probe which may be potentially
affected. None of the previous studies have performed a
systematic analysis of all of the potential factors affecting
probes on the HM450K bead array. In this study, we
perform a rigorous analysis of the effects of SNPs,
INDELSs, repeats and multi-mapping probes. In contrast
to previous studies, we have compared these confound-
ing effects against WGBS data. Our analysis yields a set
of probes which should be removed during analysis as
we have shown they provide a noisy signal (i.e. increased
deviation in measurement using the HM450K bead array
compared to whole-genome bisulfite sequencing). By re-
moving these probes, we show recovery of biologically
relevant results which would have been missed without
our probe filtering approach.

Results and discussion

Design of an array based technology which interrogates
a large number of CpGs across the human genome is a
difficult task. A comprehensive set of interrogation sites
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will inevitably contain probes which will be affected by
SNPs, INDELs, multiple location hybridization and re-
peat sequences. The HM450K bead array contains a
large number of interrogated CpG sites and it is up to
users to decide which probes on the array they are will-
ing to include in their analysis in light of the knowledge
that some probes may provide a potentially ‘noisy’ signal.
This becomes problematic when each study using this
platform excludes their own panel of probes leading to
apparently discrepant results. To enable users of this
technology to make a more informed decision on which
probes to include in their analysis, we performed a com-
prehensive analysis of the effects of SNPs, INDELSs, re-
peats and genomic complexity, on the ability to measure
DNA methylation status. To do this, we used four
datasets:

1. HM450K profiling in H1-hESC cells with matched
whole-genome bisulfite sequencing (WGBS) from
the ENCODE project [38]. In this case, we used the
WGBS results as a ‘gold-standard’ to determine the
accuracy of selected probes on the array.

2. HM450K profiling of 63 cell lines from the
ENCODE project. In this case we detected trends in
probe readouts that were present across a large
numbers of cell types.

3. HM450K profiling of primary prostate cancer
samples. We used these data to show that noisy
probes can affect the overall ability to detect
meaningful biology.

4. HM450K profiling of 265 blood samples from Price
et al. [29]. These data were used to show a similar
trend to that observed in the original paper, that
noisy probes show greater within tissue methylation
variance than non-noisy probes.

Through analysis of each dataset we were able to iden-
tify a set of probes which were likely to provide a
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confounding signal. Removal of these probes resulted in a
final collection of probes in which users can be confident
in their measurements of DNA methylation status. While
we provide a recommended set of probes to remove from
analyses, it is ultimately up to the end user to choose a
final probe set that best suits their expectations.

As two different chemistries are used for the Infinium
I and Infinium II probes, we analyze them as independ-
ent probe groups as they may be affected differently.
Table 1 provides information on the number of probes
that are potentially affected by different genomic factors.
If an ultra conservative approach to probe filtering was
adopted, removing any probe potentially affected by
other genomic factors, it can be seen from Table 1 that
only 172,587 probes would remain for further analysis.
While some factors may drastically affect the resulting
methylation calls such as SNPs at the interrogated CpG,
some phenomena such as SNPs in the probe body may
have little effect on measured methylation state. As such,
we believed it was possible to increase the set of high-
quality probes by identifying those unlikely to be
affected by certain phenomena. The following section
outlines our decision making approach for inclusion or
exclusion of certain probes based on comparison of the
HM450K bead array with matched whole-genome bisul-
fite sequencing.

Using a comparison of methylation status measured
using the HM450K bead array against whole-genome
bisulfite sequencing to determine ‘noisy’ probes

We compared methylation (beta values) from the
HM450K bead array with those derived from whole-
genome bisulfite sequencing, matched for genomic loca-
tion and cell type. Overall the beta-values determined
using the HM450K bead array showed high correlation
with methylation determined using whole-genome bisul-
fite sequencing (r =0.92 Infinium I, r = 0.89 Infinium II,
Figure 1a, b). However, when we considered only the

Table 1 Summary of the probes which are identified as having hybridization problems due to multimapping, SNPs,
repeats, INDELs and unknown factors (note: some probes may belong to more than one category)

Infinium | Infinium I Total
Total number of probes on array 135,476 350,036 485,512
Probes which map to multiple genomic locations 5971 13,863 19,834
Probes containing only known INDELs 1,935 4,348 6,283
Probes containing known repeat regions 8,438 30,305 38,743
Probes which have a SNP/INDEL at interrogated CpG 12,746 57,372 70,118
Probes containing known SNPs 52,175 117,342 169,517
Probes affected by unknown factors® 1,394 13,840 15,440
Total number of high-quality probes on array 52,817 119,770 172,587
Total number of potentially ‘noisy’ probes 82,659 230,266 312,925

# 1Probes affected by unknown factors’ are considered as probes which have absolute beta difference between WGBS and HM450K bead array greater than 0.3.
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Figure 1 This figure summarises the comparison between WGBS and HM450K beta-values for the H1-hESC cell line. Figures a) and

b) show contour plots demonstrating the correlation of DNA methylation between WGBS and HM450K bead array for Infinium | probes and
Infinium Il probes respectively. The contours (different colour intensities) capture the density of beta-values. It can be seen that most points reside
close to 0,0 and 1, 1, resulting in high-correlation between the platforms. Figures ¢) and d) show boxplots of DNA methylation results (absolute beta
differences) between WGBS and HM450K bead array, plotted for different potential filtering categories for Infinium I and Il probes respectively. The box
extends from the first to the third quartile and whiskers extend to 1.5 times the interquartile range. Points outside this are considered outliers. The blue
boxplots show the distribution of filtering category probes that were statistically significantly different from the high quality probes (golden boxplot)

(P < 0.001) otherwise, the category is plotted as light green. The red dotted line depicts the median of a high quality probe set. Category definitions:
High-quality - represents probes which are not affected by any genomic factors; Repeats - describes probes which hybridize to repetitive
regions; Bis-okay — are probes which hybridize regions containing any C—>T SNP or T- > C SNP and are ‘okay’ in bisulfite space; SNP-at-CpG-C
and SNP-at-CpG-G - are probes which have SNPs at the interrogated C and its neighbouring G position, respectively; Indels - are probes which
hybridize regions containing INDELs; Multimap - are probes which hybridize to multiple genomic loci; SNP-1 - are probes which contain only
a single SNP anywhere in the body; and SNP > =2 - are probes which contain at least 2 SNPs anywhere in the probe body.
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probes which were not potentially affected by any
other genomic factor (Table 2), the correlation in-
creased to r=0.95 and r = 0.92 respectively (referred to
from now on as high-quality probes). This suggested
that the remaining probes could be affected by gen-
omic factors other than methylation. However, before
being able to determine which probes provided a noisy
signal, it was necessary to estimate the expected back-
ground noise when comparing methylation measured
using array hybridization to methylation measured
using bisulfite sequencing.

Array based methylation measurements are derived
from continuous fluorescence intensities that are trans-
formed into beta values ranging from 0 to 1 (unmethy-
lated to methylated). Whereas sequencing based
methylation measurements are derived from discrete
read counts which are transformed to beta values ran-
ging from O to 1. The comparison between the two beta
values is somewhat analogous to comparing an analog to
a digital measurement. Therefore, when comparing beta

values from the two technologies there will likely be a
background error rate which is due in a large part to the
difference in measurement methods. We calculated the
distribution of this background error rate in terms of ab-
solute beta value difference between the sequencing de-
rived beta value and the array derived for all high-quality
probes (Figure 1c and 1d). There was a median differ-
ence in beta-value of 0.06 for Infinium I probes, and
0.10 for Infinium II probes between the array and sequen-
cing methodologies. We used these high-quality probes as
a gold-standard to assess the performance of other probes.
To explore how different genomic factors affected array
based measurements we observed if the difference in
beta-value significantly increased above the expected
background difference derived from the high-quality
probes (see following sections). If so, we concluded that
the probe set be removed from further analysis as the
probes provided a ‘noisy’ signal.

For the remainder of this paper we consider differ-
ences in beta values between WGBS and the HM450K
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Table 2 Pearson correlation of DNA methylation results (beta-values) between WGBS and HM450K bead array for the

H1-hESC cell line, measured for different categories

Infinium | Infinium I

Category Unique probes Median Pearson corr. P-value Unique probes Median Pearson corr. P-value
High quality 25,199 0.06 0.95 NA 83,565 0.10 0.92 NA

Multimap map 917 0.08 0.93 343e-09 2,602 0.11 091 3.72e-03
Repeats 1,645 0.13 0.85 6.1e-141 11,026\ 0.11 0.79 9.03e-11
Indels 901 0.07 0.94 6.49e-02 2,993 0.10 091 832e-02
Bis-okay 2,734 0.07 0.95 7.74e-02 11,804 0.10 0.92 8.32e-02
SNP-at-CpG-C 1,074 0.09 093 7.07e-18 8,099 0.10 0.83 6.59e-05
SNP-at-CpG-G 1032 0.09 091 238e-21 7488 0.10 0.82 242e-04
SNP-1 14,155 0.07 0.95 6.33e-12 40,426 0.10 091 2.30e-01
SNP > =2 7,067 0.07 0.94 2.36e-27 13,822 0.10 0.90 2.27e-01

Each probe count is the number of probes unique to each category and contains only probes which appear on the array and have a matching WGBS beta value.

Category definitions: High-quality - contains probes which are not affected by any genomic factors; Repeats - describes probes which hybridize to repetitive
regions; Bis-okay - are probes which hybridize regions containing any C- > T SNP or T- > C SNP and are ‘okay’ in bisulfite space; SNP-at-CpG-C and SNP-at-CpG-G -
are probes which have SNPs at the interrogated C and its neighbouring G position, respectively; Indels - are probes which hybridize regions containing INDELs; Multi-
map - are probes which hybridize to multiple genomic loci; SNP-1 - are probes which contain only a single SNP anywhere in the body; and SNP > =2 - are probes
which contain at least 2 SNPs anywhere in the probe body.The p-values represent the difference in beta-value distribution calculated using the Wilcox-rank sum test
[39] and multiple tested corrected using the Benjamini-Hochberg method [40]. The median of the absolute difference between WGBS and HM450K bead array of each

set is also shown.

in terms of absolute differences. However, for complete-
ness we have included Figure S10 in additional file 1 that
illustrates the signed beta differences between WGBS
and HM450K bead array. This figure shows that Infi-
nium I probes on average tend to underestimate the
methylation signal output by WGBS, while the Infinium
II probes tend to overestimate the methylation status.
The differences observed between the two probe types is
likely due to the different genomic regions being interro-
gated. Infinium I probes interrogate CG rich sequences,
and promoters, which are more likely to provide a ro-
bust methylation signal, albeit more variable. Whereas
Infinium II probes interrogate additional regions such as
gene bodies and intergenic regions. These regions are
more difficult to profile and are more likely to be af-
fected by repeats resulting in a higher background error
rate plus less variability due to factors other than differ-
ential methylation.

Probes which hybridize multiple genomic locations

In the case of probes which hybridize to multiple loca-
tions in the genome, it is difficult to determine which
genomic region gives rise to the measured methylation
state. Therefore, without individual analysis of each
probe and its possible hybridizable regions, including
those probes in an array wide analysis is potentially
problematic. We estimated a total of 19,834 probes fall
into this category. When compared to WGBS, there was
a median difference in beta-value of 0.08 for Infinium I
and 0.11 for Infinium II (Figure 1c and 1d, and Table 2
category Multimap) and a correlation of 0.93 and 0.91
respectively (Table 2 category Multimap). The difference

in beta-value distribution was significantly higher than
background in the case of Infinium I probes (p < 0.001).
Given this error rate, and the difficulty in determining
which genomic region gives rise to the observed methy-
lation status we recommend removal of these probes
from subsequent analysis for both Infinium I and II
probes. If these probes were to be used for further ana-
lysis, they would have to undergo a deconvolution
process to determine which genomic region (s) give rise
to the observed methylation status.

Probes which hybridize repetitive regions

Probes which hybridize to repetitive regions have the po-
tential to encounter unusual hybridization issues. The
repeat may be small and occur multiple times in the
probe, in which case the probe may align at multiple lo-
cations. Or the repeat may be large and span the entire
probe, therefore the probe can potentially hybridize to
multiple locations. Furthermore, repeat families can be
highly polymorphic introducing another layer of con-
founding factors. We determined a total of 38,743 probes
fall into this category. These probes had the highest me-
dian difference in beta value at 0.11 for Infinium I and
0.13 for Infinium II, both of which were significantly dif-
ferent to the expected background difference (p <0.001)
when compared to WGBS (Figure 1c and 1d, and Table 2
category Repeats). Given this high observed difference in
beta value and the fact that the effects of repeats on
hybridization are relatively unexplored, we recommend a
conservative approach be taken and these probes be re-
moved from further analysis.
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Probes which hybridize regions containing INDELs

The prevalence of INDELs across the genome has re-
cently shown to be significant [41]. Therefore INDELs
may have a considerable effect on probe hybridization
and observed methylation status. A total of 6,283 probes
hybridize to regions potentially containing INDELs.
However, the median difference in beta value of these
probes (0.07 Infinium I, 0.10 Infinium II, Figure 1c, d,
Table 2 category Indels) was not different from the ex-
pected background difference and the correlation was
similar to the high-quality probes (Table 2 category High
quality). This may be due to the fact that while many
INDELs have been identified and annotated, they are
not frequent enough in any given sample to have an ef-
fect. By default we recommend including probes which
are annotated with INDELs in subsequent analyses.
However, this is highly dependent on how the HM450K
platform is being used. For population-wide studies re-
moval of these probes is prudent in absence of any geno-
typing data to determine exactly which probes will be
affected. While if an experiment is investigating in an
in vitro cell line system, it is plausible to include these
probes in the study given that the cell lines are derived
from the same parental line.

Probes which hybridize regions containing SNPs

For probes that hybridize regions containing known
SNPs it is not immediately obvious whether the SNP will
have an effect on measured methylation status. For in-
stance, as each probe is hybridizing a bisulfite treated
genome, any C—>T SNP or T->C SNP which occurs
outside a CpG is likely to always be a T after bisulfite
conversion unless it is part of a CpG site within the
probe. Therefore SNPs of this nature should have no
affect on hybridization. We observed this to be the case
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for both Infinium I and Infinium II probes where the
difference in beta value and correlation were the same
as that of the high-quality probes (Table 2, category
Bis-okay). We therefore recommend including probes
annotated with these SNPs in subsequent analyses for
both Infinium I and II probes (total 14,538).

Of the remaining probes which hybridize regions con-
taining a SNP, those which have SNPs at the interro-
gated CpG are expected to have a large effect on the
resulting methylation measurement. A base change at
the interrogated CpG would cause an otherwise methyl-
ated site to be considered unmethylated. To observe if
this was the case, we used genotyping information for
the H1-hESC cell to find all interrogated CpG locations
where the C was in fact disrupted. All of the probes
which had a homozygous SNP at the interrogated C
(Figure 2a) showed no methylation. Similarly, nearly all
of the probes with a homozygous SNP at the neighbor-
ing G also showed no methylation (Figure 2b). This
would suggest that SNPs at these locations can have a
dramatic effect on methylation and these probes should
be removed from analysis. In the broader case where an
interrogated CpG has an annotated SNP (but we do not
know the genotype), our comparison with bisulfite se-
quencing data showed there was a significant increase in
absolute beta value difference for SNPs at both locations
for both Infinium I and Infinium II (Figure 1c and 1d, and
Table 2 categories SNP-at-CpG-C and SNP-at-CpG-G).
However, in the case of Infinium II, this difference was
not highly significant suggesting that this approach may
be too conservative. We use ENCODE data to justify
why this may be the case in the following section. In
spite of this, by default we opt to remove these probes
from subsequent analysis. However, we recommend
that analyses be carried out with and without these
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Figure 2 This figure shows a histogram of the number of probes with SNPs at the interrogated CpG (y-axis) and their beta-value
(x-axis). In each case, these probes have been shown to have a SNP which causes a mis-match in the probe sequence at the C of the interrogated
CpG (@) and at the G of the interrogated CpG (b). These plots were generated using HM450K data from the H1-hESC cell line.
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probes for completeness. If genotyping information is
available for the sample being studied, this can be used
to determine which probes should be included or
discarded.

Finally, we looked at the effect of SNPs when they res-
ide in the probe body. Koboldt et al. [35] have suggested
that probes overlapping SNPs within 10 bp of the inter-
rogated CpG affect the ability to measure DNA methyla-
tion, and recommend removing them from subsequent
analyses. However, when we looked at the difference in
beta value for probe sets with SNPs at different locations
in the probe body, we saw no such bias (Figure S2 in
Additional file 1). Instead, we analyzed the overall effect
of a single SNP, and 2 or more SNPs anywhere in the
probe body. For Infinium I probes our comparison with
WGBS data showed that even a single SNP in the probe
body resulted in a significant increase in absolute beta-
value difference (Figure 1c and 1d, and Table 2 categor-
ies SNP-1 and SNP > =2). However, Infinium II probes
seemed to tolerate 2 or more SNPs in the probe body.
This is likely due to the difference in design between the
two probes. Infinium II probes have a degenerate base at
each CpG in the body which allows the hybridization of
C or T, whereas Infinium I probes have an exact match
[15]. Therefore, we recommend that Infinium I probes
with overlapping SNPs in the probe body be removed
from subsequent analyses, whereas Infinium II probes
could be kept. However, it is important to note that in
this case, if there is a mismatch, a smaller pool of tem-
plates would be contributing to the intensity signal of
the probe. If genotyping information is available, it is
possible to determine exactly which probes should be
kept or discarded.

Using average heterozygosity to rescue probes

It has been suggested that SNPs with low average het-
erozygosity measurements are less likely to have an ef-
fect on probe hybridization compared to those with high
average heterozygosity [29]. We measured the absolute
difference in beta-value for probe sets with SNPs of
varying average heterozygosity (Figure S3 in Additional
file 1). For Infinium I probes, even SNPs with low aver-
age heterozygosity had a significant effect on the ability
to accurately measure methylation status (Figure S3a in
Additional file 1). For Infinium II probes, probes with
SNPs with average heterozygosity between 0.2 and 0.3
and greater than 0.4 appeared to have a significantly lar-
ger difference in beta value, whereas those outside these
ranges showed potential for providing a way to ignore
these SNPs. However, overall, using average heterozygos-
ity did not appear to provide any significant improve-
ment. This is likely due to the fact that the population of
individuals used to determine average heterozygosity
(1000 genomes project [42]) is not sufficiently matched
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to the data we have used for comparison (H1-hESC
cells). Therefore we conclude that average heterozygosity
is only useful for ignoring the effect of certain SNPs
when estimated from a closely matched population of
individuals to the cell being studied.

Probes which hybridize regions affected by unknown
factors

In the previous sections we identified and tested a range
of genomic factors that may affect probes on the
HM450K array. However, there may be other factors
which we have not considered which cause a probe to
output an erroneous result. Probes in this category are
likely to produce beta values with large discrepancies
compared to WGBS beta values. Figure S9 in Additional
file 1 shows that some of the probes (5,126 Infinium I
and 20,732 Infinium II) hold beta differences between
WGBS and HM450K bead array greater than 0.3. We
deem these probes to be affected by some unknown gen-
omic factors and hence recommended they be removed
from the analysis pipeline. Further analysis shows that
1,394 out of 5,126 Infinium I and 13,840 out of 20,732
Infinium II probes are unique to this category (Table 1).
Please note, these probes were considered erroneous in
light of data from a single cell-line. To improve esti-
mates on the beta-value difference, additional compari-
sons are required to ensure only probes that show a
consistently large deviation in beta-value are removed.

Probe filtering summary

Table 3 provides a summary of the probes we recom-
mend to be discarded or kept in light of our comparison
between HM450K and WGBS profiling of HI1-hESC
cells. An aggressive filtering procedure would remove
64% of probes (312,925) on the array (Table 1), however,
our analysis has demonstrated that some of these probes
do not provide a ‘noisy’ signal and can therefore be ‘res-
cued. This results in a filtering procedure which
removes only 39% of probes (190,672) on the array. We
reiterate that some of the filtering steps we have used can
be altered from the default depending on the type of study
being performed. We provide an overview of the filtering
procedure (Additional file 1: Figure S8) and filtering anno-
tations (Additional files 2 and 3) for this purpose.

Beta-value trends across HM450K profiling of 63 ENCODE
samples

It is known that methylated cytosines have a higher rate
of deamination [43]. Thus cytosines which are frequently
methylated will have a greater chance of having a SNP
annotated at the same location [44,45]. This is reflected
by the fact that there are total of 70,118 probes which
have an annotated SNP at the interrogated CpG, the sec-
ond largest of all of the categories (Table 1). While many
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Table 3 Summary of the probes which are removed or kept for further analysis

Infinium | Infinium I Total kept

Total number of probes on array 135476 350,036 -
Probes which map to multiple genomic locations 1,581 3,728 0
Probes containing known repeat regions 2,845 13,673 0
Probes containing known INDELs 1,885 4,101 5,986
Probes containing SNP and interrogated CpG 9,568 42,800 0
Probes containing 1 SNP in the body 26,700 72,315 77,545%
Probes containing > =2 SNPs in the body 20,043 34,330 34,675%
Probes affected by unknown factors 1,394 13,840 0
Probes affected by multiple factors 16,857 49,580 4,047*
Total number of rescued probes’ 7367 114,886 122,253
Total number of high-quality probes 52,817 119,770 172,587
Total number of probes kept for further analysis 60,184 234,656 294,840

*Some of these probes were rescued due to being bisulfite OK.

The probe counts depicted in this table are those which are unique to each category. Any probes which have are affected by multiple factors appear in the

‘Probes affected by multiple factors’ category.

previous approaches have removed these probes en
masse [36,46], we argue that they could remain for sub-
sequent analysis. This is due to a number of reasons:
firstly, by looking at the methylation profiles of 53 cell
lines from the ENCODE project [38], we observed that
the majority of probes with annotated SNPs at the CpG
have a high-beta value (Figure S1 in Additional file 1).
From this, we can infer that on average, most of these
probes are not in fact affected by SNPs. Furthermore,
while a SNP in the probe body may affect the methyla-
tion readout for the CpG, a SNP at the interrogated
CpG is affecting the methylation status of that exact lo-
cation in the genome that is being interrogated. There-
fore, unless the analysis is specifically avoiding cases
where a SNP is causing a region to be unmethylated, the
70,118 probes could be considered for further analysis.
While by default we have opted to remove these probes,
if the study being undertaken involves a genetically
homogeneous population of cells (including cell lines), it
would be worth considering including these probes in
the analysis.

The effect of probe filtering: A case study of methylated
regions in prostate cancer

In order to examine the impact our probe filtering ef-
forts might have on the analysis of real-world primary
data, we analyzed clinical prostate cancer specimens.
The methylation status of prostate cancer tissues is of
particular interest as recent studies show that methyla-
tion changes are a key driver of tumour progression
[47]. In addition, results from WGBS of prostate tu-
mours indicate that the majority of regions showing dif-
ferential methylation reside outside CpG islands and
that the vast majority of changes in CpG methylation

status are not correlated with changes in gene expres-
sion [48]. Interestingly, inhibition of RNA expression did
not inversely correlate with CpG island methylation sta-
tus suggesting that arrays that focus on CpG island
probes, as exemplified by the 27 K array, will be defi-
cient for a proper analysis of methylation changes in
prostate cancer. Therefore, it is important to be able to
detect accurate methylation changes using the HM450K
platform.

To explore this, we profiled four prostate tumour tis-
sues and four benign prostate tissues using the HM450K
bead array. These samples were used to observe the ef-
fects of probe filtering on downstream analysis. We took
a typical analysis approach, observing differential probes
between the two sets of samples (tumour versus benign).
Using minfi with SWAN normalization, we determined
the list of significantly differentially methylated probes
between tumour and benign tissue with, and without
probe filtering.

Without probe filtering, 45,376 probes were deter-
mined differentially methylated (multiple tested cor-
rected p-value < 0.05). With filtering, 42,132 probes were
differentially methylated. 30,439 probes were common
between the lists, with 14,937 probes being unique to
the unfiltered list and 11,693 probes being unique to the
filtered list of differentially methylated probes. When
these probes were mapped to gene promoters, the unfil-
tered approach yielded 891 unique differentially methyl-
ated genes and the filtered approach 698 unique
differentially methylated genes.

To explore the biology behind each of these gene lists,
we input each gene list into the String Protein-Protein
Interaction database to determine which genes were
known to interact with each other (see Method section
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Gene network construction for details). The unfiltered
gene set indicated that the most connected gene net-
work represented genes mostly involved in the ribosome
which is not particularly associated with prostate cancer
(Figure 3a). In stark contrast, the filtered gene list
yielded a connected network with androgen receptor
(AR) at the centre (Figure 3c). AR is a clinically con-
firmed key player in the progression of prostate cancer
as blockade of androgens by surgical or chemical means
has formed a vital part of clinical management for many
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decades [49]. As prostate cancers inevitably become re-
sistant to androgen deprivation therapy, the molecular
underpinnings of AR, its effects, regulation and interac-
tions within pathways, remains a central theme in con-
temporary prostate cancer research with respect to
therapy and biology [50,51]. Using our filtering ap-
proach, we were able to observe the decreased methyla-
tion of the AR promoter in tumour tissue compared
with benign prostate gland samples. Assuming a corre-
sponding increased transcription of the AR gene, this
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would be consistent with its described biology in prostate
cancer [52,53]. Importantly, this network would have been
overlooked in the absence of our probe filtering procedure
and emphasizes the need for careful consideration of con-
founding genomic phenomena on probe effectiveness and
accuracy. Furthermore, if an overly conservative approach
to filtering is adopted (removing all probes potentially
affected by different phenomena), this extensive network
signature is similarly unobservable (Figure 3b).

High-quality versus noisy probes: a case study of blood
samples

Theoretically, probes which are affected by various gen-
omic factors would result in a pattern of high within-
tissue standard deviation (SD) in beta values [29]. To
test the applicability of our filtering procedure in light of
this, we compared the distribution of SD in beta-values
for different sets of probes: all probes (ALL), probes
which are recommended by us to be removed prior to
data analysis (DISCARD), and the probes which are kept
for the analysis (KEEP). This comparison was done using
two datasets: a set of 4 blood samples from [29], and a
larger blood sample dataset of 261 individuals aged in
the range of 19 to 61 from [54] (see method section for
details). A comparison of the SD distributions for the 4
blood samples shows that the high-quality KEEP set of
probes shows significantly lower standard deviations
in beta-value than the DISCARD set of noisy probes
(p-value = 1.97e-84) based on Wilcox-test [39]. Figure 4a
illustrates this pattern by a shift in the density curve for
SD in beta values for probes annotated with ALL, KEEP
and DISCARD. Similar results were also obtained for the
larger 261 aging dataset (see Figure 4b for illustration). By
removing ‘noisy’ probes from the analysis, within tissue
standard deviation is decreased, facility more powerful
downstream comparisons of differential methylation be-
tween tissues.
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Exploring the filtered probe set: what is lost?

In the previous sections, we provided a principled way
to reduce noise in the HM450K bead array via removal
of probes which were affected by certain genomic
phenomena.

By using a direct comparison with whole-genome bi-
sulfite sequencing data, only the probes showing a noisy
signal were removed thereby maximizing the number of
probes retained for subsequent analysis. We suggested
the removal of 190,672 (75,292 Infinium I and 115,380
Infinium II) (39%) probes before analyzing the array as
they are likely to provide a noisy signal (Additional file 2).
Or conversely, this could be considered rescuing a total of
122,253 of the potentially ‘noisy’ probes (7,367 Infinium I
and 114,886 Infinium II, Table 1).

Our remaining recommended set of high-quality
probes provides adequate coverage of the genome with
only a select few regions being underrepresented. Figure
S4 in Additional file 1 shows that only the HLA region
on Chromosome 6 shows removal of 100% of the
probes, with four other genomic regions showing greater
than 60% removal of probes. When considering particu-
lar genomic features, in all categories except enhancers,
the average fraction of probes removed is below the
genome-wide average of 39% (Figure S5 in Additional
file 1). This suggests that probe filtering will not affect
the ability to call differential methylation in these re-
gions. It also suggests that the bulk of probe filtering
happens for probes elsewhere in the genome. However,
when we look in detail at CpG islands (Figure S6 in
Additional file 1), we see 47% of the probes designed to
hybridize the N Shelf (region 2—4 kb upstream of CpG
island) and S Shelf (region 2—4 kb downstream of CpG
island) fall into our suggested removal set, thus reducing
the ability to profile these regions. However, the island
itself seems to have few potential ‘noisy’ probes on aver-
age (28%). At a gene level, if the genes are split into sep-
arate promoter and gene-body regions, 1,380 and 1,236
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genes (out of a total of 21,235) have 100% of the
probes fall into the filtered set respectively (Figure S7
in Additional file 1). This means that the interrogation
of the methylation of some genes is not possible using
our approach.

However, overall, these observations demonstrate that
while we recommend 39% of the probes on the array
should be removed from analysis, in most cases this will
not significantly affect downstream genome-wide ana-
lyses. It is important to note however, that different fil-
tering strategies may be adopted depending on the type
of study being undertaken. The majority of the data ana-
lysed in this study has been derived from a single ethnic
group of samples with white European/American des-
cent. Therefore, information regarding filtering based on
genomic variants would be specific to this ethnic group.
Studies involving other ethnicities may adopt different
filtering approaches to our recommended default. For
instance, a study across diverse ethnic groups may need
to adopt a more aggressive filtering approach, in absence
of adequate genotyping information, as observed methyla-
tion changes may be more likely associated with genomic
changes. However, if the study involved a homogenous
ethnic population, a more relaxed filtering strategy may be
adopted. Our filtering annotation (Additional files 2 and
3) provides information for users of the HM450K to make
an informed decision given both of these study types.

Conclusion

This study provides a comprehensive analysis of the ef-
fects of repeats, SNPs, INDELs, and reduced genome
complexity on the performance of the Illumina HM450
bead methylation array. We show that a subset of probes
on the array have the potential to provide a noisy methy-
lation signal. We provide a principled way to identify
and filter these probes. We also show that by applying
this filtering procedure to primary data from the HM450
bead array, it is possible to yield analyses of significant
interest from a biological perspective that may be unob-
servable without principled probe filtering.

Methods

Annotation of probes on the HM450K bead array

Probe annotation information including sequence and
chromosome location for the IlluminaHumanMethyla-
tion450 array was obtained from [55] (humanMethyla-
tion450_15017482_v.1.2.csv). In addition, annotations
from the R package: IlluminaHumanMethylation450p-
robe ([56], containing 485,512 probes) were also ex-
tracted. For consistency, the probe sequences and their
genomic strand information were compared between
these two annotation sources. Some inconsistencies were
observed with respect to the SourceSeq column reported
in the table — the sequence in which the probe was
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derived. We used the human reference genome hgl9
[57] to determine the correct strand and sequence anno-
tation for each probe.

Analysis of H1-hESC Whole Genome Bisulfite sequencing
data, HM450K and genotyping from ENCODE

We obtained CpG methylation data (bigBed format)
assayed by Whole Genome Bisulfite Sequencing (GEO
GSE40832), and HM450K profiling (GEO GSE40699), as
well as genotyping information (GEO GSM999275), for
HI1-hESC cells generated by the ENCODE production
group [38]. We converted the bigBed files into ASCII bed
files using the bigBedToBed method downloaded from the
UCSC Genome Browser [57]. The bed files contained
base-by-base methylation information including chromo-
somal location, and methylated score range from 0 to 100.
In order to determine which probes on the HM450K bead
array mapped to specific locations on targeted WGBS,
each probe was searched against ‘single base chromosomal
locations’” on WGBS data. If an occurrence of a certain
base was found, the corresponding base was linked to the
interrogated probe. For analysis, we considered only those
sites which have at least 5 reads supporting the methyla-
tion status in the WGBS data.

Calculating correlation between HM450K beta-values and

WGBS

Figures 1a and 1b show the contour plots illustrating the
relation between WGBS and HM450K bead array. The
following method was used to generate these graphs.
First, the 2-dimensional methylation beta values matrix
(2DMM) was formed comprising WGBS and HM450K
bead array on each dimension (range from 0 to 1). Second,
the matrix was divided into consecutive sub-matrixes of
window size 0.02 and the total number of probes in each
sub-matrix was counted. The results have shown that ma-
jority of the probes lie at or nearby the (0,0) and (1,1) co-
ordinates of the 2DMM. To illustrate this, the resulting
2DMM with counts was input into the R package to gen-
erate contour plots using the ‘filled.contour’ function [58].

Analysis of HM450K Data of 63 samples from the ENCODE
project

We obtained data for 63 samples (comprising 53 differ-
ent cell-lines) profiled using the HM450K bead array
from GEO, accession number GSE40699. Preprocessing
and analysis of the HM450K bead array data available
was performed using the minfi Bioconductor package
[22] and (subset-quantile) SWAN normalization [21].

Analysis of primary data from human prostate cancer
samples

Patients undergoing radical prostatectomy for prostate
cancer had fresh frozen samples of cancer as well as
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adjacent benign prostate tissue prospectively stored in a
cancer biorepository program [59]. Institutional review
board approval was granted and all patients consented
to use of their de-identified tissue samples for genomic
analysis (Melbourne Health Human Research and Ethics
Committee, 2010.082). Four tumour samples containing
Gleason 6 cancer and four benign samples from other
prostate glands containing Gleason 6 cancer were se-
lected for study. Tissue samples were cryosectioned for
histopathological assessment. Genomic DNA was ex-
tracted from the homogenized samples using the Allprep
Micro Kit (Qiagen, CA, USA) following manufacturer’s
instructions and bisulfite converted using the Zymo EZ
DNA Methylation kit (Zymo Research Corporation, CA,
USA). The resulting libraries were hybridized onto the
[Mlumina HumanMethylation450 BeadChip. Raw inten-
sity data was generated using an iScan microarray reader
(Tllumina).

IDAT files were loaded into the R environment (2.15
development version) using the minfi package [22].We
then preprocessed the data by converting the raw inten-
sities (represented as Red and Green channel) into
methylated and unmethylated signals applying the
‘MSet.raw’ function of minfi. Then, we applied the
SWAN [21] function to normalise the data within the
arrays.

To determine the differentially methylated patterns be-
tween (benign and tumour) samples, we applied the
‘dmpFinder’ minfi function. It uses the F-test to identify
the differentially methylated sites between samples. The
resulting P-values were multiple tested corrected using
qvalue.cal function as described in the siggenes Biocon-
ductor package [60] and a P-value of < 0.05 was applied
as cutoff.

To map probes to genes, we downloaded gene coord-
inate information (refGene) from the UCSC Genome
Browser database [57], which contains the chromosomal
locations of 40,042 transcripts comprising 23,635 human
genes. Probes were matched to the promoter region
(from 1.5 kb upstream of the transcription start site
(TSS)) and the body region (between TSS and transcrip-
tion end site) of each transcript. First, we loaded the.

Gene network construction

The following procedures were used to build the unfil-
tered, filtered and conservative filter analysis gene net-
works (Figure 2).

Unfiltered analysis gene network

First, the differentially methylated probes (P < 0.05) were
mapped to refGenes as described above. Then the result-
ing genes input into the String-String database to deter-
mine which genes were interact with each other, thus
constructing the unfiltered analysis gene network.
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Filter analysis network

First, the recommended noisy probes (in total 190672
(75,292 Infinium I and 115,380 Infinium II)) were re-
moved from the analysis pipeline. Second, the differen-
tially methylated probes were determined and mapped
to refGenes. Finally the derived gene list was input into
the String-String database to identify the interacting
genes, thus forming the filter analysis network.

Conservative filter analysis

Initially, the potential noisy probes (319,545 or 65% of
the probes, Table 1) were removed and then differen-
tially methylated probes were determined and mapped
to refGenes. Finally, the resulting gene list was input
into a String-String database to form the conservative
filter network of interacting genes.

Analysis of blood samples

First, we obtained four blood samples comprising two
males and two females profiled with HM450K bead
array from the study of [29] (GEO GSE42409). Each
sample contains the beta value for 428,216 probes. Sec-
ondly, we downloaded a matrix file (GEO GSM1002649)
that contains the beta values for 473,034 probes on the
HM450K bead array in blood samples of 656 individuals,
aged 19 to 101 [54]. As described in [29] we also se-
lected a subset of 261 individuals ranging in age 19 to
61. Finally, in both datasets the standard deviation (SD)
for each probe has been calculated.

Description of probe filtering procedures

Figure S8 in Additional file 1 provides a workflow of our
probe filtering process which occurs prior to methyla-
tion status calling. Each step is outlined below:

1. Determining probe uniqueness across genome: All
probes which hybridize multiple locations in the
genome have the possibility of providing conflicting
methylation calls. In order to determine which
probes map to multiple locations, we generated a
“bisulfite genome” whereby all C’s were converted to
T’s. Probes called as unique by Novoalign bisulfite
mode [61] to hgl9 reference genome were identified.
Any probes matching more than 1 genomic location
were considered difficult to interpret and
subsequently removed from further analysis [62].

2. Does the probe map to repetitive sequence
elements? In order to determine which probes
overlap with repetitive regions, the repeat-masked
annotation files (generated using RepeatMasker) for
every chromosome were downloaded from the
UCSC hgl9 genome browser [57]. The genomic
location of each probe was scanned for the identifi-
cation of repeat sequence elements (RSE). If an
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occurrence of a certain RSE was found, the corre-
sponding probe was removed from further analysis.

3. Does the probe map to DNA harboring an INDEL?
dbSNP v135 was used to identify known small
insertions and deletions that overlapped probe
hybridization locations in genome. Any probes
hybridizing across known INDELs were kept for
subsequent analysis (see result section for details).

4. Does the probe map to DNA containing a SNP?
dbSNP v135 [63] was used to identify all known
single nucleotide polymorphisms. If the probe target
sequence contained no known SNPs, the probe was
retained for further analysis. If the probe target
sequence contained a SNP, the probe was subjected
to further filtering analysis (steps 5—6) before
deciding if this probe was kept for analysis or
removed.

5. Does the probe map to sequence with a SNP at the
interrogated CpG? If a known SNP was located at
the target CpG site, the probe was removed from
further analysis.

6. Is the SNP in the probe OK in bisulfite space? The
majority of C’s in the genome that are not followed
by a G are likely to be unmethylated. Therefore,
when bisulfite treated, these C’s will appear as T’s in
the genome and corresponding probe sequences [2].
Given this, if a particular SNP causes a C—> T or T-
> C change, it will always be observed as a T in a bi-
sulfite treated genome. Therefore, there are a num-
ber of probes which are not affected by these SNPs
as they are OK in bisulfite space. To find these, we
considered all C— > T and T- > C SNPs and observed
their neighbouring base downstream. If the base was
not a G, these SNPs were considered OK in bisulfite
space and their effects were ignored.

Additional files

Additional file 1: Contains supplementary Figures S1-S10.
Additional file 2: A table containing all filtering information.

Additional file 3: Contains a description of the column headers for
Additional file 2.
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